Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters








Database
Language
Publication year range
1.
Cell Signal ; 114: 110979, 2024 02.
Article in English | MEDLINE | ID: mdl-38000525

ABSTRACT

Chronic inflammation is a key driver for colitis-associated colorectal cancer (CAC). It has been reported that inflammatory cytokines, such as IL-1ß, could promote CAC. Zinc finger protein 70 (ZNF70) is involved in multiple biological processes. Here, we identified a previously unknown role for ZNF70 regulates macrophages IL-1ß secretion to promote HCT116 proliferation in CAC, and investigated its underlying mechanism. We showed ZNF70 is much higher expressed in CAC tumor tissues compared with adjacent normal tissues in clinical CAC samples. Further experiments showed ZNF70 promoted macrophages IL-1ß secretion and HCT116 proliferation. In LPS/ATP-stimulated THP-1 cells, we found ZNF70 activated NLRP3 inflammasome, resulting in robust IL-1ß secretion. Interestingly, we discovered the ZnF domain of ZNF70 could interact with NLRP3 and decrease the K48-linked ubiquitination of NLRP3. Moreover, ZNF70 could activate STAT3, thereby promoting IL-1ß synthesis. Noteworthy, ZNF70 enhanced proliferation by upregulating STAT3 activation in HCT116 cells cultured in the conditioned medium of THP-1 macrophages treated with LPS/ATP. Finally, the vivo observations were confirmed using AAV-mediated ZNF70 knockdown, which improved colitis-associated colorectal cancer in the AOM/DSS model. The correlation between ZNF70 expression and overall survival/IL-1ß expression in colorectal cancer was verified by TCGA database. Taken together, ZNF70 regulates macrophages IL-1ß secretion to promote the HCT116 cells proliferation via activation of NLRP3 inflammasome and STAT3 pathway, suggesting that ZNF70 may be a promising preventive target for treating in CAC.


Subject(s)
Colitis-Associated Neoplasms , Inflammasomes , Humans , Inflammasomes/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , HCT116 Cells , Colitis-Associated Neoplasms/metabolism , Lipopolysaccharides/metabolism , Macrophages/metabolism , Adenosine Triphosphate/metabolism , Cell Proliferation , Interleukin-1beta/metabolism , STAT3 Transcription Factor/metabolism
2.
J Ethnopharmacol ; 273: 113989, 2021 Jun 12.
Article in English | MEDLINE | ID: mdl-33677006

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Glycyrrhiza glabra L., a traditional medicinal, has a history of thousands of years. It is widely used in clinic and has been listed in Chinese Pharmacopoeia. Licochalcone A is a phenolic chalcone compound and a characteristic chalcone of Glycyrrhiza glabra L. It has many pharmacological activities, such as anti-cancer, anti-inflammatory, anti-viral and anti-angiogenic activities. AIM OF THE STUDY: In this study, we explored the anti-tumor activity and potential mechanism of licochalcone A in vitro and in vivo. MATERIALS AND METHODS: In vitro, the mechanism of licochalcone A at inhibiting PD-L1 expression was investigated by molecular docking, western blotting, RT-PCR, flow cytometry, immunofluorescence and immunoprecipitation assays. The co-culture model of T cells and tumor cells was used to detect the activity of cytotoxic T lymphocytes. Colony formation, EdU labelling and apoptosis assays were used to detect changes in cellular proliferation and apoptosis. In vivo, anti-tumor activity of licochalcone A was assessed in a xenograft model of HCT116 cells. RESULTS: In the present study, we found that licochalcone A suppressed the expression of programmed cell death ligand-1 (PD-L1), which plays a key role in regulating the immune response. In addition, licochalcone A inhibited the expressions of p65 and Ras. Immunoprecipitation experiment showed that licochalcone A suppressed the expression of PD-L1 by blocking the interaction between p65 and Ras. In the co-culture model of T cells and tumor cells, licochalcone A pretreatment enhanced the activity of cytotoxic T lymphocytes and restored the ability to kill tumor cells. In addition, we showed that licochalcone A inhibited cell proliferation and promoted cell apoptosis by targeting PD-L1. In vivo xenograft assay confirmed that licochalcone A inhibited the growth of tumor xenografts. CONCLUSION: In general, these results reveal the previously unknown properties of licochalcone A and provide new insights into the anticancer mechanism of this compound.


Subject(s)
B7-H1 Antigen/metabolism , Cell Proliferation/drug effects , Chalcones/pharmacology , Colonic Neoplasms/drug therapy , NF-kappa B/metabolism , Animals , Antineoplastic Agents, Phytogenic/pharmacology , B7-H1 Antigen/genetics , Coculture Techniques , Gene Expression Regulation, Neoplastic/drug effects , HCT116 Cells , Humans , MAP Kinase Kinase Kinases/genetics , MAP Kinase Kinase Kinases/metabolism , Mice , Mice, Nude , NF-kappa B/genetics , Neoplasms, Experimental , T-Lymphocytes/physiology , raf Kinases/genetics , raf Kinases/metabolism , ras Proteins/genetics , ras Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL