Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 24
Filter
Add more filters








Publication year range
1.
Mol Cell Endocrinol ; 594: 112357, 2024 Sep 03.
Article in English | MEDLINE | ID: mdl-39236798

ABSTRACT

OXER1, the receptor for the arachidonic acid metabolite 5-οxo-eicosatetraenoic acid (5-oxo-ETE), has been reported to also bind and mediate the membrane-initiated actions of androgens. Indeed, androgens antagonize the 5-oxo-ETE effects through OXER1, affecting a number of signaling pathways and inhibiting cancer cell proliferation and migration. OXER1, being a GPCR, was classically described to be localized in the plasma membrane. However, for numerous GPCRs, there is now strong evidence that they can be also found in other cellular compartments, including the nucleus. The aim of the present work was to investigate OXER1's possible localization in the nucleus and identify the mechanism(s) involved. For this purpose, we verified OXER1's nuclear presence by immunofluorescence and western blot, in whole cells and nuclei of two different prostate cancer cell lines (DU-145 and LNCaP) and in CHO cells transfected with a GFP labelled OXER1, both in untreated and OXER1 ligands' treated cells. Mutated, OXER1-tGFP expressing, CHO cells were used to verify that OXER1 agonist (5-oxo-ETE) binding is necessary for OXER1 nuclear translocation. NLS sequences were in silico identified, and a specific inhibitor, as well as, specific importins' siRNAs were also utilized to explore the mechanism involved. Moreover, we examined the role of palmitoylation in OXER1 nuclear translocation by in silico identifying possible palmitoylation sites and using a palmitoylation inhibitor. Our results clearly show that OXER1 can be localized in the nucleus, in an agonist-dependent manner, that is inhibited by androgens. We also provide evidence for two possible mechanisms for its nuclear trafficking, that involve receptor palmitoylation and importin-mediated cytoplasmic-nuclear transport. In our knowledge, it is the first time that a membrane androgen receptor is identified into the nucleus, suggesting an alternative, more direct, mode of action, involving nuclear mechanisms. Therefore, our findings provide new insights on androgen-mediated actions and androgen-lipid interactions, and reveal new possible therapeutic targets, not only for cancer, but also for other pathological conditions in which OXER1 may have an important role.

2.
Cell Mol Life Sci ; 81(1): 112, 2024 Mar 03.
Article in English | MEDLINE | ID: mdl-38433139

ABSTRACT

Down syndrome (DS) arises from a genetic anomaly characterized by an extra copy of chromosome 21 (exCh21). Despite high incidence of congenital diseases among DS patients, direct impacts of exCh21 remain elusive. Here, we established a robust DS model harnessing human-induced pluripotent stem cells (hiPSCs) from mosaic DS patient. These hiPSC lines encompassed both those with standard karyotype and those carrying an extra copy of exCh21, allowing to generate isogenic cell lines with a consistent genetic background. We unraveled that exCh21 inflicted disruption upon the cellular transcriptome, ushering in alterations in metabolic processes and triggering DNA damage. The impact of exCh21 was also manifested in profound modifications in chromatin accessibility patterns. Moreover, we identified two signature metabolites, 5-oxo-ETE and Calcitriol, whose biosynthesis is affected by exCh21. Notably, supplementation with 5-oxo-ETE promoted DNA damage, in stark contrast to the protective effect elicited by Calcitriol against such damage. We also found that exCh21 disrupted cardiogenesis, and that this impairment could be mitigated through supplementation with Calcitriol. Specifically, the deleterious effects of 5-oxo-ETE unfolded in the form of DNA damage induction and the repression of cardiogenesis. On the other hand, Calcitriol emerged as a potent activator of its nuclear receptor VDR, fostering amplified binding to chromatin and subsequent facilitation of gene transcription. Our findings provide a comprehensive understanding of exCh21's metabolic implications within the context of Down syndrome, offering potential avenues for therapeutic interventions for Down syndrome treatment.


Subject(s)
Down Syndrome , Humans , Down Syndrome/genetics , Calcitriol/pharmacology , Chromatin , Cell Line , DNA Damage
3.
J Biol Chem ; 299(8): 104983, 2023 08.
Article in English | MEDLINE | ID: mdl-37390986

ABSTRACT

The functional association between stimulation of G-protein-coupled receptors (GPCRs) by eicosanoids and actin cytoskeleton reorganization remains largely unexplored. Using a model of human adrenocortical cancer cells, here we established that activation of the GPCR OXER1 by its natural agonist, the eicosanoid 5-oxo-eicosatetraenoic acid, leads to the formation of filopodia-like elongated projections connecting adjacent cells, known as tunneling nanotube (TNT)-like structures. This effect is reduced by pertussis toxin and GUE1654, a biased antagonist for the Gßγ pathway downstream of OXER1 activation. We also observed pertussis toxin-dependent TNT biogenesis in response to lysophosphatidic acid, indicative of a general response driven by Gi/o-coupled GPCRs. TNT generation by either 5-oxo-eicosatetraenoic acid or lysophosphatidic acid is partially dependent on the transactivation of the epidermal growth factor receptor and impaired by phosphoinositide 3-kinase inhibition. Subsequent signaling analysis reveals a strict requirement of phospholipase C ß3 and its downstream effector protein kinase Cα. Consistent with the established role of Rho small GTPases in the formation of actin-rich projecting structures, we identified the phosphoinositide 3-kinase-regulated guanine nucleotide exchange factor FARP1 as a GPCR effector essential for TNT formation, acting via Cdc42. Altogether, our study pioneers a link between Gi/o-coupled GPCRs and TNT development and sheds light into the intricate signaling pathways governing the generation of specialized actin-rich elongated structures in response to bioactive signaling lipids.


Subject(s)
Actins , Arachidonic Acids , Cell Membrane Structures , Neoplasms , Receptors, Eicosanoid , Humans , Actins/metabolism , Neoplasms/metabolism , Pertussis Toxin/pharmacology , Phosphatidylinositol 3-Kinase/metabolism , Phosphatidylinositol 3-Kinases/genetics , Phosphatidylinositol 3-Kinases/metabolism , Protein Kinase C-alpha/genetics , Protein Kinase C-alpha/metabolism , rho GTP-Binding Proteins/metabolism , Rho Guanine Nucleotide Exchange Factors/metabolism , Cell Membrane Structures/metabolism , Nanotubes , Receptors, Eicosanoid/antagonists & inhibitors , Receptors, Eicosanoid/metabolism , Cell Line, Tumor , Arachidonic Acids/metabolism , Arachidonic Acids/pharmacology , Signal Transduction
4.
Molecules ; 29(1)2023 Dec 31.
Article in English | MEDLINE | ID: mdl-38202807

ABSTRACT

Chronic inflammation is an important factor in the development of cancer. Macrophages found in tumors, known as tumor associated macrophages (TAMs), are key players in this process, promoting tumor growth through humoral and cellular mechanisms. 5-oxo-6,8,11,14-eicosatetraenoic acid (5-oxo-ETE), an arachidonic acid metabolite, has been described to possess a potent chemoattractant activity for human white blood cells (WBCs). The biological actions of 5-oxo-ETE are mediated through the GPCR 5-oxo-6E,8Z,11Z,14Z-eicosatetraenoic acid receptor (OXER1). In addition, we have previously reported OXER1 as one of the membrane androgen receptors with testosterone antagonizing 5-oxo-ETE's actions. OXER1 is highly expressed in inflammatory cells and many normal and cancer tissues and cells, including prostate and breast cancer, promoting cancer cell survival. In the present study we investigate the expression and role of OXER1 in WBCs, THP-1 monocytes, and THP-1 derived macrophages, as well as its possible role in the interaction between macrophages and cancer cells (DU-145 and T47D). We report that OXER1 is differentially expressed between WBCs and macrophages and that receptor expression is modified by LPS treatment. Our results show that testosterone and 5-oxo-ETE can act in an antagonistic way affecting Ca2+ movements, migration, and cytokines' expression in immune-related cells, in a differentiation-dependent manner. Finally, we report that 5-oxo-ETE, through OXER1, can attract macrophages to the tumor site while tumor cells' OXER1 activation in DU-145 prostate and T47D breast cancer cells, by macrophages, induces actin cytoskeletal changes and increases their migration.


Subject(s)
Arachidonic Acids , Breast Neoplasms , Humans , Male , Macrophages , Arachidonic Acid , Testosterone , Receptors, Eicosanoid
5.
J Lipid Res ; 63(4): 100187, 2022 04.
Article in English | MEDLINE | ID: mdl-35219746

ABSTRACT

The sphingolipid, ceramide-1-phosphate (C1P), has been shown to promote the inflammatory phase and inhibit the proliferation and remodeling stages of wound repair via direct interaction with group IVA cytosolic phospholipase A2, a regulator of eicosanoid biosynthesis that fine-tunes the behaviors of various cell types during wound healing. However, the anabolic enzyme responsible for the production of C1P that suppresses wound healing as well as bioactive eicosanoids and target receptors that drive enhanced wound remodeling have not been characterized. Herein, we determined that decreasing C1P activity via inhibitors or genetic ablation of the anabolic enzyme ceramide kinase (CERK) significantly enhanced wound healing phenotypes. Importantly, postwounding inhibition of CERK enhanced the closure rate of acute wounds, improved the quality of healing, and increased fibroblast migration via a "class switch" in the eicosanoid profile. This switch reduced pro-inflammatory prostaglandins (e.g., prostaglandin E2) and increased levels of 5-hydroxyeicosatetraenoic acid and the downstream metabolite 5-oxo-eicosatetraenoic acid (5-oxo-ETE). Moreover, dermal fibroblasts from mice with genetically ablated CERK showed enhanced wound healing markers, while blockage of the murine 5-oxo-ETE receptor (oxoeicosanoid receptor 1) inhibited the enhanced migration phenotype of these cell models. Together, these studies reinforce the vital roles eicosanoids play in the wound healing process and demonstrate a novel role for CERK-derived C1P as a negative regulator of 5-oxo-ETE biosynthesis and the activation of oxoeicosanoid receptor 1 in wound healing. These findings provide foundational preclinical results for the use of CERK inhibitors to shift the balance from inflammation to resolution and increase the wound healing rate.


Subject(s)
Ceramides , Phosphotransferases (Alcohol Group Acceptor) , Animals , Arachidonic Acids , Cell Movement , Ceramides/metabolism , Eicosanoids , Mice , Phosphotransferases (Alcohol Group Acceptor)/genetics , Phosphotransferases (Alcohol Group Acceptor)/metabolism , Wound Healing/genetics
6.
Eur J Pharm Sci ; 172: 106144, 2022 May 01.
Article in English | MEDLINE | ID: mdl-35158054

ABSTRACT

5-Oxo-6,8,11,14-eicosatetraenoic acid (5-oxo-ETE) is the only product of the proinflammatory 5-lipoxygenase pathway with potent chemoattractant effects for human eosinophils, suggesting an important role in eosinophilic diseases such as asthma. 5-Oxo-ETE, acting through its selective OXE receptor, induces dermal eosinophilia in both humans and monkeys. To block its effects, we designed selective indole-based OXE antagonists containing hexyl (S-230) or phenylhexyl (S-C025 and S-Y048) side chains, which inhibit allergen-induced dermal and pulmonary inflammation in monkeys, suggesting that they may be useful therapeutic agents in humans. In this study we identified two metabolic pathways for the phenylhexyl-containing antagonists in liver microsomes: benzylic and N-methyl hydroxylation, resulting in ω-hydroxy, ω-oxo, and NH-containing products with reduced potencies that were identified by mass spectrometry and comparison with synthetic standards. Products of both pathways were also identified in monkey plasma following oral administration of S-C025 and S-Y025, but were less abundant than the α-hydroxy metabolites that we previously identified. Interestingly, the α-hydroxy compounds were not detected in microsomal incubations, suggesting a different origin. The relative rates of metabolism of these antagonists were S-230 >> S-C025 > S-Y048, which may help to explain the differences in their plasma half-lives (S-230 < S-C025 < S-Y048). In conclusion, S-C025 and S-Y048 are metabolized by liver microsomes by benzylic and N-methyl hydroxylation but not by α-hydroxylation, whereas all three pathways exist in vivo. Addition of a phenyl group to the hexyl side chain of these antagonists dramatically reduced their rates of metabolism, which would explain their prolonged in vivo half-lives.


Subject(s)
Eosinophils , Receptors, Eicosanoid , Animals , Anti-Inflammatory Agents/pharmacology , Chemotactic Factors/pharmacology , Haplorhini/metabolism
7.
Br J Pharmacol ; 179(2): 322-336, 2022 01.
Article in English | MEDLINE | ID: mdl-34766334

ABSTRACT

BACKGROUND AND PURPOSE: The 5-lipoxygenase product, 5-oxo-ETE (5-oxo-6,8,11,14-eicosatetraenoic acid), is a potent chemoattractant for eosinophils and neutrophils. However, little is known about its pathophysiological role because of the lack of a rodent ortholog of the oxoeicosanoid (OXE) receptor. The present study aimed to determine whether the selective OXE receptor antagonist S-Y048 can inhibit allergen-induced pulmonary inflammation in a monkey model of asthma. EXPERIMENTAL APPROACH: Monkeys sensitized to house dust mite antigen (HDM) were treated with either vehicle or S-Y048 prior to challenge with aerosolized HDM, and bronchoalveolar (BAL) fluid was collected 24 h later. After 6 weeks, animals that had initially been treated with vehicle received S-Y048 and vice versa for animals initially treated with S-Y048. Eosinophils and neutrophils in BAL and lung tissue samples were evaluated, as well as mucus-containing cells in bronchi. KEY RESULTS: HDM significantly increased the numbers of eosinophils, neutrophils, and macrophages in BAL fluid 24 h after challenge. These responses were all significantly inhibited by S-Y048, which also reduced the numbers of eosinophils and neutrophils in lung tissue 24 h after challenge with HDM. S-Y048 also significantly reduced the numbers of bronchial epithelial cells staining for mucin and MUC5AC after antigen challenge. CONCLUSION AND IMPLICATIONS: This study provides the first evidence that 5-oxo-ETE may play an important role in inducing allergen-induced pulmonary inflammation and could also be involved in regulating MUC5AC in goblet cells. OXE receptor antagonists such as S-Y048 may useful therapeutic agents in asthma and other eosinophilic as well as neutrophilic diseases.


Subject(s)
Asthma , Pneumonia , Allergens , Animals , Asthma/drug therapy , Eosinophils , Pneumonia/drug therapy , Pneumonia/prevention & control , Primates , Receptors, Eicosanoid
8.
Biochem Biophys Res Commun ; 584: 95-100, 2021 12 20.
Article in English | MEDLINE | ID: mdl-34775286

ABSTRACT

OXER1 is a recently identified receptor, binding the arachidonic acid metabolic product 5-oxo-ETE, considered an inflammatory receptor, implicated in chemoattraction of circulating mononuclear cells, Ca2+ surge in neutrophils, inflammation and cancer. Recently, we have shown that OXER1 is also a membrane androgen receptor in various cancer tissues. It was reported that the presence of OXER1 in leucocytes and the production and release of 5-oxo-ETE by wounded tissues is a wound sensing mechanism, leading to lymphocyte attraction. In view of the similarity of hallmarks of cancer and wound healing, we have explored the role of OXER1 and its endogenous ligand in the control of cell migration of human cancer epithelial cells (DU-145, T47D and Hep3B), mimicking the activation/migration phase of healing. We show that OXER1 is up-regulated only at the leading edge of the wound and its expression is up-regulated by its ligand 5-oxo-ETE, in a time-related manner. Knock-down of OXER1 or inhibition of 5-oxo-ETE synthesis led to decreased migration of cells and a prolongation of healing, in culture prostate cancer cell monolayers, with a substantial modification of actin cytoskeleton and a decreased filopodia formation. Inhibition of cell migration is a phenomenon mediated by Gßγ OXER1 mediated actions. These results provide a novel mechanism of OXER1 implication in cancer progression and might be of value for the design of novel OXER1 antagonists.


Subject(s)
Cell Movement/genetics , Gene Expression Regulation, Neoplastic/genetics , Neoplasms/genetics , Receptors, Eicosanoid/genetics , Arachidonic Acids/metabolism , Arachidonic Acids/pharmacology , Blotting, Western , Cell Line, Tumor , Cell Movement/drug effects , Gene Expression Profiling/methods , Gene Expression Regulation, Neoplastic/drug effects , Humans , Neoplasms/metabolism , Neoplasms/pathology , Receptors, Eicosanoid/metabolism , Reverse Transcriptase Polymerase Chain Reaction , Signal Transduction/drug effects , Signal Transduction/genetics , Up-Regulation/drug effects
9.
Clin Sci (Lond) ; 135(16): 1945-1980, 2021 08 27.
Article in English | MEDLINE | ID: mdl-34401905

ABSTRACT

Eicosanoids comprise a group of oxidation products of arachidonic and 5,8,11,14,17-eicosapentaenoic acids formed by oxygenases and downstream enzymes. The two major pathways for eicosanoid formation are initiated by the actions of 5-lipoxygenase (5-LO), leading to leukotrienes (LTs) and 5-oxo-6,8,11,14-eicosatetraenoic acid (5-oxo-ETE), and cyclooxygenase (COX), leading to prostaglandins (PGs) and thromboxane (TX). A third group (specialized pro-resolving mediators; SPMs), including lipoxin A4 (LXA4) and resolvins (Rvs), are formed by the combined actions of different oxygenases. The actions of the above eicosanoids are mediated by approximately 20 G protein-coupled receptors, resulting in a variety of both detrimental and beneficial effects on airway smooth muscle and inflammatory cells that are strongly implicated in asthma pathophysiology. Drugs targeting proinflammatory eicosanoid receptors, including CysLT1, the receptor for LTD4 (montelukast) and TP, the receptor for TXA2 (seratrodast) are currently in use, whereas antagonists of a number of other receptors, including DP2 (PGD2), BLT1 (LTB4), and OXE (5-oxo-ETE) are under investigation. Agonists targeting anti-inflammatory/pro-resolving eicosanoid receptors such as EP2/4 (PGE2), IP (PGI2), ALX/FPR2 (LXA4), and Chemerin1 (RvE1/2) are also being examined. This review summarizes the contributions of eicosanoid receptors to the pathophysiology of asthma and the potential therapeutic benefits of drugs that target these receptors. Because of the multifactorial nature of asthma and the diverse pathways affected by eicosanoid receptors, it will be important to identify subgroups of asthmatics that are likely to respond to any given therapy.


Subject(s)
Anti-Asthmatic Agents/therapeutic use , Anti-Inflammatory Agents/therapeutic use , Asthma/drug therapy , Receptors, Eicosanoid/agonists , Receptors, Eicosanoid/antagonists & inhibitors , Acetates/pharmacology , Acetates/therapeutic use , Animals , Anti-Asthmatic Agents/pharmacology , Anti-Inflammatory Agents/pharmacology , Asthma/metabolism , Asthma/physiopathology , Benzoquinones/pharmacology , Benzoquinones/therapeutic use , Biomarkers/metabolism , Cyclopropanes/pharmacology , Cyclopropanes/therapeutic use , Heptanoic Acids/pharmacology , Heptanoic Acids/therapeutic use , Humans , Lung/drug effects , Lung/metabolism , Lung/physiopathology , Mice , Quinolines/pharmacology , Quinolines/therapeutic use , Receptors, Eicosanoid/drug effects , Sulfides/pharmacology , Sulfides/therapeutic use
10.
Biochem Pharmacol ; 179: 113930, 2020 09.
Article in English | MEDLINE | ID: mdl-32240653

ABSTRACT

5-Oxo-6,8,11,14-eicosatetraenoic acid (5-oxo-ETE) is an arachidonic acid metabolite formed by oxidation of the 5-lipoxygenase (5-LO) product 5S-hydroxy-6,8,11,14-eicosatetraenoic acid (5S-HETE) by the NADP+-dependent enzyme 5-hydroxyeicosanoid dehydrogenase. It is the only 5-LO product with appreciable chemoattractant activity for human eosinophils. Its actions are mediated by the selective OXE receptor, which is highly expressed on eosinophils, basophils, neutrophils and monocytes. Orthologs of the OXER1 gene, which encodes this receptor, are found in many species except for rodents. Intradermal injection of 5-oxo-ETE into humans and monkeys elicits eosinophil infiltration into the skin, raising the possibility that it may play a pathophysiological role in eosinophilic diseases. To investigate this and possibly identify a novel therapy we sought to prepare synthetic antagonists that could selectively block the OXE receptor. We synthesized a series of indole-based compounds bearing substituents that mimic the regions of 5-oxo-ETE that are required for biological activity, which we modified to reduce metabolism. The most potent of these OXE receptor antagonists is S-Y048, which is a potent inhibitor of 5-oxo-ETE-induced calcium mobilization (IC50, 20 pM) and has a long half-life following oral administration. S-Y048 inhibited allergen-induced eosinophil infiltration into the skin of rhesus monkeys that had been experimentally sensitized to house dust mite and inhibited pulmonary inflammation resulting from challenge with aerosolized allergen. These data provide the first evidence for a pathophysiological role for 5-oxo-ETE in mammals and suggest that potent and selective OXE receptor antagonists such as S-Y048 may be useful therapeutic agents in asthma and other eosinophilic diseases.


Subject(s)
Anti-Asthmatic Agents/pharmacology , Arachidonic Acids/metabolism , Asthma/drug therapy , Asthma/metabolism , Receptors, Eicosanoid/metabolism , Animals , Anti-Asthmatic Agents/chemical synthesis , Anti-Asthmatic Agents/chemistry , Arachidonic Acids/pharmacology , Basement Membrane/drug effects , Basement Membrane/metabolism , Disease Models, Animal , Eosinophils/drug effects , Eosinophils/metabolism , Granulocyte-Macrophage Colony-Stimulating Factor/metabolism , Granulocyte-Macrophage Colony-Stimulating Factor/pharmacology , Humans , Lipid Peroxidation , Molecular Targeted Therapy/methods , Neutrophils/drug effects , Neutrophils/metabolism , Receptors, Eicosanoid/antagonists & inhibitors , Structure-Activity Relationship
11.
Environ Int ; 128: 390-398, 2019 07.
Article in English | MEDLINE | ID: mdl-31078873

ABSTRACT

Dydrogesterone (DDG) is a synthetic progestin widely used in numerous gynecological diseases. DDG has been shown to disturb fish reproduction, however, the mechanism is still unclear. Here we studied the histological changes and differences of metabolome between exposed and control fish gonads after exposure of zebrafish (Danio rerio) embryos to 2.8, 27.6, and 289.8 ng/L DDG until sexual maturity for a total of 140 days. Dydrogesterone exposure led to male-biased zebrafish sex ratios. Histological examination revealed that DDG induced postovulatory follicles and atretic follicles in the ovary of the female fish. Postovulatory follicles indicated the occurrence of ovulation. DDG also increased spermatids and spermatozoa in the male fish testis, suggesting promotion of spermatogenesis. Ovarian metabolome showed that DDG increased the concentrations of free amino acids, urea, putrescine, free fatty acids, acylcarnitines, lysophospholipids, and other metabolites catabolized from phospholipids. Most of these metabolites are biodegradation products of proteins and lipids, suggesting the existence of ovulated oocytes over-ripening. Further, DDG upregulated arachidonic acid (AA) and its 5­lipoxygenase (5-LOX) metabolites 5­oxo­6,8,11,14­eicosatetraenoic acid (5-oxo-ETE) in the ovary, which could lead to suppression of AA cyclooxygenase (COX) metabolite prostaglandin F2α (PGF2α). It is believed that AA induced oocyte maturation, while 5-oxo-ETE and related metabolites in purinergic signaling promoted ovulation. Whereas, the suppression of PGF2α production might block spawning and damaged follicular tissue digestion, which explained the oocytes over-ripening and atretic follicles in the treated ovary. Overall, our results suggested that DDG exposure induced zebrafish oocyte maturation and ovulation but led to oocytes over-ripening via the AA metabolic pathway and purinergic signaling.


Subject(s)
Dydrogesterone/adverse effects , Endocrine Disruptors/adverse effects , Oocytes/drug effects , Ovulation/drug effects , Water Pollutants, Chemical/adverse effects , Zebrafish/physiology , Animals , Dose-Response Relationship, Drug , Embryo, Nonmammalian/drug effects , Metabolome/drug effects , Metabolomics , Progestins/adverse effects , Random Allocation , Reproduction/drug effects , Sex Ratio
12.
J Leukoc Biol ; 105(6): 1131-1142, 2019 06.
Article in English | MEDLINE | ID: mdl-30676680

ABSTRACT

Leukotriene B4 (LTB4 ) plays a prominent role in innate immunity as it induces phagocyte recruitment, the release of antimicrobial effectors, and as it potentiates the ingestion and killing of pathogens. In humans, LTB4 has a short half-life and is rapidly metabolized by leukocytes, notably into 20-OH- and 20-COOH-LTB4 by neutrophils. Although these LTB4 metabolites bind to the BLT1 receptor with high affinity, they activate neutrophils to a much lower extent than LTB4 . We thus postulated that LTB4 metabolites could dampen BLT1 -mediated responses, therefore limiting the impact of LTB4 on human neutrophil functions. We found that 20-OH-LTB4 and 20-COOH-LTB4 inhibited all of the LTB4 -mediated neutrophil responses we tested (migration, degranulation, leukotriene biosynthesis). The potencies of the different compounds at inhibiting LTB4 -mediated responses were 20-OH-LTB4  = CP 105,696 (BLT1 antagonist) > > 20-COOH-LTB4 ≥ resolvin E1 (RVE1 ). In contrast, the fMLP- and IL-8-mediated responses we tested were not affected by the LTB4 metabolites or RVE1 . 20-OH-LTB4 and 20-COOH-LTB4 also inhibited the LTB4 -mediated migration of human eosinophils but not that induced by 5-KETE. Moreover, using 20-COOH-LTB4 , LTB4 , and LTB4 -alkyne, we show that LTB4 is a chemotactic, rather than a chemokinetic factor for both human neutrophils and eosinophils. In conclusion, our data indicate that LTB4 metabolites and RVE1 act as natural inhibitors of LTB4 -mediated responses. Thus, preventing LTB4 ω-oxidation might result in increased innate immunity and granulocyte functions.


Subject(s)
Eosinophils/immunology , Leukotriene B4/immunology , Neutrophils/immunology , Receptors, Leukotriene B4/immunology , Arachidonic Acids/pharmacology , Benzopyrans/pharmacology , Carboxylic Acids/pharmacology , Eicosapentaenoic Acid/analogs & derivatives , Eicosapentaenoic Acid/pharmacology , Eosinophils/cytology , Humans , Leukotriene B4/pharmacology , Neutrophils/cytology , Receptors, Leukotriene B4/antagonists & inhibitors
13.
Cancer Metastasis Rev ; 37(2-3): 237-243, 2018 09.
Article in English | MEDLINE | ID: mdl-30078159

ABSTRACT

Many epidemiological studies revealed an association of dietary consumption of fatty acids and prostate cancer. Linoleic acid and alpha-linolenic acid and their derivatives such as arachidonic acid and eicosapentanoic acid are important polyunsaturated fatty acids in animal fats and in many vegetable oils. Their metabolism at the cellular level by enzymes such as lipoxygenases and cycloxygenases produces the group of eicosanoids molecules with many biological roles and activities in a variety of human diseases including cancer. In this review, we describe the biological activities of lipids with focus in eicosanoids and prostate cancer.


Subject(s)
Eicosanoids/metabolism , Lipid Metabolism , Prostatic Neoplasms/etiology , Prostatic Neoplasms/metabolism , Animals , Arachidonic Acid/metabolism , Fatty Acids, Unsaturated/metabolism , Humans , Lipoxygenases/metabolism , Male , Metabolic Networks and Pathways , Prostaglandins/metabolism , Prostatic Neoplasms/pathology
14.
Int Arch Allergy Immunol ; 177(2): 107-115, 2018.
Article in English | MEDLINE | ID: mdl-29898459

ABSTRACT

BACKGROUND: 5-Oxo-6,8,11,14-eicosatetraenoic acid (5-oxo-ETE) is a potent eosinophil chemoattractant and activator that is synthesized not only in inflammatory cells but also in bronchial epithelial cells. The purpose of this study is to clarify whether 5-oxo-ETE can promote the production of eosinophil cation protein (ECP) by eosinophils in nasal polyps (NP) in vitro, and whether normal nasal epithelial cells can produce this lipid mediator in response to oxidative stress. MATERIALS AND METHODS: Nasal biopsy samples were obtained from normal subjects or subjects with chronic rhinosinusitis with NP. The infiltration of eosinophil in NP was detected and cultured. After that, concentrations of ECP in eosinophil and NP cultures were evaluated after the treatment of 5-oxo-ETE or 5-oxo-ETE + its receptor (OXER) antagonist, pertussis toxin (PT). Then we studied the synthesis of 5-oxo-ETE after H2O2 stimulation by normal nasal epithelial cells and by epithelial cells of NP alone in the cultures, and also determined the OXER expression in NP. RESULTS: The number of infiltrative eosinophils in NP was increased. The ECP levels in eosinophil and NP cultures were enhanced after the administration of 5-oxo-ETE, and decreased by the PT treatment. 5-Oxo-ETE was upregulated in the cultures of nasal epithelial cells in the presence of H2O2 and of NP epithelial cells alone. The OXER was expressed in inflammatory cells, and not in epithelial cells. CONCLUSION: 5-Oxo-ETE produced by nasal epithelial cells may play a role in the formation and development of NP.


Subject(s)
Arachidonic Acids/pharmacology , Eosinophil Cationic Protein/genetics , Eosinophils/drug effects , Nasal Polyps/immunology , Up-Regulation , Adult , Enzyme-Linked Immunosorbent Assay , Eosinophil Cationic Protein/metabolism , Eosinophils/immunology , Female , Humans , Immunohistochemistry , Male , Middle Aged , Nasal Mucosa/immunology , Sinusitis/immunology , Spectroscopy, Fourier Transform Infrared
15.
Eur J Pharm Sci ; 115: 88-99, 2018 Mar 30.
Article in English | MEDLINE | ID: mdl-29339225

ABSTRACT

We previously identified the indole 264 as a potent in vitro antagonist of the human OXE receptor that mediates the actions of the powerful eosinophil chemoattractant 5-oxo-ETE. No antagonists of this receptor are currently commercially available or are being tested in clinical studies. The lack of a rodent ortholog of the OXE receptor has hampered progress in this area because of the unavailability of commonly used mouse or rat animal models. In the present study, we examined the feasibility of using the cynomolgus monkey as an animal model to investigate the efficacy of orally administered 264 in future in vivo studies. We first confirmed that 264 is active in monkeys by showing that it is a potent inhibitor of 5-oxo-ETE-induced actin polymerization and chemotaxis in granulocytes. The major microsomal metabolites of 264 were identified by cochromatography with authentic chemically synthesized standards and LC-MS/MS as its ω2-hydroxy and ω2-oxo derivatives, formed by ω2-oxidation of its hexyl side chain. Small amounts of ω1-oxidation products were also identified. None of these metabolites have substantial antagonist potency. High levels of 264 appeared rapidly in the blood following oral administration to both rats and monkeys, and declined to low levels by 24 h. As with microsomes, its major plasma metabolites in monkeys were ω2-oxidation products. We conclude that the monkey is a suitable animal model to investigate potential therapeutic effects of 264. This, or a related compound with diminished susceptibility to ω2-oxidation, could be a useful therapeutic agent in eosinophilic disorders such as asthma.


Subject(s)
Arachidonic Acids/pharmacology , Chemotactic Factors/pharmacology , Eosinophils/drug effects , Indoles/pharmacokinetics , Receptors, Eicosanoid/antagonists & inhibitors , Administration, Oral , Animals , Chemotaxis/drug effects , Eosinophils/metabolism , Female , Granulocytes/drug effects , Granulocytes/metabolism , Haplorhini , Male , Microsomes/drug effects , Microsomes/metabolism , Oxidation-Reduction/drug effects , Rats
16.
Bioorg Med Chem Lett ; 27(20): 4770-4776, 2017 10 15.
Article in English | MEDLINE | ID: mdl-28943042

ABSTRACT

5-Oxo-6,8,11,14-eicosatetraenoic acid (5-oxo-ETE) is formed from 5S-hydroxy-6,8,11,14-eicosatetraenoic acid (5-HETE) by the 5-lipoxygenase (5-LO) pathway under conditions associated with oxidative stress. 5-Oxo-ETE is an important pro-inflammatory mediator, which stimulates the migration of eosinophils via a selective G-protein coupled receptor, known as the OXE receptor (OXE-R). Previously, we designed and synthesized structural mimics of 5-oxo-ETE such as 1 using an indole scaffold. In the present work, we added various substituents at C-3 of this moiety to block potential ß-oxidation of the 5-oxo-valerate side chain, and investigated the structure-activity relationships of the resulting novel ß-oxidation-resistant antagonists. Cyclopropyl and cyclobutyl substituents were well tolerated in this position, but were less potent as the highly active 3S-methyl compound. It seems likely that 3-alkyl substituents can affect the conformation of the 5-oxovalerate side chain containing the critical keto and carboxyl groups, thereby affecting interaction with the OXE-receptor.


Subject(s)
Indoles/metabolism , Receptors, Eicosanoid/antagonists & inhibitors , Arachidonate 5-Lipoxygenase/metabolism , Drug Design , Eosinophils/cytology , Eosinophils/metabolism , Humans , Indoles/chemistry , Inhibitory Concentration 50 , Oxidation-Reduction , Receptors, Eicosanoid/metabolism , Static Electricity , Structure-Activity Relationship
17.
Biochem Pharmacol ; 138: 107-118, 2017 08 15.
Article in English | MEDLINE | ID: mdl-28476332

ABSTRACT

We have developed a selective indole antagonist (230) targeting the OXE receptor for the potent eosinophil chemoattractant 5-oxo-ETE (5-oxo-6,8,11,14-eicosatetraenoic acid), that may be useful for the treatment of eosinophilic diseases such as asthma. In previous studies we identified ω2-oxidation of the hexyl side chain of racemic 230 as a major metabolic route in monkeys, but also obtained evidence for another pathway that appeared to involve hydroxylation of the hexyl side chain close to the indole. The present study was designed to investigate the metabolism of the active S-enantiomer of 230 (S230) and to identify the novel hydroxy metabolite and its chirality. Following oral administration, S230 rapidly appeared in the blood along with metabolites formed by a novel and highly stereospecific α-hydroxylation pathway, resulting in the formation of αS-hydroxy-S230. The chirality of α-hydroxy-S230 was determined by the total synthesis of the relevant diastereomers. Of the four possible diastereomers of α-hydroxy-230 only αS-hydroxy-S230 has significant OXE receptor antagonist activity and only this diastereomer was found in significant amounts in blood following oral administration of S230. Other novel metabolites of S230 identified in plasma by LC-MS/MS were αS,ω2-dihydroxy-S230 and glucuronides of S230 and ω2-hydroxy-S230. Thus the alkyl side chain of S230, which is essential for its antagonist activity, is also the major target of the metabolic enzymes that terminate its antagonist activity. Modification of this side chain might result in the development of related antagonists with improved metabolic stability and efficacy.


Subject(s)
Anti-Asthmatic Agents/pharmacokinetics , Anti-Inflammatory Agents, Non-Steroidal/pharmacokinetics , Arachidonic Acids/antagonists & inhibitors , Chemotactic Factors/antagonists & inhibitors , Indoles/pharmacokinetics , Keto Acids/pharmacokinetics , Receptors, Eicosanoid/antagonists & inhibitors , Administration, Oral , Alkylation , Animals , Anti-Asthmatic Agents/administration & dosage , Anti-Asthmatic Agents/blood , Anti-Asthmatic Agents/pharmacology , Anti-Inflammatory Agents, Non-Steroidal/administration & dosage , Anti-Inflammatory Agents, Non-Steroidal/blood , Anti-Inflammatory Agents, Non-Steroidal/pharmacology , Arachidonic Acids/metabolism , Chemotactic Factors/metabolism , Eosinophils/drug effects , Eosinophils/immunology , Eosinophils/metabolism , Female , Glucuronides/blood , Glucuronides/chemistry , Glucuronides/pharmacology , Humans , Hydroxylation , Inactivation, Metabolic , Indoles/administration & dosage , Indoles/blood , Indoles/chemistry , Indoles/pharmacology , Keto Acids/administration & dosage , Keto Acids/blood , Keto Acids/chemistry , Keto Acids/pharmacology , Macaca fascicularis , Molecular Structure , Neutrophils/drug effects , Neutrophils/immunology , Neutrophils/metabolism , Receptors, Eicosanoid/agonists , Receptors, Eicosanoid/metabolism , Stereoisomerism
18.
Bioorg Med Chem ; 25(1): 116-125, 2017 01 01.
Article in English | MEDLINE | ID: mdl-28340986

ABSTRACT

Arachidonic acid (AA) is converted to biologically active metabolites by different pathways, one of the most important of which is initiated by 5-lipoxygenase (5-LO). 5-Hydroxyeicosatetraenoic acid (5-HETE), although possessing only weak biological activity itself, is oxidized to 5-oxo-6,8,11,14-eicosatetraenoic acid (5-oxo-ETE), a potent chemoattractant for eosinophils and neutrophils. Our main goal is to determine how the biosynthesis of 5-oxo-ETE is regulated and to determine its pathophysiological roles. To achieve this task, we designed and synthesized affinity chromatography ligands for the purification of 5-hydroxyeicosanoid dehydrogenase (5-HEDH), the enzyme responsible for the formation of 5-oxo-ETE.


