Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 217
Filter
1.
J Clin Med ; 13(17)2024 Sep 05.
Article in English | MEDLINE | ID: mdl-39274468

ABSTRACT

Immunoglobulin A nephropathy (IgAN) is the most prevalent primary glomerular disease worldwide and it remains a leading cause of kidney failure. Clinical manifestations of IgA are exacerbated by infections, and emerging data suggest that aberrant mucosal immune responses are important contributors to the immunopathogenesis of this disease. However, the exact stimuli, location and mechanism of nephritis-inducing IgA production remains unclear. In this focused review we explore recent developments in our understanding of the contribution of the mucosal immune system and mucosal-derived IgA-producing cells to the development of IgAN.

2.
Ren Fail ; 46(2): 2391069, 2024 Dec.
Article in English | MEDLINE | ID: mdl-39143819

ABSTRACT

OBJECTIVE: High serum levels of B-cell activation factor (BAFF) and a proliferation-inducing ligand (APRIL) have been observed in patients with idiopathic membranous nephropathy (iMN); however, their relationships with disease severity and progression remain unclear. METHODS: Patients with iMN diagnosed via renal biopsy were enrolled in this study. The concentrations of BAFF and APRIL were determined using ELISA kits. Proteinuria remission, including complete remission (CR) and partial remission (PR), and renal function deterioration were defined as clinical events. The Cox proportional hazards method was used to analyze the relationship between cytokine levels and disease progression. RESULTS: Seventy iMN patients were enrolled in this study, with a median follow-up time of 24 months (range 6-72 months). The serum levels of BAFF and APRIL were higher in iMN patients than in healthy controls but lower than those in minimal change disease (MCD) patients. The serum BAFF level was positively correlated with the serum APRIL level, serum anti-phospholipase A2 receptor (anti-PLA2R) antibody level, and 24-h proteinuria and negatively correlated with the serum albumin (ALB) level. However, no significant correlation was observed between the serum APRIL level and clinical parameters. According to the multivariate Cox proportional hazards regression model adjusted for sex, age, systolic blood pressure (SBP), estimated glomerular filtration rate (eGFR), immunosuppressive agent use, 24-h proteinuria, APRIL level, and anti-PLA2R antibody, only the serum BAFF level was identified as an independent predictor of PR (HR, 0.613; 95% CI, 0.405-0.927; p = 0.021) and CR of proteinuria (HR, 0.362; 95% CI, 0.202-0.648; p < 0.001). CONCLUSIONS: A high serum BAFF level is associated with severe clinical manifestations and poor disease progression in patients with iMN.


Subject(s)
B-Cell Activating Factor , Disease Progression , Glomerulonephritis, Membranous , Proteinuria , Tumor Necrosis Factor Ligand Superfamily Member 13 , Humans , Glomerulonephritis, Membranous/blood , Glomerulonephritis, Membranous/diagnosis , B-Cell Activating Factor/blood , Male , Female , Middle Aged , Adult , Prognosis , Tumor Necrosis Factor Ligand Superfamily Member 13/blood , Proteinuria/blood , Proteinuria/etiology , Proportional Hazards Models , Receptors, Phospholipase A2/immunology , Receptors, Phospholipase A2/blood , Case-Control Studies , Aged , Glomerular Filtration Rate , Kidney/physiopathology , Kidney/pathology
3.
Kidney Int ; 2024 Aug 23.
Article in English | MEDLINE | ID: mdl-39182759

ABSTRACT

A PRoliferation Inducing Ligand (APRIL) is a key member of the tumor necrosis factor (TNF)-superfamily of cytokines, and plays a central role in B cell survival, proliferation and immunoglobulin class switching. Recently, there has been increasing interest in the role of APRIL and the related cytokine B cell activating factor (BAFF) in several glomerular diseases, due to their importance in the above processes. The therapeutic inhibition of APRIL represents a potentially attractive immunomodulatory approach, that may abrogate deleterious host immune responses in autoimmune diseases while leaving other important functions of humoral immunity intact, such as memory B cell function and responses to vaccination, in contrast to B cell depleting strategies. In this review, we describe the physiological roles of APRIL in B cell development and their relevance to glomerular diseases, and outline emerging clinical trial data studying APRIL inhibition, with a focus on IgA nephropathy where the clinical development of APRIL inhibitors is in its most advanced stage.

