Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 59
Filter
Add more filters








Publication year range
1.
ACS Sens ; 9(6): 3346-3356, 2024 Jun 28.
Article in English | MEDLINE | ID: mdl-38898684

ABSTRACT

Creating high-performance gas sensors for heptanal detection at room temperature demands the development of sensing materials that incorporate distinct spatial configurations, functional components, and active surfaces. In this study, we employed a straightforward method combining hydrothermal strategy with ultrasonic processing to produce mesoporous graphene quantum dots/bismuth antimonate (GQDs/BiSbO4) with nanorod cluster forms. The BiSbO4 was incorporated with appropriate contents of GQDs resulting in significantly improved attributes such as heightened sensitivity (59.6@30 ppm), a lower threshold for detection (356 ppb), and quicker period for response (40 s). A synergistic mechanism that leverages the inherent advantages of BiSbO4 was proposed, while its distinctive mesoporous hollow cubic structure, the presence of oxygen vacancies, and the catalytic enhancement provided by GQDs lead to a marked improvement in heptanal detection. This work introduces a straightforward and effective method for crafting sophisticated micro-nanostructures that optimize spatial design, functionality, and active mesoporous surfaces, showing great promise for heptanal sensing applications.


Subject(s)
Graphite , Nanotubes , Quantum Dots , Temperature , Nanotubes/chemistry , Quantum Dots/chemistry , Graphite/chemistry , Density Functional Theory , Antimony/chemistry
3.
J Dtsch Dermatol Ges ; 22(6): 763-773, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38769082

ABSTRACT

Mucocutaneous leishmaniasis is a severe infectious disease, predominantly endemic in Central and South America and is characterized by granulomatous, destructive mucosal lesions in the oral, nasal, and pharyngeal cavities. It is caused by protozoa of the genus Leishmania spp. transmitted to humans by sandflies. Mucocutaneous leishmaniasis occurs after untreated or inadequately treated cutaneous leishmaniasis and is more common in immunocompromised patients. The aim of this systematic review is to summarize all reported treatment options for mucocutaneous leishmaniasis. This review is based on all English, German, French, Spanish and Portuguese articles published in the databases "PubMed" and "Lilacs" from 1995 to 2020. Most of the medical literature is limited to case reports, small case series, retrospective studies, and a few randomized controlled trials. Various treatment options include pentavalent antimonates such as meglumine antimonate or sodium stibogluconate, amphotericin B (liposomal, deoxycholate, lipid complex, colloidal dispersion), miltefosine, and pentamidine. Other therapeutic options include itraconazole, fluconazole, ketoconazole, aminosidine sulfate, and azithromycin. The choice of drug depends primarily on its availability in the endemic area and the patient's comorbidities.


Subject(s)
Antiprotozoal Agents , Leishmaniasis, Mucocutaneous , Humans , Leishmaniasis, Mucocutaneous/drug therapy , Leishmaniasis, Mucocutaneous/diagnosis , Antiprotozoal Agents/therapeutic use
4.
Sci Total Environ ; 927: 172113, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38580110

ABSTRACT

Antimony (Sb) and sulfate are two common pollutants in Sb mine drainage and Sb-containing textile wastewater. In this paper, it was found that iron­carbon (Fe/C) enhanced Sb(V) removal from sulfate-rich wastewater by anaerobic granular sludge (AnGS). Sulfate inhibited Sb(V) removal (S + Sb, k = 0.101), while Fe/C alleviated the inhibition and increased Sb(V) removal rate by 2.3 times (Fe/C + S + Sb, k = 0.236). Fe/C could promote the removal of Sb(III), and Sb(III) content decreased significantly after 8 h. Meanwhile, Fe/C enhanced the removal of sulfate. The 3D-EEM spectrum of supernatant in Fe/C + S + Sb group (at 24 h) showed that Fe/C stimulated the production of soluble microbial products (SMP) in wastewater. SMP alleviated the inhibition of sulfate, promoting AnGS to reduce Sb(V). Sb(V) could be reduced to Sb(III) both by AnGS and sulfides produced from sulfate reduction. Further analysis of extracellular polymeric substances (EPS) and AnGS showed that Fe/C increased the adsorbed Sb(V) in EPS and the c-type cytochrome content in AnGS, which may be beneficial for Sb(V) removal. Sb(V) reduction in Fe/C + S + Sb group may be related to the genus Acinetobacter, while in Sb group, several bacteria may be involved in Sb(V) reduction, such as Acinetobacter, Pseudomonas and Corynebacterium. This study provided insights into Fe/C-enhanced Sb(V) removal from sulfate-rich wastewater.