Subject(s)
Alcohol Oxidoreductases/isolation & purification , Chromatography, Affinity/methods , Alcohol Oxidoreductases/metabolism , Arachidonic Acids/metabolism , Cell Line , Humans , Hydroxyeicosatetraenoic Acids/metabolism , Ligands , Neutrophils/metabolism
19.
Biochem Biophys Res Commun ; 478(2): 624-30, 2016 09 16.
Article in English | MEDLINE | ID: mdl-27480930

ABSTRACT

We report the usefulness of an impedance-based label-free whole cell assay to identify new ligands for G protein-coupled receptors (GPCRs) involved in microglial cell migration. Authentic GPCR ligands were subjected to the impedance-based cell assay in order to examine the responses of ligands for MG5 mouse microglial cells. Complement component 5 (C5a), adenosine 5'-diphosphate (ADP), uridine 5'-triphosphate (UTP), lysophosphatidic acid (LPA), and lysophosphatidylserine (LysoPS) were found to elicit different cellular impedance patterns, i.e. C5a, ADP, and UTP caused a transient increase in cellular impedance, while LPA and LysoPS decreased it. The responses for C5a and ADP were abolished by pertussis toxin (PTX), but not rho-associated protein kinase inhibitor, Y-27632, indicating that C5a and ADP elicited responses through the Gαi pathway. On the other hand, the response for UTP, LPA or LysoPS was not cancelled by PTX or Y-27632. In a modified Boyden chamber assay, C5a and ADP, but not UTP, LPA, or LysoPS, induced the migration of MG5 cells. These results suggest that PTX-sensitive increase in cellular impedance with the assay is characteristic for ligands of GPCRs involved in microglial cell migration. We found using this assay that 5-oxo-6E,8Z,11Z,14Z-eicosatetraenoic acid (5-oxo-ETE) is a new chemoattractant inducing microglial cell migration through the activation of Gαi.


Subject(s)
Cell Movement , Microglia/cytology , Receptors, G-Protein-Coupled/metabolism , Animals , Arachidonic Acids/pharmacology , Cell Line , Cell Movement/drug effects , Electric Impedance , Ligands , Mice , Microglia/drug effects , Pertussis Toxin/pharmacology
20.
Biochim Biophys Acta ; 1851(4): 340-55, 2015 Apr.
Article in English | MEDLINE | ID: mdl-25449650

ABSTRACT

Arachidonic acid can be oxygenated by a variety of different enzymes, including lipoxygenases, cyclooxygenases, and cytochrome P450s, and can be converted to a complex mixture of oxygenated products as a result of lipid peroxidation. The initial products in these reactions are hydroperoxyeicosatetraenoic acids (HpETEs) and hydroxyeicosatetraenoic acids (HETEs). Oxoeicosatetraenoic acids (oxo-ETEs) can be formed by the actions of various dehydrogenases on HETEs or by dehydration of HpETEs. Although a large number of different HETEs and oxo-ETEs have been identified, this review will focus principally on 5-oxo-ETE, 5S-HETE, 12S-HETE, and 15S-HETE. Other related arachidonic acid metabolites will also be discussed in less detail. 5-Oxo-ETE is synthesized by oxidation of the 5-lipoxygenase product 5S-HETE by the selective enzyme, 5-hydroxyeicosanoid dehydrogenase. It actions are mediated by the selective OXE receptor, which is highly expressed on eosinophils, suggesting that it may be important in eosinophilic diseases such as asthma. 5-Oxo-ETE also appears to stimulate tumor cell proliferation and may also be involved in cancer. Highly selective and potent OXE receptor antagonists have recently become available and could help to clarify its pathophysiological role. The 12-lipoxygenase product 12S-HETE acts by the GPR31 receptor and promotes tumor cell proliferation and metastasis and could therefore be a promising target in cancer therapy. It may also be involved as a proinflammatory mediator in diabetes. In contrast, 15S-HETE may have a protective effect in cancer. In addition to GPCRs, higher concentration of HETEs and oxo-ETEs can activate peroxisome proliferator-activated receptors (PPARs) and could potentially regulate a variety of processes by this mechanism. This article is part of a Special Issue entitled "Oxygenated metabolism of PUFA: analysis and biological relevance".


Subject(s)
Arachidonic Acid/metabolism , Hydroxyeicosatetraenoic Acids/metabolism , Receptors, Eicosanoid/metabolism , 12-Hydroxy-5,8,10,14-eicosatetraenoic Acid/metabolism , Animals , Arachidonic Acids/metabolism , Disease , Humans , Oxidation-Reduction , Peroxisome Proliferator-Activated Receptors/metabolism , Receptors, G-Protein-Coupled/metabolism , Signal Transduction
SELECTION OF CITATIONS
SEARCH DETAIL