4.
Proc Natl Acad Sci U S A ; 121(29): e2404309121, 2024 Jul 16.
Article in English | MEDLINE | ID: mdl-38990948

ABSTRACT

Antibody-producing plasma cells fuel humoral immune responses. They also contribute to autoimmune diseases such as systemic lupus erythematosus or IgA nephropathy. Interleukin-6 and the tumor necrosis factor (TNF) family ligands BAFF (B cell-activating factor) and APRIL (a proliferation-inducing ligand) participate in plasma cell survival. BAFF binds to three receptors, BAFFR (BAFF receptor), TACI (transmembrane activator and CAML interactor), and BCMA (B cell maturation antigen), while APRIL binds to TACI, BCMA, and proteoglycans. However, which ligand-receptor pair(s) are required to maintain plasma cells in different body locations remains unknown. Here, by combining mouse genetic and pharmacological approaches, we found that plasma cells required BCMA and/or TACI but not BAFFR. BCMA responded exclusively to APRIL, while TACI responded to both BAFF and APRIL, identifying three self-sufficient ligand-receptor pairs for plasma cell maintenance: BAFF-TACI, APRIL-TACI, and APRIL-BCMA. Together, these actors accounted for 90% of circulating antibodies. In BAFF-ko mice, the reduction of plasma cells upon APRIL inhibition indicated that APRIL could function in the absence of BAFF-APRIL heteromers. No evidence was found that in the absence of BCMA and TACI, binding of APRIL to proteoglycans would help maintain plasma cells. IL-6, alone or together with BAFF and APRIL, supported mainly splenic plasmablasts and plasma cells and contributed to circulating IgG but not IgA levels. In conclusion, survival factors for plasma cells can vary with body location and with the antibody isotype that plasma cells produce. To efficiently target plasma cells, in particular IgA-producing ones, dual inhibition of BAFF and APRIL is required.


Subject(s)
B-Cell Activating Factor , B-Cell Activation Factor Receptor , B-Cell Maturation Antigen , Interleukin-6 , Transmembrane Activator and CAML Interactor Protein , Tumor Necrosis Factor Ligand Superfamily Member 13 , Animals , B-Cell Activating Factor/immunology , B-Cell Activating Factor/metabolism , B-Cell Activating Factor/genetics , Tumor Necrosis Factor Ligand Superfamily Member 13/metabolism , Tumor Necrosis Factor Ligand Superfamily Member 13/immunology , Tumor Necrosis Factor Ligand Superfamily Member 13/genetics , B-Cell Maturation Antigen/immunology , B-Cell Maturation Antigen/metabolism , Transmembrane Activator and CAML Interactor Protein/metabolism , Transmembrane Activator and CAML Interactor Protein/genetics , Transmembrane Activator and CAML Interactor Protein/immunology , Interleukin-6/metabolism , Interleukin-6/immunology , Mice , B-Cell Activation Factor Receptor/metabolism , B-Cell Activation Factor Receptor/immunology , B-Cell Activation Factor Receptor/genetics , Plasma Cells/immunology , Plasma Cells/metabolism , Mice, Knockout , Antibody-Producing Cells/immunology , Antibody-Producing Cells/metabolism , Mice, Inbred C57BL
5.
Sci Rep ; 14(1): 11840, 2024 05 23.
Article in English | MEDLINE | ID: mdl-38782988

ABSTRACT

The treatment of HCV and its sequelae are used to be predominantly based on Interferon (IFN). However, this was associated with significant adverse events as a result of its immunostimulant capabilities. Since their introduction, the directly acting antiviral drugs (DAAs), have become the standard of care to treat of HCV and its complications including mixed cryoglobulinemic vasculitis (MCV). In spite of achieving sustained viral response (SVR), there appeared many reports describing unwelcome complications such as hepatocellular and hematological malignancies as well as relapses. Prolonged inflammation induced by a multitude of factors, can lead to DNA damage and affects BAFF and APRIL, which serve as markers of B-cell proliferation. We compared, head-to-head, three antiviral protocols for HCV-MCV treatment As regards the treatment response and relapse, levels of BAFF and APRIL among pegylated interferon α-based and free regimens (Sofosbuvir + Ribavirin; SOF-RIBA, Sofosbuvir + Daclatasvir; SOF-DACLA). Regarding clinical response HCV-MCV and SVR; no significant differences could be identified among the 3 different treatment protocols, and this was also independent form using IFN. We found no significant differences between IFN-based and free regimens DNA damage, markers of DNA repair, or levels of BAFF and APRIL. However, individualized drug-to-drug comparisons showed many differences. Those who were treated with IFN-based protocol showed decreased levels of DNA damage, while the other two IFN-free groups showed increased DNA damage, being the worst in SOF-DACLA group. There were increased levels of BAFF through follow-up periods in the 3 protocols being the best in SOF-DACLA group (decreased at 24 weeks). In SOF-RIBA, CGs relapsed significantly during the follow-up period. None of our patients who were treated with IFN-based protocol had significant clinico-laboratory relapse. Those who received IFN-free DAAs showed a statistically significant relapse of constitutional manifestations. Our findings suggest that IFN-based protocols are effective in treating HCV-MCV similar to IFN-free protocols. They showed lower levels of DNA damage and repair. We believe that our findings may offer an explanation for the process of lymphoproliferation, occurrence of malignancies, and relapses by shedding light on such possible mechanisms.


Subject(s)
Antiviral Agents , Cryoglobulinemia , Vasculitis , Humans , Cryoglobulinemia/drug therapy , Cryoglobulinemia/etiology , Antiviral Agents/therapeutic use , Male , Vasculitis/drug therapy , Vasculitis/virology , Middle Aged , Female , Aged , Hepacivirus/drug effects , Ribavirin/therapeutic use , Sofosbuvir/therapeutic use , Imidazoles/therapeutic use , Valine/analogs & derivatives , Valine/therapeutic use , Pyrrolidines/therapeutic use , B-Cell Activating Factor , Interferon-alpha/therapeutic use , Drug Therapy, Combination , Hepatitis C/drug therapy , Hepatitis C/complications , Hepatitis C/virology , Treatment Outcome , Hepatitis C, Chronic/drug therapy , Hepatitis C, Chronic/complications , Hepatitis C, Chronic/virology , Carbamates
6.
Cell Signal ; 120: 111201, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38714287

ABSTRACT

Cytokines from the Tumour Necrosis Factor (TNF) family are important regulators of both physiological and pathological processes. The discovery of novel TNF ligands and receptors, BAFF and APRIL, have opened up new possibilities for scientists to explore the effect of these cytokines on the human immune system. The role of BAFF/APRIL system in B lymphocytes is particularly important for survival and maintenance of homeostasis. Aberrant expression of the system is associated with various immunological disorders. Hence, this study provides a comprehensive overview of the past and present BAFF/APRIL system research development in a bibliometric perspective. To our best knowledge, this is the first ever bibliometric analysis conducted focusing on the BAFF/APRIL system. A total of 1055 relevant documents were retrieved from WoSCC. Microsoft Excel, VOSviewer, and Biblioshiny of R studio were bibliometric tools used to analyse the scientific literature. From 1999, the annual publications showed an upward trend, with Journal of Immunology being the most productive journal. USA leads the race for BAFF/APRIL system research developments. Pascal Schneider, a senior researcher affiliated with University of Lausanne, Switzerland was recognised as the most productive author and institution in the BAFF/APRIL system research field. The research focus transitioned from focusing on the role of the system in B cell biology, to immunological disorders and finally to development of BAFF/APRIL targeting drugs. Despite several studies elucidating briefly the pathway mechanism of BAFF/APRIL system in B-cell selection, substantial research on the mechanism of action in disease models and T cell activation and development of immunomodulating drugs from natural origins remains largely unexplored. Therefore, future research focusing on these areas are crucial for the deeper understanding of the system in disease manifestations and progression allowing a better treatment management for various immunological disorders.


Subject(s)
B-Cell Activating Factor , Bibliometrics , Tumor Necrosis Factor Ligand Superfamily Member 13 , Humans , B-Cell Activating Factor/metabolism , Tumor Necrosis Factor Ligand Superfamily Member 13/metabolism , Animals , B-Lymphocytes/immunology , B-Lymphocytes/metabolism
7.
J Clin Med ; 13(9)2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38730994

ABSTRACT

Immunoglobulin A nephropathy represents the most prevalent cause of glomerulonephritis worldwide and may lead to renal failure in a relevant number of cases in both paediatric and adult subjects. Although their pathogenesis is still largely unclear, evidence of immune abnormalities provides the background for the use of immunosuppressive drugs, such as corticosteroids, calcineurin inhibitors, and antiproliferative and alkylating agents. Unfortunately, these treatments fail to achieve a sustained remission in a significant percentage of affected patients and are burdened by significant toxicities. Recent developments of new biologics, including anti-BAFF/APRIL inhibitors and molecules targeting complement components, offered the opportunity to selectively target immune cell subsets or activation pathways, leading to more effective and safer hypothesis-driven treatments. However, studies testing new biologic agents in IgAN should also consider paediatric populations to address the unique needs of children and close the therapeutic gap between adult and paediatric care.

8.
Uisahak ; 33(1): 103-134, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38768992

ABSTRACT

This article focuses on the medical activities conducted by major hospitals in downtown Seoul during the April Revolution in 1960, examining their experiential context and significance. The influx of guns and bullets into Korean society following the liberation in 1945 intertwined with the political and social conflicts of the period, resulting in numerous assassinations, crimes, and terrorism. Gunshot wounds were traumas that became a part of the everyday life of Koreans, as well as scars which reflected their historical contexts. At the same time, the frequent occurrence of gunshot wounds led to the development of medical capacities to treat them. The Korean surgical academia expanded its technical foundation with experiences during and after the Korean War. This progress was particularly noticeable in areas closely related to gunshot wounds, such as craniotomy, thoracotomy, vascular anastomosis, debridement, anesthesia, and blood transfusion. Major hospitals in downtown Seoul served as medical spaces where these experimental and technical foundations were concentrated, allowing them to minimize the death toll despite the massive gunfire by the National Police in April 1960. Thus, the aftermath of the epidemic of gunshots resulted in a rather paradoxical outcome. This development became a resource for doctors and nurses, who added their revolutionary implications in reconstructing the experience of April 1960 in their various memoirs and reports. While memoirs reorganized general medical activities, portraying injured patients as participants in the revolution, reports provided forensic descriptions and interpretations of the deaths, giving authority to the main narrative of the revolution. As the interpretations and significance based on historical contexts gained prominence, major hospitals in downtown Seoul also developed a sense of place closely associated with the revolution.


Subject(s)
Hospitals , Wounds, Gunshot , Hospitals/history , Wounds, Gunshot/history , Humans , History, 20th Century , Seoul , Korean War
9.
Expert Opin Biol Ther ; 24(5): 335-338, 2024 May.
Article in English | MEDLINE | ID: mdl-38641998

ABSTRACT

INTRODUCTION: Immunoglobulin A (IgA) nephropathy is a common immune-mediated kidney disease leading to high blood pressure and may progress to kidney failure. None of the present treatments are disease-modifying or prolong life. The levels of A PRoliferation Inducing Ligand (APRIL) are raised in subjects with IgA nephropathy. Sibeprenlimab is a humanized IgG2 monoclonal antibody that binds to, and neutralizes, APRIL. AREAS COVERED: A phase 2 clinical trial of intravenous sibeprenlimab (VIS649) in IgA nephropathy: NCT04287985. The primary efficacy endpoint was the change from baseline in 24-h protein-to-creatinine ratio at 12 months, and this was reduced by sibeprenlimab. Sibeprenlimab also caused clinical remission in some subjects, stabilized estimated glomerular filtration rate (eGFR), and reduced galactose deficient IgA1, IgA, IgM, and IgG levels without causing any infections or other adverse events. EXPERT OPINION: Sibeprenlimab is a promising new approach to treating IgA nephropathy. The pharmaceutical company behind sibeprenlimab is also developing it for subcutaneous use, which would have advantages over intravenous use. As IgA nephropathy is a long-term progressive disease, key questions that need to be answered, over a long-time course, with sibeprenlimab are (i) whether its safety is maintained, and (ii) whether it improves clinical outcomes.


Subject(s)
Glomerulonephritis, IGA , Tumor Necrosis Factor Ligand Superfamily Member 13 , Humans , Antibodies, Monoclonal, Humanized/therapeutic use , Antibodies, Monoclonal, Humanized/adverse effects , Glomerulonephritis, IGA/drug therapy , Glomerulonephritis, IGA/immunology , Tumor Necrosis Factor Ligand Superfamily Member 13/immunology , Clinical Trials, Phase II as Topic
10.
Hum Genomics ; 18(1): 43, 2024 Apr 24.
Article in English | MEDLINE | ID: mdl-38659056

ABSTRACT

OBJECTIVE: Myasthenia gravis (MG) is a complex autoimmune disease affecting the neuromuscular junction with limited drug options, but the field of MG treatment recently benefits from novel biological agents. We performed a drug-targeted Mendelian randomization (MR) study to identify novel therapeutic targets of MG. METHODS: Cis-expression quantitative loci (cis-eQTL), which proxy expression levels for 2176 druggable genes, were used for MR analysis. Causal relationships between genes and disease, identified by eQTL MR analysis, were verified by comprehensive sensitivity, colocalization, and protein quantitative loci (pQTL) MR analyses. The protein-protein interaction (PPI) analysis was also performed to extend targets, followed by enzyme-linked immunosorbent assay (ELISA) to explore the serum level of drug targets in MG patients. A phenome-wide MR analysis was then performed to assess side effects with a clinical trial review assessing druggability. RESULTS: The eQTL MR analysis has identified eight potential targets for MG, one for early-onset MG and seven for late-onset MG. Further colocalization analyses indicated that CD226, CDC42BPB, PRSS36, and TNFSF12 possess evidence for colocalization with MG or late-onset MG. pQTL MR analyses identified the causal relations of TNFSF12 and CD226 with MG and late-onset MG. Furthermore, PPI analysis has revealed the protein interaction between TNFSF12-TNFSF13(APRIL) and TNFSF12-TNFSF13B(BLyS). Elevated TNFSF13 serum level of MG patients was also identified by ELISA experiments. This study has ultimately proposed three promising therapeutic targets (TNFSF12, TNFSF13, TNFSF13B) of MG. CONCLUSIONS: Three drug targets associated with the BLyS/APRIL pathway have been identified. Multiple biological agents, including telitacicept and belimumab, are promising for MG therapy.


Subject(s)
Mendelian Randomization Analysis , Myasthenia Gravis , Quantitative Trait Loci , Humans , Myasthenia Gravis/genetics , Myasthenia Gravis/drug therapy , Myasthenia Gravis/pathology , Myasthenia Gravis/blood , Quantitative Trait Loci/genetics , Protein Interaction Maps/genetics , Genetic Predisposition to Disease , Polymorphism, Single Nucleotide/genetics
11.
Front Immunol ; 15: 1345515, 2024.
Article in English | MEDLINE | ID: mdl-38469292

ABSTRACT

Background: Chronic Lymphocytic Leukemia (CLL) is characterized by the expansion of CD19+ CD5+ B cells but its origin remains debated. Mutated CLL may originate from post-germinal center B cells and unmutated CLL from CD5+ mature B cell precursors. Irrespective of precursor types, events initiating CLL remain unknown. The cytokines BAFF and APRIL each play a significant role in CLL cell survival and accumulation, but their involvement in disease initiation remains unclear. Methods: We generated novel CLL models lacking BAFF or APRIL. In vivo experiments were conducted to explore the impact of BAFF or APRIL loss on leukemia initiation, progression, and dissemination. Additionally, RNA-seq and quantitative real-time PCR were performed to unveil the transcriptomic signature influenced by BAFF in CLL. The direct role of BAFF in controlling the expression of tumor-promoting genes was further assessed in patient-derived primary CLL cells ex-vivo. Results: Our findings demonstrate a crucial role for BAFF, but not APRIL, in the initiation and dissemination of CLL cells. In the absence of BAFF or its receptor BAFF-R, the TCL1 transgene only increases CLL cell numbers in the peritoneal cavity, without dissemination into the periphery. While BAFF binding to BAFF-R is dispensable for peritoneal CLL cell survival, it is necessary to activate a tumor-promoting gene program, potentially linked to CLL initiation and progression. This direct role of BAFF in controlling the expression of tumor-promoting genes was confirmed in patient-derived primary CLL cells ex-vivo. Conclusions: Our study, involving both mouse and human CLL cells, suggests that BAFF might initiate CLL through mechanisms independent of cell survival. Combining current CLL therapies with BAFF inhibition could offer a dual benefit by reducing peripheral tumor burden and suppressing transformed CLL cell output.


