Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters








Database
Type of study
Language
Publication year range
1.
Physiol Int ; 108(3): 383-397, 2021 Sep 15.
Article in English | MEDLINE | ID: mdl-34529587

ABSTRACT

The perturbation of adipokinetic hormones, such as irisin, chemerin, and asprosin has been reported to participate in pathological conditions (e.g., insulin resistance) and chronic inflammation. However, exercise training has been long established as an effective intervention for prevention and treatment of these chronic and metabolic diseases. This study was to examine the effects of aerobic continuous training (ACT) and aerobic interval training (AIT) on irisin and chemerin levels of liver tissue (LT) and visceral adipose tissue (VAT), circulating asprosin, and their relationships with cardiometabolic risk factors in rats with metabolic syndrome (MetS). Thirty-two male Wistar rats were randomly divided into four equal groups: normal control (N-Ctr), control (Ctr-MetS), ACT, and AIT. After familiarization, rats with exercise intervention performed either ACT or AIT five times a week over eight weeks. The level of irisin in both ACT and AIT groups was higher than the Ctr-MetS group in LT and VAT, with a greater improvement of LT level observed in AIT vs. ACT groups. Furthermore, the level of chemerin in LT and VAT was lower in both ACT and AIT groups than the Ctr-MetS group, whereas only AIT group exhibited a reduction of serum asprosin when compared to ACT and Ctr-MetS, along with the improvements of cardiometabolic markers, such as HOMA-IR and lipid profile. These findings may support the efficiency and effectiveness of AIT intervention in the modulation of these novel metabolic hormones and cardiometabolic risk factors for reduced risk of metabolic syndrome.


Subject(s)
Insulin Resistance , Metabolic Syndrome , Animals , Intra-Abdominal Fat , Liver , Male , Metabolic Syndrome/therapy , Rats , Rats, Wistar
2.
PeerJ ; 7: e7514, 2019.
Article in English | MEDLINE | ID: mdl-31531269

ABSTRACT

BACKGROUND: Neuropeptides exert their activity through binding to G protein-coupled receptors (GPCRs). GPCRs are well-known drug targets in the pharmaceutical industry and are currently discussed as targets to control pest insects. Here, we investigate the neuropeptide adipokinetic hormone (AKH) system of the desert locust Schistocerca gregaria. The desert locust is known for its high reproduction, and for forming devastating swarms consisting of billions of individual insects. It is also known that S. gregaria produces three different AKHs as ligands but has only one AKH receptor (AKHR). The AKH system is known to be essential for metabolic regulation, which is necessary for reproduction and flight activity. METHODS: Nuclear magnetic resonance techniques (NMR) in a dodecylphosphocholin (DPC) micelle solution were used to determine the structure of the three AKHs. The primary sequence of the S. gregaria AKHR was used to construct a 3D molecular model. Next, the three AKHs were individually docked to the receptor, and dynamic simulation of the whole ligand-receptor complex in a model membrane was performed. RESULTS: Although the three endogenous AKHs of S. gregaria have quite different amino acids sequences and chain length (two octa- and one decapeptide), NMR experiments assigned a turn structure in DPC micelle solution for all. The GPCR-ModSim program identified human kappa opioid receptor to be the best template after which the S. gregaria AKHR was modeled. All three AKHs were found to have the same binding site on this receptor, interact with similar residues of the receptor and have comparable binding constants. Molecular switches were also identified; the movement of the receptor could be visually shown when ligands (AKHs) were docked and the receptor was activated. CONCLUSIONS: The study proposes a model of binding of the three endogenous ligands to the one existing AKHR in the desert locust and paves the way to use such a model for the design of peptide analogs and finally, peptide mimetics, in the search for novel species-specific insecticides based on receptor-ligand interaction.

3.
Int J Mol Sci ; 16(10): 25788-816, 2015 Oct 27.
Article in English | MEDLINE | ID: mdl-26516847

ABSTRACT

Insects, like other organisms, must deal with a wide variety of potentially challenging environmental factors during the course of their life. An important example of such a challenge is the phenomenon of oxidative stress. This review summarizes the current knowledge on the role of adipokinetic hormones (AKH) as principal stress responsive hormones in insects involved in activation of anti-oxidative stress response pathways. Emphasis is placed on an analysis of oxidative stress experimentally induced by various stressors and monitored by suitable biomarkers, and on detailed characterization of AKH's role in the anti-stress reactions. These reactions are characterized by a significant increase of AKH levels in the insect body, and by effective reversal of the markers-disturbed by the stressors-after co-application of the stressor with AKH. A plausible mechanism of AKH action in the anti-oxidative stress response is discussed as well: this probably involves simultaneous employment of both protein kinase C and cyclic adenosine 3',5'-monophosphate pathways in the presence of extra and intra-cellular Ca(2+) stores, with the possible involvement of the FoxO transcription factors. The role of other insect hormones in the anti-oxidative defense reactions is also discussed.


Subject(s)
Insect Hormones/metabolism , Insecta/metabolism , Oligopeptides/metabolism , Oxidative Stress , Pyrrolidonecarboxylic Acid/analogs & derivatives , Animals , Pyrrolidonecarboxylic Acid/metabolism , Signal Transduction
4.
Peptides ; 53: 270-7, 2014 Mar.
Article in English | MEDLINE | ID: mdl-24444447

ABSTRACT

Melme-CC (pGlu-Leu-Asn-Tyr-Ser-Pro-Asp-Trp amide) and Declu-CC (pGlu-Leu-Asn-Phe-Ser-Pro-Asn-Trp-Gly-Asn amide) are members of the insect adipokinetic hormone family with very different activities in the locust bioassay. The conformations of both peptides were determined in water and in a phospholipid (DPC) micelle solution using nuclear magnetic resonance (NMR) restrained molecular dynamics simulations. In water, Melme-CC has one dominant conformation while in DPC solution it has two preferred conformation. In water, Declu-CC has two conformations but in DPC solution it has one preferred conformation, which is similar to one of the water conformations. All the conformations have type IV ß-turn between residues 4 and 7. The binding of the two peptides to the DPC micelle is different. Melme-CC does not bind strongly to the surface and is oriented with the ß-turn facing the surface. Declu-CC interacts more strongly with the ß-turn facing away from the surface. Both termini having hydrophobic interactions with the surface. In Declu-CC the side chain of Asn(7) projects away from the chain while in Melme-CC the Asp(7) side chain is folded inside the chain. The different orientation of these side chains may account for the much higher biological activity of Declu-CC in mobilizing lipids in the locust compared to the poor biological effect of Melme-CC in this bioassay. Receptor binding of Declu-CC was tested using a model AKH receptor from Anopheles gambiae. A free energy of binding of -38.5 kJ mol(-1) was found.


Subject(s)
Biological Assay/methods , Insect Hormones/chemistry , Magnetic Resonance Spectroscopy/methods , Micelles , Molecular Dynamics Simulation , Oligopeptides/chemistry , Phosphorylcholine/analogs & derivatives , Pyrrolidonecarboxylic Acid/analogs & derivatives , Water/chemistry , Phosphorylcholine/chemistry , Protein Structure, Tertiary , Pyrrolidonecarboxylic Acid/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL