Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 63.732
Filter
1.
Clin Chim Acta ; 564: 119941, 2025 Jan 01.
Article in English | MEDLINE | ID: mdl-39181294

ABSTRACT

BACKGROUND: In Alzheimer's disease (AD) diagnosis, a cerebrospinal fluid (CSF) biomarker panel is commonly interpreted with binary cutoff values. However, these values are not generic and do not reflect the disease continuum. We explored the use of interval-specific likelihood ratios (LRs) and probability-based models for AD using a CSF biomarker panel. METHODS: CSF biomarker (Aß1-42, tTau and pTau181) data for both a clinical discovery cohort of 241 patients (measured with INNOTEST) and a clinical validation cohort of 129 patients (measured with EUROIMMUN), both including AD and non-AD dementia/cognitive complaints were retrospectively retrieved in a single-center study. Interval-specific LRs for AD were calculated and validated for univariate and combined (Aß1-42/tTau and pTau181) biomarkers, and a continuous bivariate probability-based model for AD, plotting Aß1-42/tTau versus pTau181 was constructed and validated. RESULTS: LR for AD increased as individual CSF biomarker values deviated from normal. Interval-specific LRs of a combined biomarker model showed that once one biomarker became abnormal, LRs increased even further when another biomarker largely deviated from normal, as replicated in the validation cohort. A bivariate probability-based model predicted AD with a validated accuracy of 88% on a continuous scale. CONCLUSIONS: Interval-specific LRs in a combined biomarker model and prediction of AD using a continuous bivariate biomarker probability-based model, offer a more meaningful interpretation of CSF AD biomarkers on a (semi-)continuous scale with respect to the post-test probability of AD across different assays and cohorts.


Subject(s)
Alzheimer Disease , Amyloid beta-Peptides , Biomarkers , Probability , Alzheimer Disease/cerebrospinal fluid , Alzheimer Disease/diagnosis , Humans , Biomarkers/cerebrospinal fluid , Female , Male , Aged , Amyloid beta-Peptides/cerebrospinal fluid , Likelihood Functions , Middle Aged , tau Proteins/cerebrospinal fluid , Retrospective Studies , Peptide Fragments/cerebrospinal fluid , Cohort Studies
2.
Biomaterials ; 312: 122749, 2025 Jan.
Article in English | MEDLINE | ID: mdl-39121725

ABSTRACT

The prevalence of Alzheimer's disease (AD) is increasing globally due to population aging. However, effective clinical treatment strategies for AD still remain elusive. The mechanisms underlying AD onset and the interplay between its pathological factors have so far been unclear. Evidence indicates that AD progression is ultimately driven by neuronal loss, which in turn is caused by neuroapoptosis and neuroinflammation. Therefore, the inhibition of neuroapoptosis and neuroinflammation could be a useful anti-AD strategy. Nonetheless, the delivery of active drug agents into the brain parenchyma is hindered by the blood-brain barrier (BBB). To address this challenge, we fabricated a black phosphorus nanosheet (BP)-based methylene blue (MB) delivery system (BP-MB) for AD therapy. After confirming the successful preparation of BP-MB, we proved that its BBB-crossing ability was enhanced under near-infrared light irradiation. In vitro pharmacodynamics analysis revealed that BP and MB could synergistically scavenge excessive reactive oxygen species (ROS) in okadaic acid (OA)-treated PC12 cells and lipopolysaccharide (LPS)-treated BV2 cells, thus efficiently reversing neuroapoptosis and neuroinflammation. To study in vivo pharmacodynamics, we established a mouse model of AD mice, and behavioral tests confirmed that BP-MB treatment could successfully improve cognitive function in these animals. Notably, the results of pathological evaluation were consistent with those of the in vitro assays. The findings demonstrated that BP-MB could scavenge excessive ROS and inhibit Tau hyperphosphorylation, thereby alleviating downstream neuroapoptosis and regulating the polarization of microglia from the pro-inflammatory M1 phenotype to the anti-inflammatory M2 phenotype. Overall, this study highlights the therapeutic potential of a smart nanomedicine with the capability of reversing neuroapoptosis and neuroinflammation for AD treatment.


Subject(s)
Alzheimer Disease , Apoptosis , Blood-Brain Barrier , Methylene Blue , Nanomedicine , Neuroinflammatory Diseases , Animals , Alzheimer Disease/drug therapy , Alzheimer Disease/pathology , Blood-Brain Barrier/drug effects , Blood-Brain Barrier/metabolism , Apoptosis/drug effects , PC12 Cells , Neuroinflammatory Diseases/drug therapy , Rats , Mice , Nanomedicine/methods , Methylene Blue/pharmacology , Methylene Blue/therapeutic use , Male , Reactive Oxygen Species/metabolism , Mice, Inbred C57BL
3.
Talanta ; 281: 126858, 2025 Jan 01.
Article in English | MEDLINE | ID: mdl-39260248

ABSTRACT

Amyloid-ß (Aß) species (Aß fibrils and Aß plaques), as one of the typical pathological markers of Alzheimer's disease (AD), plays a crucial role in AD diagnosis. Currently, some near-infrared I (NIR I) Aß probes have been reported in AD diagnosis. However, they still face challenges such as strong background interference and the lack of effective probe design. In this study, we propose molecular design strategy that incorporates CN group and amphiphilic modulation to synthesize a series of amphiphilic NIR I Aß probes, surpassing the commercial probe ThT and ThS. Theoretical calculations indicate that these probes exhibit stronger interaction with amino acid residues in the cavities of Aß. Notably, the probes containing CN group display the ability of binding two distinct sites of Aß, which dramatically enhanced the affinity to Aß species. Furthermore, these probes exhibit minimal fluorescence in aqueous solution and offer ultra-high signal-to-noise ratio (SNR) for in vitro labeling, even in wash-free samples. Finally, the optimal probe DM-V2CN-PYC3 was utilized for in vivo imaging of AD mice, demonstrating its rapid penetration through the blood-brain barrier and labelling to Aß species. Moreover, it enabled long-term monitoring for a duration of 120 min. These results highlight the enhanced affinity and superior performance of the designed NIR I Aß probe for AD diagnosis. The molecular design strategy of CN and amphiphilic modulation presents a promising avenue for the development Aß probes with low background in vivo/in vitro imaging for Aß species.


Subject(s)
Alzheimer Disease , Amyloid beta-Peptides , Fluorescent Dyes , Animals , Amyloid beta-Peptides/metabolism , Amyloid beta-Peptides/analysis , Amyloid beta-Peptides/chemistry , Alzheimer Disease/diagnostic imaging , Alzheimer Disease/metabolism , Mice , Fluorescent Dyes/chemistry , Fluorescent Dyes/chemical synthesis , Optical Imaging , Infrared Rays , Mice, Transgenic , Humans
4.
J Prev Alzheimers Dis ; 11(5): 1260-1269, 2024.
Article in English | MEDLINE | ID: mdl-39350371

ABSTRACT

BACKGROUND: Global prevalence and incidence of dementia continue to rise at a rapid rate. There is a need for new Alzheimer's disease (AD) treatments globally. Aducanumab is a human monoclonal antibody that selectively targets aggregated soluble amyloid beta oligomers and insoluble amyloid beta fibrils. In June 2021, aducanumab was approved by the US Food and Drug Administration for the treatment of AD under the accelerated approval pathway. OBJECTIVES: We evaluated the efficacy, safety, biomarker and pharmacokinetics (PK) of aducanumab in Japanese subgroups in EMERGE and ENGAGE studies. DESIGN: EMERGE and ENGAGE were two randomized, double-blind, placebo-controlled, global, phase 3 studies of aducanumab in patients with early AD (mild cognitive impairment due to AD or mild AD dementia). SETTING: These studies involved 348 sites in 20 countries. PARTICIPANTS: Participants enrolled in Japan included 121 (7.4% of total 1638 in EMERGE) and 100 (6.1% of total 1647 in ENGAGE) patients (aged 50-85 years with confirmed amyloid pathology) who met clinical criteria for mild cognitive impairment due to AD or mild AD dementia. INTERVENTION: Participants were randomly assigned 1:1:1 to receive aducanumab low dose (3 or 6 mg/kg target dose), high dose (6 or 10 mg/kg target dose) or placebo via IV infusion once every 4 weeks over 76 weeks. MEASUREMENTS: The primary outcome measure was change from baseline to Week 78 on the Clinical Dementia Rating Sum of Boxes (CDR-SB), an integrated scale that assesses both function and cognition. Other measures included safety assessments; secondary and tertiary clinical outcomes that assessed cognition, function, and behavior; biomarker endpoints (amyloid PET and plasma p-tau181); serum PK profiles and immunogenicity. RESULTS: Results from the Japanese subgroup analyses were generally consistent with those of the overall study population across endpoints, while a lower mean body weight (kg) and a smaller proportion of ApoE ε4 carriers were observed in the Japanese subgroup population. A treatment effect was observed in favor of aducanumab on the primary and secondary efficacy endpoints at Week 78 in EMERGE, but not ENGAGE. The incidence and type of adverse events in the Japanese subgroups were generally comparable to those observed in the overall study population; amyloid related imaging abnormalities (ARIA) were common treatment-related adverse events that appeared to be related to the aducanumab dose. ARIA incidence was generally lower in the Japanese subgroup compared with the overall population. Consistent with the overall data set, a robust dose-dependent decrease in amyloid beta levels as assessed with amyloid-PET and plasma p-tau181 was observed. Serum PK profiles and immunogenicity of aducanumab in Japanese population were consistent with the non-Japanese population. CONCLUSION: Efficacy, safety, biomarker, and PK profiles of aducanumab were consistent between the Japanese subgroup and the overall population. A positive treatment effect of aducanumab on efficacy endpoints was observed in EMERGE, but not in ENGAGE.


Subject(s)
Alzheimer Disease , Antibodies, Monoclonal, Humanized , Humans , Alzheimer Disease/drug therapy , Antibodies, Monoclonal, Humanized/therapeutic use , Antibodies, Monoclonal, Humanized/pharmacokinetics , Aged , Male , Female , Double-Blind Method , Japan , Aged, 80 and over , Middle Aged , Cognitive Dysfunction/drug therapy , Biomarkers/blood , Amyloid beta-Peptides/metabolism , East Asian People
5.
Clin Chim Acta ; 565: 120014, 2024 Oct 22.
Article in English | MEDLINE | ID: mdl-39442787

ABSTRACT

BACKGROUND: Advances in analytical methods have recently paved the way to Alzheimer's disease (AD) biomarkers testing in blood along with the more established CSF testing. To ensure a forthcoming application of this low-invasive diagnostic that might allow to recognize early onset of dementia, appropriate pathological cut-points need to be defined. METHODS: In this cross-sectional study we measured blood and CSF neurofilament light chain (NFL), phosphorylated tau (pTau 181), Amyloid-ß1-42 (AB 1-42) and Amyloid-ß1-40 (AB 1-40) on a fully automated chemiluminescent platform (Lumipulse, Fujirebio) in 80 cognitively impaired patients and 55 cognitively unimpaired subjects. Clinical cut points were calculated with receiver-operator characteristic (ROC) curve analysis and a head-to-head comparison of blood and CSF testing was performed. RESULTS: Blood NFL best discriminant thresholds to distinguish neurodegenerative diseases from controls varied age-dependently, being 19 and 33 pg/mL in subjects 50-65 years and > 65 years respectively. AD was best framed by AB 1-42/1-40 ratio < 0.079 and ptau181 > 1 pg/mL. Though a strong correlation for all biomarkers, only blood AB ratio was equal to CSF testing for AD diagnosis. CONCLUSIONS: The specific context of use might be considered to define the cut-offs of blood biomarkers of neurodegenerative diseases. Future efforts towards reference materials for each AD blood biomarker will improve clinical cut-offs.

6.
Brain Behav ; 14(10): e70111, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39435676

ABSTRACT

OBJECTIVE: This meta-analysis aimed to evaluate the comparative diagnostic performance of amyloid-ß positron emission tomography (Aß PET) and magnetic resonance imaging (MRI) in diagnosing Alzheimer's disease (AD). METHODS: An extensive search was conducted in the PubMed and Embase databases to identify available publications up to December 2023. Head-to-head comparative studies were included if they evaluated the diagnostic performance of Aß PET and MRI in diagnosing Alzheimer's disease. Sensitivity and specificity were assessed using the DerSimonian and Laird method, followed by transformation via the Freeman-Tukey double inverse sine transformation. RESULTS: Six articles involving 560 patients were included in the meta-analysis. When distinguishing AD from mild cognitive impairment (MCI), both methods showed comparable sensitivity (Aß PET: 0.71, MRI: 0.62) and specificity (Aß PET: 0.68, MRI: 0.69), with no statistically significant differences observed (p = 0.34 and 0.99). When identifying AD from normal cognitive control (NC), both Aß PET and MRI showed similar results, with comparable sensitivity (Aß PET: 0.93, MRI: 0.85) and specificity (Aß PET: 0.95, MRI: 0.82), without significant differences (p = 0.38 and 0.19). Similarly, in detecting MCI from NC, both Aß PET and MRI demonstrated similar sensitivity (Aß PET: 0.69, MRI: 0.64) and specificity (Aß PET: 0.75, MRI: 0.76) without significant differences (p = 0.40 and 0.94). However, 18F-FMM seems to have a higher specificity compared to MRI when distinguishing AD from MCI (P = 0.03) and AD from NC (p = 0.04). CONCLUSIONS: Our meta-analysis indicates that Aß PET demonstrates similar sensitivity and specificity to MRI in diagnosing Alzheimer's disease. However, the limited number of studies may impact the evidence of the current study; further larger sample prospective research is required to confirm these findings.


Subject(s)
Alzheimer Disease , Amyloid beta-Peptides , Cognitive Dysfunction , Magnetic Resonance Imaging , Positron-Emission Tomography , Sensitivity and Specificity , Alzheimer Disease/diagnostic imaging , Positron-Emission Tomography/methods , Positron-Emission Tomography/standards , Humans , Magnetic Resonance Imaging/methods , Magnetic Resonance Imaging/standards , Amyloid beta-Peptides/metabolism , Cognitive Dysfunction/diagnostic imaging
7.
Mol Neurobiol ; 2024 Oct 23.
Article in English | MEDLINE | ID: mdl-39438345

ABSTRACT

The perturbed structure and function of mitochondria-associated membranes (MAM), instead of the amyloid cascade, have been gradually proposed to play a basic role in the pathogenesis of Alzheimer's disease (AD). Notably, autophagy inhibition is one of the main mechanisms of MAM dysfunction and plays an important role in neuronal injury. However, the upstream molecular mechanism underlying the MAM dysfunctions remains elusive. Here, we defined an unexpected and critical role of connexin43 (Cx43) in regulating the MAM structure. The expression levels of Cx43 and mitofusin-2 (MFN2, the MAM biomarker) increase significantly in 9-month-old APPswe/PS1dE9 double-transgenic AD model mice, and there is an obvious colocalization relationship. Moreover, both AD mice and cells lacking Cx43 exhibit an evident reduction in the MAM contact sites, which subsequently promotes the conversion from microtubule-associated protein 1 light-chain 3B I (LC3B-I) to LC3B-II via inhibition mTOR-dependent pathway and then initiates the generation of autophagosomes. Autophagosome formation ultimately promotes ß-amyloid (Aß) clearance and attenuates Aß-associated pathological changes in AD, mainly including astrogliosis and neuronal apoptosis. Our findings not only reveal a previously unrecognized effect of Cx43 on MAM upregulation but also highlight the major player of MAM-induced autophagy inhibition in Cx43-facilitated AD pathogenesis, providing a novel insight into the alternative therapeutic strategies for the early treatment of AD.

8.
Alzheimers Res Ther ; 16(1): 225, 2024 Oct 15.
Article in English | MEDLINE | ID: mdl-39407224

ABSTRACT

BACKGROUND: Multiple psychosocial factors have been associated with dementia, while the individual or joint effects of various psychosocial states on dementia remain unrevealed due to the complex interplay between those factors. Here, the authors examined the associations of psychosocial factors and patterns with subsequent risk of dementia, and if the associations could be modified by genetic susceptibility to dementia. METHODS: UK Biobank dementia-free participants were followed from one year after recruitment (median date: 24 January, 2010) until 31 October, 2022. Psychosocial states were measured by 22 items related to five dimensions, including psychiatric history, recent stressful life events, current psychiatric symptoms, social contact, and individual socioeconomic state. We identified clusters of individuals with distinct psychosocial patterns using latent class analysis. Cox proportional hazards models were used to evaluate the association between psychosocial items, as well as psychosocial patterns, and risk of dementia. We further performed stratification analyses by apolipoprotein E (APOE) genotype, polygenic risk score (PRS) of dementia, and family history of dementia. RESULTS: Of 497,787 included participants, 54.54% were female. During a median follow-up of 12.70 years, we identified 9,858 (1.98%) patients with newly diagnosed dementia. We identified seven clusters with distinct psychosocial patterns. Compared to individuals with a pattern of 'good state', individuals with other unfavorable patterns, featured by varying degrees of poor psychological state ('fair state' and 'mildly, moderately, and extremely poor psychological state'), low social contact or socioeconomic state ('living alone' and 'short education years'), were all at an increased risk of dementia (hazard ratios [HR] between 1.29 and 2.63). The observed associations showed no significant differences across individuals with varying APOE genotypes, levels of PRS, and family histories of dementia. CONCLUSION: Unfavorable psychosocial patterns are associated with an increased risk of dementia, independent of genetic susceptibility. The findings highlight the importance of surveillance and prevention of cognitive decline among individuals with suboptimal psychosocial state.


Subject(s)
Biological Specimen Banks , Dementia , Humans , Dementia/epidemiology , Dementia/psychology , Dementia/genetics , Female , Male , United Kingdom/epidemiology , Aged , Prospective Studies , Middle Aged , Risk Factors , Genetic Predisposition to Disease , Apolipoproteins E/genetics , Cohort Studies , UK Biobank
9.
Alzheimers Res Ther ; 16(1): 226, 2024 Oct 15.
Article in English | MEDLINE | ID: mdl-39407312

ABSTRACT

BACKGROUND: Dementia with Lewy Bodies (DLB) is a complex neurodegenerative disorder that often overlaps clinically with Alzheimer's disease (AD), presenting challenges in accurate diagnosis and underscoring the need for novel biomarkers. Lipidomic emerges as a promising avenue for uncovering disease-specific metabolic alterations and potential biomarkers, particularly as the lipidomics landscape of DLB has not been previously explored. We aim to identify potential diagnostic biomarkers and elucidate the disease's pathophysiological mechanisms. METHODS: This study conducted a lipidomic analysis of plasma samples from patients with DLB, AD, and healthy controls (HCs) at Xuanwu Hospital. Untargeted plasma lipidomic profiling was conducted via liquid chromatography coupled with mass spectrometry. Machine learning methods were employed to discern lipidomic signatures specific to DLB and to differentiate it from AD. RESULTS: The study enrolled 159 participants, including 57 with AD, 48 with DLB, and 54 HCs. Significant differences in lipid profiles were observed between the DLB and HC groups, particularly in the classes of sphingolipids and phospholipids. A total of 55 differentially expressed lipid species were identified between DLB and HCs, and 17 between DLB and AD. Correlations were observed linking these lipidomic profiles to clinical parameters like Unified Parkinson's Disease Rating Scale III (UPDRS III) and cognitive scores. Machine learning models demonstrated to be highly effective in distinguishing DLB from both HCs and AD, achieving substantial accuracy through the utilization of specific lipidomic signatures. These include PC(15:0_18:2), PC(15:0_20:5), and SPH(d16:0) for differentiation between DLB and HCs; and a panel includes 13 lipid molecules: four PCs, two PEs, three SPHs, two Cers, and two Hex1Cers for distinguishing DLB from AD. CONCLUSIONS: This study presents a novel and comprehensive lipidomic profile of DLB, distinguishing it from AD and HCs. Predominantly, sphingolipids (e.g., ceramides and SPHs) and phospholipids (e.g., PE and PC) were the most dysregulated lipids in relation to DLB patients. The lipidomics panels identified through machine learning may serve as effective plasma biomarkers for diagnosing DLB and differentiating it from AD dementia.


Subject(s)
Alzheimer Disease , Biomarkers , Lewy Body Disease , Lipidomics , Machine Learning , Humans , Lewy Body Disease/blood , Lewy Body Disease/diagnosis , Alzheimer Disease/blood , Alzheimer Disease/diagnosis , Male , Female , Aged , Biomarkers/blood , Aged, 80 and over , Middle Aged , Lipids/blood
10.
Diagnostics (Basel) ; 14(19)2024 Oct 07.
Article in English | MEDLINE | ID: mdl-39410641

ABSTRACT

Machine learning (ML) has increasingly been utilized in healthcare to facilitate disease diagnosis and prediction. This study focuses on predicting Alzheimer's disease (AD) through the development and comparison of ML models using Support Vector Machine (SVM), Random Forest (RF), and Logistic Regression (LR) algorithms. Additionally, feature selection techniques including Minimum Redundancy Maximum Relevance (mRMR) and Mutual Information (MI) were employed to enhance the model performance. The research methodology involved training and testing these models on the OASIS-2 dataset, evaluating their predictive accuracies. Notably, LR combined with mRMR achieved the highest accuracy of 99.08% in predicting AD. These findings underscore the efficacy of ML algorithms in AD prediction and highlight the utility of the feature selection methods in improving the model performance. This study contributes to the ongoing efforts to leverage ML for more accurate disease prognosis and underscores the potential of these techniques in advancing clinical decision-making.

11.
Front Dement ; 3: 1455619, 2024.
Article in English | MEDLINE | ID: mdl-39410947

ABSTRACT

Introduction: Prior research identified four neurochemical cerebrospinal fluid (CSF) biomarkers, Aß1-42, Aß1-40, tTau, and pTau(181), as core diagnostic markers for Alzheimer's disease (AD). Determination of AD biomarkers using immunoassays can support differential diagnosis of AD vs. several neuropsychiatric disorders, which is important because the respective treatment regimens differ. Results of biomarker determination can be classified according to the Amyloid/Tau/Neurodegeneration (ATN) system into profiles. Less is known about the clinical performance of chemiluminescence immunoassays (ChLIA) measuring specific biomarkers in CSF samples from patients suffering from neuropsychiatric impairments with various underlying causes. Methods: Chemiluminescence immunoassays (ChLIAs, EUROIMMUN) were used to determine Beta-Amyloid (1-40), Beta-Amyloid (1-42), Total-Tau, and pTau(181) concentrations in precharacterized cerebrospinal fluid (CSF) samples from 219 AD patients, 74 patients with mild cognitive impairment (MCI), and 220 disease control (DC) patients. Results: 83.0% of AD patients had ATN profiles consistent with AD, whereas 85.5% of DC patients and 77.0% of MCI patients had profiles inconsistent with AD. AD patients showed significantly lower amyloid ratio Aß1-42/Aß1-40 (mean: 0.07) and significantly higher concentrations of tTau (mean: 901.6 pg/ml) and pTau(181) (mean: 129 pg/ml) compared to DC and MCI patients (all p values < 0.0071). Discussion: The ChLIAs effectively determined specific biomarkers and can support differential diagnostics of AD. Their quality was demonstrated in samples from 513 patients with cognitive impairments, representing a realistic mix of underlying causes for seeking treatment at a memory clinic.

12.
Front Aging Neurosci ; 16: 1462238, 2024.
Article in English | MEDLINE | ID: mdl-39411283

ABSTRACT

Neurodegenerative diseases such as Alzheimer's disease and polyglutamine diseases are characterized by abnormal accumulation of misfolded proteins, leading to neuronal dysfunction and subsequent neuron death. However, there is a lack of studies that integrate molecular, morphological, and functional analyses in neurodegenerative models to fully characterize these time-dependent processes. In this study, we used C. elegans models expressing Aß1-42 and polyglutamine to investigate early neuronal pathogenic features in olfactory neurons. Both models demonstrated significant reductions in odor sensitivity in AWB and AWC chemosensory neurons as early as day 1 of adulthood, while AWA chemosensory neurons showed no such decline, suggesting cell-type-specific early neuronal dysfunction. At the molecular level, Aß1-42 or Q40 expression caused age-dependent protein aggregation and morphological changes in neurons. By day 6, both models displayed prominent protein aggregates in neuronal cell bodies and neurites. Notably, AWB neurons in both models showed significantly shortened cilia and increased instances of enlarged cilia as early as day 1 of adulthood. Furthermore, AWC neurons expressing Aß1-42 displayed calcium signaling defects, with significantly reduced responses to odor stimuli on day 1, further supporting early behavioral dysfunction. In contrast, AWA neuron did not exhibit reduced calcium responses, consistent with the absence of detectable decreases in olfactory sensitivity in these neurons. These findings suggest that decreased calcium signaling and dysfunction in specific sensory neuron subtypes are early indicators of neurodegeneration in C. elegans, occurring prior to the formation of visible protein aggregates. We found that the ER unfolded protein response (UPR) is significantly activated in worms expressing Aß1-42. Activation of the AMPK pathway alleviates olfactory defects and reduces fibrillar Aß in these worms. This study underscores the use of C. elegans olfactory neurons as a model to elucidate mechanisms of proteostasis in neurodegenerative diseases and highlights the importance of integrated approaches.

13.
MedComm (2020) ; 5(11): e768, 2024 Nov.
Article in English | MEDLINE | ID: mdl-39415847

ABSTRACT

Alzheimer's disease (AD) is the most prevalent neurodegenerative disorder, characterized by the early presence of amyloid-ß (Aß) and hyperphosphorylated tau. Identifying the neuropathological changes preceding cognitive decline is crucial for early intervention. Axon initial segment (AIS) maintains the orderly structure of the axon and is responsible for initiating action potentials (APs). To investigate the role of AIS in early stages of AD pathogenesis, we focused on alterations in the AIS of neurons from APP/PS1 mouse models harboring familial AD mutations. AIS length and electrophysiological properties were assessed in neurons using immunostaining and patch-clamp techniques. The expression and function of ankyrin G (AnkG) isoforms were evaluated by western blot and rescue experiments. We observed a significant shortening of AIS in APP/PS1 mice, which correlated with impaired action potential propagation. Furthermore, a decrease in the 480 kDa isoform of AnkG was observed. Rescue of this isoform restored AIS plasticity and improved long-term potentiation in APP/PS1 neurons. Our study implicates AIS plasticity alterations and AnkG dysregulation as early events in AD. The restoration of AIS integrity by the 480 kDa AnkG isoform presents a potential therapeutic strategy for AD, underscoring the importance of targeting AIS stability in neurodegenerative diseases.

14.
Alzheimers Dement (Amst) ; 16(4): e70013, 2024.
Article in English | MEDLINE | ID: mdl-39416486

ABSTRACT

INTRODUCTION: Apathy is a significant feature in Alzheimer's disease (AD) and subjective cognitive impairment (SCI), though its mechanisms are not well established. METHODS: An effort-based decision-making (EBDM) framework was applied to investigate apathy in 30 AD patients, 41 SCI participants, and 55 healthy controls (HC). Data were analyzed using a drift-diffusion model (DDM) to uncover latent psychological processes. RESULTS: SCI participants reported higher apathy than AD patients and HC. However, informant reports of apathy in AD patients were higher than self-reports and indicated significant apathy compared to HC. Both the AD and SCI groups showed reduced sensitivity to effort changes, linked to executive dysfunction in AD and apathy in SCI. Increased resting functional cortical connectivity with the nucleus accumbens (NA) was associated with higher apathy in SCI. DISCUSSION: These results highlight a similar disruption of EBDM in AD and SCI, differentially related to executive functioning in AD and apathy in SCI. Highlights: This is the first study investigating apathy using an effort-based decision-making (EBDM) framework in Alzheimer's disease (AD) and subjective cognitive impairment (SCI).Self-reports underestimate apathy in AD patients when compared to informant reports and healthy controls (HC). SCI participants, in whom self and informant reports were more concordant, also showed higher degrees of apathy.Both AD and SCI groups showed reduced sensitivity to effort.Reduced sensitivity to effort correlates with executive dysfunction in AD and apathy, but not depression, in SCI.Increased nucleus accumbens (ventral striatum) connectivity with the frontoparietal network was associated with higher apathy scores in SCI.The results thus suggest that while AD and SCI can have similar deficits in EBDM, these deficits correlate with distinct clinical manifestations: executive dysfunction in AD and apathy in SCI.

15.
Front Neurol ; 15: 1436030, 2024.
Article in English | MEDLINE | ID: mdl-39416665

ABSTRACT

Background: Patients with Alzheimer's disease (AD) often exhibit characteristic clinical manifestations, particularly neuropsychiatric symptoms. Previous studies have shown that white matter hyperintensity (WMH) is strongly associated with AD progression, as well as neuropsychiatric symptoms. The purpose of this study was to investigate the clinical and neuropsychological characteristics of AD patients with WMH. Methods: This retrospective study involved 104 18-fluorodeoxyglucose-positron emission computed tomography (18FDG-PET-CT)-defined AD patients treated at Tianjin Huanhu Hospital from January 2010 to December 2022. Cranial magnetic resonance imaging (MRI) provided semi-quantitative data on brain structure and WMH. Collect and analyze patient clinical data. Neuropsychological assessments were used to evaluate cognitive function and psychobehavioral traits. Results: Among the 104 patients, 66 were in the WMH group (63.5%) and 38 in the non-white matter hyperintensity (non-WMH) group (36.5%). There were no significant differences in gender, age, age of onset, education, BMI, smoking, drinking, diabetes, coronary heart disease, dementia family history, fasting blood glucose, total cholesterol (TC), triglyceride (TG), high-density lipoprotein cholesterol (HDL-C), low-density lipoprotein cholesterol (LDL-C) between the two groups. The WMH group showed higher rates of hypertension, homocysteine (Hcy) levels, NPI, and CDR scores as compared to the non-WMH group (p < 0.05). MMSE and MoCA scores were significantly lower in the WMH group (p < 0.05). In the MMSE subitem analysis, patients in the WMH group showed a decrease in attention, recall, and language scores. In the MOCA subitem analysis, WMH patients had lower scores in executive function, naming, attention, language, abstraction, and orientation (p < 0.05). Furthermore, subgroup analysis of NPI showed a higher incidence of delusions, depression, and apathy in the WMH group (p < 0.05). According to the hierarchical analysis of mild, moderate and severe dementia groups, the hypertension, leukoencephalopathy, Hcy level, Fazekas total score, PWMH and DWMH scores in the severe dementia group were significantly higher than those in the mild and moderate dementia groups (p < 0.05). As the disease progresses, more and more patients show increased white matter hyperintensity. Conclusion: White matter lesions are closely correlated with cognitive decline and psychobehavioral symptoms in AD patients, and may be used as an indicator of disease progression. Priority should be given to early screening and prevention of WMH-related risk factors.

16.
Front Neurosci ; 18: 1467333, 2024.
Article in English | MEDLINE | ID: mdl-39416952

ABSTRACT

Microbes have been suspected to cause Alzheimer's disease since at least 1908, but this has generally remained unpopular in comparison to the amyloid hypothesis and the dominance of Aß and Tau. However, evidence has been accumulating to suggest that these earlier theories are but a manifestation of a common cause that can trigger and interact with all the major molecular players recognized in AD. Aß, Tau and ApoE, in particular appear to be molecules with normal homeostatic functions but also with alternative antimicrobial functions. Their alternative functions confer the non-immune specialized neuron with some innate intracellular defenses that appear to be re-appropriated from their normal functions in times of need. Indeed, signs of infection of the neurons by biofilm-forming microbial colonies, in synergy with herpes viruses, are evident from the clinical and preclinical studies we discuss. Furthermore, we attempt to provide a mechanistic understanding of the AD landscape by discussing the antimicrobial effect of Aß, Tau and ApoE and Lactoferrin in AD, and a possible mechanistic link with deficiency of vital copper-based systems. In particular, we focus on mitochondrial oxidative respiration via complex 4 and ceruloplasmin for iron homeostasis, and how this is similar and possibly central to neurodegenerative diseases in general. In the case of AD, we provide evidence for the microbial Alzheimer's disease (MAD) theory, namely that AD could in fact be caused by a long-term microbial exposure or even long-term infection of the neurons themselves that results in a costly prolonged antimicrobial response that disrupts copper-based systems that govern neurotransmission, iron homeostasis and respiration. Finally, we discuss potential treatment modalities based on this holistic understanding of AD that incorporates the many separate and seemingly conflicting theories. If the MAD theory is correct, then the reduction of microbial exposure through use of broad antimicrobial and anti-inflammatory treatments could potentially alleviate AD although this requires further clinical investigation.

17.
Alzheimers Dement ; 2024 Oct 17.
Article in English | MEDLINE | ID: mdl-39417393

ABSTRACT

INTRODUCTION: In amyloid-positive individuals, disease-related biomarker heterogeneity is understudied. METHODS: We used Subtype and Stage Inference (SuStaIn) to identify data-driven subtypes among cerebrospinal fluid (CSF) amyloid beta (1-42)-positive individuals from the Alzheimer's Disease Neuroimaging Initiative (ADNIGO/2 [n = 376]). Variables included: CSF phosphorylated tau (p-tau181), hippocampal and whole-brain volume, logical memory (LM), composite Trail Making Test score, and white matter hyperintensity (WMH) volumes. CSF amyloid-negative, apolipoprotein E ε4 non-carrier cognitively unimpaired controls (n = 86) were used to calculate z scores. RESULTS: One subtype (n = 145) had early LM changes, with later p-tau and WMH changes. A second subtype (n = 88) had early WMH changes, were older, and more hypertensive. A third subtype (n = 100) had early p-tau changes, and reflected typical Alzheimer's disease. Some amyloid positive (n = 43) individuals were similar to the amyloid-negative group. DISCUSSION: This work identified heterogeneity in individuals who are conventionally considered homogeneous, which is likely driven by co-pathologies including cerebrovascular disease. HIGHLIGHTS: Data-driven modeling identified marker heterogeneity in amyloid-positive individuals. Heterogeneity reflected Alzheimer's disease-like, vascular-like, and mixed pathology presentations. Some amyloid-positive individuals were more similar to amyloid-negative controls. Vascular pathology plays a key role in understanding heterogeneity in those on the amyloid pathway.

18.
Geriatr Nurs ; 60: 440-447, 2024 Oct 16.
Article in English | MEDLINE | ID: mdl-39418921

ABSTRACT

The main objective of the current study was to ascertain the efficacy of a newly developed online, video-based dementia training and certification program for hospital staff, the CARES® Dementia 5-Step Method for Hospitals™ Online Training and Certification Program. A parallel randomized waitlist control design was utilized. Participants (N = 272) completed online pre-evaluation measures. Forty-five days after completion of CARES® (treatment) or pre-evaluation measures (control), participants completed a post-evaluation online assessment. Analyses of variance found that participants in the treatment condition indicated greater and statistically significant (p < .001) increases in sense of competence, approaches to dementia, and patient care. The results implied that the CARES® Dementia 5-Step Method for Hospitals™ program could serve as a dynamic resource for hospitals nationwide to update training and share experiences, perspectives, and resources. The inherent scalability of the program regarding its acceptability, feasibility, and potential to incorporate seamlessly into routine workflows and staff training suggests high implementation potential.

19.
Immunity ; 2024 Oct 09.
Article in English | MEDLINE | ID: mdl-39419029

ABSTRACT

The seeded growth of pathogenic protein aggregates underlies the pathogenesis of Alzheimer's disease (AD), but how this pathological cascade is initiated is not fully understood. Sporadic AD is linked genetically to apolipoprotein E (APOE) and other genes expressed in microglia related to immune, lipid, and endocytic functions. We generated a transgenic knockin mouse expressing HaloTag-tagged APOE and optimized experimental protocols for the biochemical purification of APOE, which enabled us to identify fibrillary aggregates of APOE in mice with amyloid-ß (Aß) amyloidosis and in human AD brain autopsies. These APOE aggregates that stained positive for ß sheet-binding dyes triggered Aß amyloidosis within the endo-lysosomal system of microglia, in a process influenced by microglial lipid metabolism and the JAK/STAT signaling pathway. Taking these observations together, we propose a model for the onset of Aß amyloidosis in AD, suggesting that the endocytic uptake and aggregation of APOE by microglia can initiate Aß plaque formation.

20.
Transfus Med Rev ; 38(4): 150858, 2024 Sep 18.
Article in English | MEDLINE | ID: mdl-39413667

ABSTRACT

Cerebral amyloid angiopathy (CAA) is a progressive cerebrovascular and neurodegenerative disorder that is caused by the aberrant accumulation of soluble beta-amyloid isoforms in the small vessel walls of the cerebral and cerebellar cortices and the leptomeninges. Vascular beta-amyloid deposition increases vulnerability to intracerebral hemorrhage (ICH). Clinically, CAA can be the underlying cause of up to half of spontaneous lobar ICHs and can also present with convexity subarachnoid hemorrhage, transient focal neurologic episodes and progressive cognitive decline leading to dementia. The majority of CAA is sporadic, with increasing prevalence with age and often coexists with Alzheimer's Disease (AD). Genetic and iatrogenic etiologies are rare. Cases of CAA and AD have been linked to the use of cadaveric pituitary hormone and later life iatrogenic CAA has also been described following early-life neurosurgical procedures with cadaveric dura grafts. Together these data suggest a capacity of beta-amyloid transmissibility. A recent study found that in over 1 million transfusion recipients from donors who later developed (i) >1 ICH or (ii) one ICH event and dementia, had an elevated risk of developing future ICH. Considering prior reports of transfusion associated variant-Creutzfeldt Jakob Disease in humans and in vivo evidence in sheep, coupled with emerging data supporting beta-amyloid's prion-like properties, raises the question of whether CAA could be transmissible by blood transfusion. This would also have implications for screening, especially in an era of emerging plasma biomarkers of cerebral amyloidosis. Given the public health concerns raised by this biologically plausible question, there is a need for future studies with well-characterized definitions - and temporal ascertainment - of CAA exposure and outcomes to examine whether CAA is transfusion-transmissible, and, if so, with what frequency and timing of onset.

SELECTION OF CITATIONS
SEARCH DETAIL