Subject(s)
Leukemia, Lymphocytic, Chronic, B-Cell , Animals , Humans , Mice , B-Lymphocytes/metabolism , Cell Survival/genetics , Leukemia, Lymphocytic, Chronic, B-Cell/pathology
12.
Saudi Med J ; 45(3): 223-229, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38438201

ABSTRACT

Lung cancer is a complicated and challenging disease and is one of the most common causes of cancer-related mortality worldwide. Within the lung microenvironment, specific cytokines, including the B cell activation factor (BAFF) and the A proliferation-inducing ligand (APRIL), are produce by various cells, notably airway epithelial cells, in response allergic inflammation or pulmonary infection. These cytokines play a critical role in maintaining local immune responses and fostering the survival of immune cells. The BAFF and APRIL system have been connected in a range of malignancies and have shown their potential in inducing drug resistance and promoting cancer progression. This review highlights recent studies on the involvement of BAFF and APRIL in various cancers, focusing mainly on their role in lung cancer, and discusses the possibility of these molecules in contributing to drug resistance and cancer progression following pulmonary infection. We suggest consideration the targeting BAFF and APRIL or their respective receptors as promising novel therapies for effective treatment of lung cancer, especially post pulmonary infection. However, it remains important to conduct further investigations to fully elucidate the precise mechanisms underlying how the BAFF and APRIL systems enhance cancer survival and drug resistance subsequent pulmonary infections.


Subject(s)
Lung Neoplasms , Pneumonia , Humans , Lung Neoplasms/drug therapy , Ligands , Cytokines , Immunity , Tumor Microenvironment
13.
MedComm (2020) ; 5(4): e515, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38525109

ABSTRACT

Systemic lupus erythematosus (SLE) is a heterogeneous autoimmune disease associated with B-cell hyperactivity. Telitacicept is a transmembrane activator, calcium modulator, and cyclophilin ligand interactor-Fc fusion protein, which can neutralize both B-cell lymphocyte stimulator and a proliferation-inducing ligand. Patients with active SLE who received telitacicept were prospectively followed at month 1, 3, 6, 9, and 12 after telitacicept initiation. Thirty-seven participants were involved and followed for 6.00 [3.00, 6.00] months. SRI-4 rate at month 6 was 44.7%. The median dosage of prednisone was decreased by 43.8% (from 10 to 5.62 mg/d) at month 6. The anti-dsDNA level was significantly decreased, while complement levels were significantly increased at month 6 from baseline. Continuously significant reductions in serum immunoglobin (Ig)G IgA, and IgM levels were also observed. Patients experienced significant decreases in the numbers of total and naive B cells, whereas memory B cells and T cell populations did not change. The number of NK cells was significantly increased during the follow-up. At month 6, 58.3% (14 out of 24) patients experienced improved fatigue accessed by FACIT-Fatigue score exceeding the minimum clinically important difference of 4. Most adverse events were mild, but one each case of severe hypogammaglobulinemia, psychosis with suicidal behavior, and B-cell lymphoma were occurred. In our first prospective real-world study, telitacicept treatment led to a significant clinical and laboratory improvement of disease activity, as well as fatigue amelioration in patients with SLE. Safety profile was favorable overall, but more studies are greatly needed.

14.
Chronic Dis Transl Med ; 10(1): 1-11, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38450299

ABSTRACT

Immunoglobulin A nephropathy (IgAN) is the most common primary glomerular disease, and the "four-hit" theory represents its currently accepted pathogenic mechanism. Mucosal immunity triggered by infections in the respiratory tract, intestines, or other areas leads to antigen presentation, T cell stimulation, B cell maturation, and the production of IgA-producing plasma cells. The proteins B-lymphocyte stimulator (BLyS) and a proliferation-inducing ligand (APRIL) are involved in this process, and alternative complement and lectin pathway activation are also part of the pathogenic mechanism. Kidney Disease Improving Global Outcomes guidelines indicate that a specific effective treatment for IgAN is lacking, with renin-angiotensin-aldosterone system inhibitors being the primary therapy. Recent research shows that biological agents can significantly reduce proteinuria, stabilize the estimated glomerular filtration rate, and reverse some pathological changes, such as endocapillary proliferation and crescent formation. There are four main categories of biological agents used to treat IgA nephropathy, specifically anti-CD20 monoclonal antibodies, anti-BLyS or APRIL monoclonal antibodies, monoclonal antibodies targeting both BLyS and APRIL (telitacicept and atacicept), and monoclonal antibodies inhibiting complement system activation (narsoplimab and eculizumab). However, further research on the dosages, treatment duration, long-term efficacy, and safety of these biological agents is required.

15.
Biomed Khim ; 70(1): 5-14, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38450676

ABSTRACT

The cellular response to endoplasmic reticulum (ER) stress accompanies plasma cell maturation and is one of triggers and cofactors of the local inflammatory response. Chemical chaperones, low-molecular substances that eliminate pathological ER stress, are proposed as means of treating pathologies associated with ER stress. The aim of this study was to evaluate the effect and mechanisms of influence of chemical chaperones on the humoral response in a low-dose model of allergy. The allergic immune response was induced in BALB/c mice by repeated administration of ovalbumin at a dose of 100 ng for 6 weeks. Some animals were injected with both the antigen and the chemical chaperones, TUDCA (tauroursodeoxycholic acid) or 4-PBA (4-phenylbutyrate). Administration of TUDCA, but not 4-PBA, suppressed production of allergen-specific IgE (a 2.5-fold decrease in titer). None of the chemical chaperones affected the production of specific IgG1. The effect of TUDCA was associated with suppression of the switch to IgE synthesis in regional lymph nodes. This phenomenon was associated with suppressed expression of genes encoding cytokines involved in type 2 immune response, especially Il4 and Il9, which in turn could be caused by suppression of IL-33 release. In addition, TUDCA significantly suppressed expression of the cytokine APRIL, and to a lesser extent, BAFF. Thus, TUDCA inhibition of the allergy-specific IgE production is due to suppression of the release of IL-33 and a decrease in the production of type 2 immune response cytokines, as well as suppression of the expression of the cytokines APRIL and BAFF.


Subject(s)
Hypersensitivity , Interleukin-33 , Taurochenodeoxycholic Acid , Animals , Mice , Hypersensitivity/drug therapy , Immunoglobulin E , Cytokines , Allergens
16.
Kidney Int Rep ; 9(2): 203-213, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38344739

ABSTRACT

IgA nephropathy (IgAN) is the most common primary glomerulonephritis worldwide. Approximately 30% to 45% of patients progress to kidney failure (KF) within 20 to 25 years of diagnosis, and there has long been a lack of effective treatments. The therapeutic landscape in IgAN is rapidly evolving, driven in large part by the acceptance of the surrogate clinical trial end point of proteinuria reduction by regulatory authorities for the accelerated approval of new therapies. Two drugs, targeted release formulation (TRF)-budesonide (nefecon) and sparsentan, have recently been approved under this scheme. Advancing insights into the pathophysiology of IgAN, including the roles of the mucosal immune system, B-cells, the complement system, and the endothelin system have driven development of therapies that target these factors. This review outlines current, recently approved, and emerging therapies for IgAN.

17.
Clin Immunol ; 258: 109870, 2024 01.
Article in English | MEDLINE | ID: mdl-38101497

ABSTRACT

Recent studies have highlighted the important role of B cells in the pathogenesis of multiple sclerosis (MS). B cell activating factor (BAFF) and A proliferation inducing ligand (APRIL) play a major role in B cell survival and homeostasis. Here, we studied the association of BAFF and APRIL with B cell immune markers in MS and following B cell depletion and repopulation. We found that BAFF but not APRIL was significantly higher in plasma in untreated MS compared to controls. BAFF increased after rituximab treatment and decreased again during repopulation displaying an inverse correlation with B cell numbers, and more specifically switched memory B cell numbers. Cerebrospinal fluid BAFF inversely correlated with IgG index. BAFF displayed an inverse association to anti-EBV-CA antibodies. In summary, our study identified immune cells and factors that might regulate or be regulated by BAFF and APRIL levels in MS, and during B cell depletion and repopulation.


Subject(s)
Multiple Sclerosis , Humans , B-Cell Activating Factor , Tumor Necrosis Factor Ligand Superfamily Member 13 , Rituximab/therapeutic use , B-Lymphocytes/pathology , Interleukin-4
18.
Clin Exp Immunol ; 216(2): 211-219, 2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38150328

ABSTRACT

Antibody-mediated rejection (AMR) can cause graft failure following renal transplantation. Neutrophils play a key role in AMR progression, but the exact mechanism remains unclear. We investigated the effect of neutrophils on AMR in a mouse kidney transplantation model. The mice were divided into five groups: syngeneic transplantation (Syn), allograft transplantation (Allo), and three differently treated AMR groups. The AMR mouse model was established using skin grafts to pre-sensitize recipient mice. Based on the AMR model, Ly6G-specific monoclonal antibodies were administered to deplete neutrophils (NEUT-/- + AMR) and TACI-Fc was used to block B-cell-activating factor (BAFF)/a proliferation-inducing ligand (APRIL) signaling (TACI-Fc + AMR). Pathological changes were assessed using hematoxylin-eosin and immunohistochemical staining. Banff values were evaluated using the Banff 2015 criteria. Donor-specific antibody (DSA) levels were assessed using flow cytometry, and BAFF and APRIL concentrations were measured using ELISA. Compared to the Syn and Allo groups, a significantly increased number of neutrophils and increased C4d and IgG deposition were observed in AMR mice, accompanied by elevated DSA levels. Neutrophil depletion inhibited inflammatory cell infiltration and reduced C4d and IgG deposition. Neutrophil depletion significantly decreased DSA levels after transplantation and suppressed BAFF and APRIL concentrations, suggesting a mechanism for attenuating AMR-induced graft damage. Similar results were obtained after blockading BAFF/APRIL using a TACI-Fc fusion protein. In summary, neutrophil infiltration increased in the AMR mouse renal transplantation model. Neutrophil depletion or blockading the BAFF/APRIL signaling pathway significantly alleviated AMR and may provide better options for the clinical treatment of AMR.

19.
Clin Kidney J ; 16(Suppl 2): ii9-ii18, 2023 Dec.
Article in English | MEDLINE | ID: mdl-38053976

ABSTRACT

Advances in our understanding of the pathogenesis of immunoglobulin A nephropathy (IgAN) have led to the identification of novel therapeutic targets and potential disease-specific treatments. Specifically, a proliferation-inducing ligand (APRIL) has been implicated in the pathogenesis of IgAN, mediating B-cell dysregulation and overproduction of pathogenic galactose-deficient IgA1 (Gd-IgA1). Animal and clinical studies support the involvement of APRIL in the pathogenesis and progression of IgAN. An elevated level of APRIL is found in IgAN when compared with controls, which correlates with the level of Gd-IgA1 and associates with more severe disease presentation and worse outcomes. Conversely, anti-APRIL therapy reduces pathogenic Gd-IgA1 and IgA immune complex formation and ameliorates the severity of kidney inflammation and injury. Genome-wide association studies in IgAN have identified TNFSF13 and TNFRSF13B, a cytokine ligand-receptor gene pair encoding APRIL and its receptor, respectively, as risk susceptibility loci in IgAN, further supporting the causal role of the APRIL signalling pathway in IgAN. Several novel experimental agents targeting APRIL, including atacicept, telitacicept, zigakibart and sibeprenlimab, are currently under investigation as potential therapies in IgAN. Preliminary results suggest that these agents are well-tolerated, and reduce levels of Gd-IgA1, with corresponding improvement in proteinuria. Further studies are ongoing to confirm the safety and efficacy of anti-APRIL approaches as an effective therapeutic strategy in IgAN.

20.
J Clin Med ; 12(21)2023 Nov 04.
Article in English | MEDLINE | ID: mdl-37959392

ABSTRACT

A PRoliferation-Inducing Ligand (APRIL), the thirteenth member of the tumor necrosis factor superfamily, plays a key role in the regulation of activated B cells, the survival of long-lived plasma cells, and immunoglobulin (Ig) isotype class switching. Several lines of evidence have implicated APRIL in the pathogenesis of IgA nephropathy (IgAN). Globally, IgAN is the most common primary glomerulonephritis, and it can progress to end-stage kidney disease; yet, disease-modifying treatments for this condition have historically been lacking. The preliminary data in ongoing clinical trials indicate that APRIL inhibition can reduce proteinuria and slow the rate of kidney disease progression by acting at an upstream level in IgAN pathogenesis. In this review, we examine what is known about the physiologic roles of APRIL and evaluate the experimental and epidemiological evidence describing how these normal biologic processes are thought to be subverted in IgAN. The weight of the preclinical, clinical, and genetic data supporting a key role for APRIL in IgAN has galvanized pharmacologic research, and several anti-APRIL drug candidates have now entered clinical development for IgAN. Herein, we present an overview of the clinical results to date. Finally, we explore where more research and evidence are needed to transform potential therapies into clinical benefits for patients with IgAN.

SELECTION OF CITATIONS
SEARCH DETAIL