Subject(s)
Antimony , Iron , Sewage , Sulfates , Waste Disposal, Fluid , Wastewater , Water Pollutants, Chemical , Waste Disposal, Fluid/methods , Wastewater/chemistry , Water Pollutants, Chemical/analysis , Antimony/analysis , Anaerobiosis , Carbon
5.
J Environ Manage ; 356: 120694, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38522271

ABSTRACT

Ramie (Boehmeria nivea L.) is a promising phytoremediation candidate due to its high tolerance and enrichment capacity for antimony (Sb). However, challenges arise as Sb accumulated mainly in roots, complicating soil extraction. Under severe Sb contamination, the growth of ramie may be inhibited. Strategies are needed to enhance Sb accumulation in ramie's aboveground parts and improve tolerance to Sb stress. Considering the beneficial effects of selenium (Se) on plant growth and enhancing resistance to abiotic stresses, this study aimed to investigate the potential use of Se in enhancing Sb uptake by ramie. We investigated the effects of Se (0.5, 1, 2, 5, or 10 µM) on ramie growth, Sb uptake and speciation, antioxidant responses, and ionomic profiling in ramie under 10 mg/L of SbIII or antimonate (SbV) stresses. Results revealed that the addition of 0.5 µM Se significantly increased shoot biomass by 75.73% under SbIII stress but showed minimal effects on shoot and root length in both SbIII and SbV treatments. Under SbIII stress, 2 µM Se significantly enhanced Sb concentrations by 48.42% in roots and 62.88% in leaves. In the case of SbV exposure, 10 µM Se increased Sb content in roots by 42.57%, and 1 µM Se led to a 91.74% increase in leaves. The speciation analysis suggested that Se promoted the oxidation of SbIII to less toxic SbV to mitigate Sb toxicity. Additionally, Se addition effectively minimized the excess reactive oxygen species produced by Sb exposure, with the lowest malondialdehyde (MDA) content at 0.5 µM Se under SbIII and 2 µM Se under SbV, by activating antioxidant enzymes including superoxide dismutase, catalase, peroxidase, and glutathione peroxidase. Ionomic analysis revealed that Se helped in maintaining the homeostasis of certain nutrient elements, including magnesium, potassium (K), calcium (Ca), iron (Fe), and copper (Cu) in the SbIII-treated roots and K and manganese (Mg) in the SbV-treated roots. The results suggest that low concentrations of Se can be employed to enhance the phytoremediation of Sb-contaminated soils using ramie.


Subject(s)
Boehmeria , Selenium , Antioxidants/pharmacology , Antimony , Selenium/pharmacology , Boehmeria/physiology , Plant Roots/chemistry
6.
Appl Environ Microbiol ; 90(3): e0172923, 2024 Mar 20.
Article in English | MEDLINE | ID: mdl-38411083

ABSTRACT

Geobacter sp. strain SVR uses antimonate [Sb(V)] as a terminal electron acceptor for anaerobic respiration. Here, we visualized a possible key enzyme, periplasmic Sb(V) reductase (Anr), via active staining and non-denaturing gel electrophoresis. Liquid chromatography-tandem mass spectrometry analysis revealed that a novel dimethyl sulfoxide (DMSO) reductase family protein, WP_173201954.1, is involved in Anr. This protein was closely related with AnrA, a protein suggested to be the catalytic subunit of a respiratory Sb(V) reductase in Desulfuribacillus stibiiarsenatis. The anr genes of strain SVR (anrXSRBAD) formed an operon-like structure, and their transcription was upregulated under Sb(V)-respiring conditions. The expression of anrA gene was induced by more than 1 µM of antimonite [Sb(III)]; however, arsenite [As(III)] did not induce the expression of anrA gene. Tandem mass tag-based proteomic analysis revealed that, in addition to Anr proteins, proteins in the following categories were upregulated under Sb(V)-respiring conditions: (i) Sb(III) efflux systems such as Ant and Ars; (ii) antioxidizing proteins such as ferritin, rubredoxin, and thioredoxin; (iii) protein quality control systems such as HspA, HslO, and DnaK; and (iv) DNA repair proteins such as UspA and UvrB. These results suggest that strain SVR copes with antimony stress by modulating pleiotropic processes to resist and actively metabolize antimony. To the best of our knowledge, this is the first report to demonstrate the involvement of AnrA in Sb(V) respiration at the protein level. Furthermore, this is the first example to show high expression of the Ant system proteins in the Sb(V)-respiring bacterium.IMPORTANCEAntimony (Sb) exists mainly as antimonite [Sb(III)] or antimonate [Sb(V)] in the environment, and Sb(III) is more toxic than Sb(V). Recently, microbial involvement in Sb redox reactions has received attention. Although more than 90 Sb(III)-oxidizing bacteria have been reported, information on Sb(V)-reducing bacteria is limited. Especially, the enzyme involved in dissimilatory Sb(V) reduction, or Sb(V) respiration, is unclear, despite this pathway being very important for the circulation of Sb in nature. In this study, we demonstrated that the Sb(V) reductase (Anr) of an Sb(V)-respiring bacterium (Geobacter sp. SVR) is a novel member of the dimethyl sulfoxide (DMSO) reductase family. In addition, we found that strain SVR copes with Sb stress by modulating pleiotropic processes, including the Ant and Ars systems, and upregulating the antioxidant and quality control protein levels. Considering the abundance and diversity of putative anr genes in the environment, Anr may play a significant role in global Sb cycling in both marine and terrestrial environments.


Subject(s)
Antimony , Geobacter , Antimony/pharmacology , Geobacter/genetics , Geobacter/metabolism , Dimethyl Sulfoxide/metabolism , Proteomics , Bacteria/genetics , Oxidoreductases/genetics , Oxidoreductases/metabolism , Oxidation-Reduction , Respiration
7.
Sci Total Environ ; 898: 165533, 2023 Nov 10.
Article in English | MEDLINE | ID: mdl-37453703

ABSTRACT

Jarosite is the host mineral of Sb(V) and As(V) in mining environments. However, the repartitioning of Sb and As during its transformation is poorly understood. Additionally, the mutual effect between the redistribution behavior of As and Sb during jarosite conversion remains unclear. Here, we investigated the transformation of Sb(V)-, As(V)- and Sb(V)-As(V)-jarosite at pH 5.5 under aerobic and anaerobic conditions without a reductant. The results indicated that co-precipitated Sb(V) promotes jarosite dissolution, and the final products were mainly goethite and hematite. In contrast, the co-precipitated As(V) retarded jarosite dissolution and altered the transformation pathway, mainly forming lepidocrocite, which might be attributed to the formation of As-Fe complexes on the jarosite surface. The inhibiting or promoting effect increased with the increase in co-precipitated As or Sb concentration. In the treatment with Sb(V)-As(V)-jarosite, the inhibition effect of co-precipitated As(V) on mineral dissolution was predominant, but the end-products were mainly goethite and hematite. Compared with the aerobic system, the dissolution and transformation of jarosite in treatments in the anaerobic system occurred faster, although without a reductant, which was possibly associated with the reduced CO2 content in the reaction solutions after degassing. In all treatments, the release of Sb(aq) and As(aq) into the solution was negligible during jarosite transformation. The transformation processes drove As into the surface-bound exchangeable and poorly crystalline phases, while Sb was typically redistributed in the poorly crystalline phase. During the transformation of Sb(V)-As(V)-jarosite, the co-existence of As significantly increased the proportion of Sb distributed on the solid surface and in the poorly crystalline phase. These findings are valuable for predicting the long-term fate of Sb and As in mining environments.

8.
J Hazard Mater ; 455: 131607, 2023 08 05.
Article in English | MEDLINE | ID: mdl-37182466

ABSTRACT

The behaviors of antimony (Sb) and arsenic (As) in plants are different, though they are chemical analogs. Here, we examined the Sb uptake and speciation in two As-hyperaccumulators P. vittata and P. cretica, which were exposed to 0.5 or 5 mg L-1 antimonate (SbV) or antimonite (SbIII) under hydroponics for 7 d. Both plants grew better under Sb exposure, especially for P. cretica. The biomass of P. cretica roots increased by 29-46% after exposing to SbV, possibly due to increased S. Further, the Sb content in P. vittata was 17-93% greater than P. cretica, with 2-3 times more SbIII than SbV in both plants and > 92% Sb being concentrated in the roots, showing limited translocation. Under SbV exposure, SbV was dominant in P. vittata roots at 86-94%, while SbIII was predominant in P. cretica roots at 36-95%. P. cretica's stronger reducing ability than P. vittata may be due to arsenate reductases HAC1 and ACR2, which were upregulated in both plants. In short, while effective in Sb accumulation, it is mostly concentrated in the roots for both plants. The differences in their accumulation and speciation may help to better understand Sb behaviors in other plants.


Subject(s)
Arsenic , Pteris , Soil Pollutants , Arsenic/toxicity , Arsenic/analysis , Antimony , Soil Pollutants/analysis , Plant Roots/chemistry , Biodegradation, Environmental
9.
Environ Sci Technol ; 57(12): 4813-4820, 2023 03 28.
Article in English | MEDLINE | ID: mdl-36929871

ABSTRACT

Jarosite, a common mineral in acidic sulfur-rich environments, can strongly sorb both As(V) and Sb(V). However, little is known regarding the mechanisms that control simultaneous co-sorption of As(V) and Sb(V) to jarosite. We investigated the mechanisms controlling As(V) and Sb(V) sorption to jarosite at pH 3 (in dual and single metalloid treatments). Jarosite was found to sorb Sb(V) to a greater extent than As(V) in both single and dual metalloid treatments. Relative to single metalloid treatments, the dual presence of both As(V) and Sb(V) decreased the sorption of both metalloids by almost 50%. Antimony K-edge EXAFS spectroscopy revealed that surface precipitation of an Sb(V) oxide species was the predominant sorption mechanism for Sb(V). In contrast, As K-edge EXAFS spectroscopy showed that As(V) sorption occurred via bidentate corner-sharing complexes on the jarosite surface when Sb(V) was absent or present at low loadings or by formation of similar complexes on the Sb(V) oxide surface precipitate when Sb(V) was present at high loadings. These results point to a novel mechanism by which Sb(V) impacts the co-sorption of As(V). Overall, these findings highlight a strong contrast in the sorption mechanisms of Sb(V) versus As(V) to jarosite under acidic environmental conditions.


Subject(s)
Arsenic , Arsenic/chemistry , Antimony/chemistry , X-Rays , Adsorption , Oxides , X-Ray Absorption Spectroscopy
10.
Appl Radiat Isot ; 192: 110542, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36462302

ABSTRACT

Using a batch equilibrium technique, the sorption of 137Cs and 153Gd onto synthesized zirconium silico antimonate (ZrSiSb) sorbent was examined. The new sorbent was prepared by precipitation technique and characterized by diverse analytical tools. The influence of shaking time, pH, metal ion concentrations, temperature, and a real sample was carried out. The data indicate that ZrSiSb has a very fast equilibrium time (30 min). The distribution coefficient values as a function of pH have sequence order; Cs(I) > Gd(III). The reaction kinetic obeys the pseudo-2nd-order model. The saturation capacity is 69.8 and 27.2 mg/g for Cs(I) and Gd(III), respectively. Equilibrium data were analyzed by various sorption isotherm models. Desorption studies showed that the best eluents for complete recovery (about 99%) of the selected ions are KCl for Cs(I) and CaCl2 for Gd(III). The sorption effectiveness of the new ZrSiSb to remove 137Cs and 153Gd from real low-level radioactive waste was examined. The results obtained showed that the prepared new composite can be applied as a hoped sorbent material to get rid of these radionuclides from different wastewaters.


Subject(s)
Gadolinium , Zirconium , Adsorption , Cesium , Ions , Hydrogen-Ion Concentration , Kinetics , Solutions
11.
Head Neck Pathol ; 17(2): 540-545, 2023 Jun.
Article in English | MEDLINE | ID: mdl-36346574

ABSTRACT

BACKGROUND: Leishmaniasis is a tropical disease caused by protozoan parasites of the genus Leishmania. Mucosal leishmaniasis has been described as secondary to the cutaneous form; however, isolated mucosal involvement can also occur. Specifically, mucosal leishmaniasis of the lip is poorly described and its diagnosis challenges clinicians. METHODS: We herein report a case of mucosal leishmaniasis affecting the lower lip without cutaneous involvement in a 20-year-old Venezuelan man. The patient had no relevant past medical history. Clinically, a mass-like lesion with ulcerations and crusts was observed. RESULTS: Microscopically, the lesion was composed of granulomatous inflammation along with macrophages containing intracytoplasmic inclusions similar to round-shaped Leishmania. The species Leishmania (Viannia) braziliensis was confirmed. Treatment with meglumine antimonate was effective. The lesion healed satisfactorily, and no side effects or recurrences were observed. CONCLUSION: Clinicians should be aware of isolated forms of mucosal leishmaniasis of the lip, even in cases where the cutaneous lesion is undetected or clinically manifests as self-limiting. Knowing the endemic areas in the scenario of the dynamics of the ecoepidemiology of leishmaniasis is also essential for surveillance and counselling of the population.


Subject(s)
Leishmania braziliensis , Leishmaniasis, Mucocutaneous , Male , Humans , Young Adult , Adult , Lip/parasitology , Lip/pathology , Leishmaniasis, Mucocutaneous/drug therapy , Leishmaniasis, Mucocutaneous/diagnosis , Meglumine Antimoniate/therapeutic use , Skin/parasitology , Skin/pathology
12.
Environ Sci Technol ; 56(24): 17776-17784, 2022 12 20.
Article in English | MEDLINE | ID: mdl-36445713

ABSTRACT

This study examines incorporation of Sb(V) into schwertmannite─an Fe(III) oxyhydroxysulfate mineral that can be an important Sb host phase in acidic environments. Schwertmannite was synthesized from solutions containing a range of Sb(V)/Fe(III) ratios, and the resulting solids were investigated using geochemical analysis, powder X-ray diffraction (XRD), dissolution kinetic experiments, and extended X-ray absorption fine structure (EXAFS) spectroscopy. Shell-fitting and wavelet transform analyses of Sb K-edge EXAFS data, together with congruent Sb and Fe release during schwertmannite dissolution, indicate that schwertmannite incorporates Sb(V) via heterovalent substitution for Fe(III). Elemental analysis combined with XRD and Fe K-edge EXAFS spectroscopy shows that schwertmannite can incorporate Sb(V) via this mechanism at up to about 8 mol % substitution when formed from solutions having Sb/Fe ratios ≤0.04 (higher ratios inhibit schwertmannite formation). Incorporation of Sb(V) into schwertmannite involves formation of edge and double-corner sharing linkages between SbVO6 and FeIII(O,OH)6 octahedra which strongly stabilize schwertmannite against dissolution. This implies that Sb(V)-coprecipitated schwertmannite may represent a potential long-term sink for Sb in acidic environments.


Subject(s)
Ferric Compounds , Iron Compounds , Ferric Compounds/chemistry , Antimony/chemistry , Iron Compounds/chemistry , Iron Compounds/metabolism , Minerals/chemistry , Adsorption , Oxidation-Reduction
13.
Cureus ; 14(10): e30586, 2022 Oct.
Article in English | MEDLINE | ID: mdl-36420241

ABSTRACT

Mucosal leishmaniasis (ML) is a rare metastatic complication of Leishmania infection. It has a high potential for destructive and disfiguring complications, namely destruction of nasal architecture and airway compromise. ML is difficult to treat for a variety of reasons, including variable antimicrobial resistance rates between species, as well as between endemic areas geographically. There are several treatment options available, which are discussed here. In the majority of cases, a nuanced approach to treatment is required based on speciation and geography. Importantly, the treatment of ML requires a multi-disciplinary approach. We present a patient with a history of cutaneous leishmaniasis who presented with signs and symptoms concerning ML, but due to the COVID-19 global pandemic diagnostic testing was not possible, was treated empirically under clinical suspicion of ML with good results.

14.
Materials (Basel) ; 15(19)2022 Sep 21.
Article in English | MEDLINE | ID: mdl-36233887

ABSTRACT

FeSbO4 powder was prepared using the solid-state reaction method in this work. Afterward, the dense and porous ceramics were obtained by sintering the pressed powder calcined at temperatures of 900 and 1000 °C for 4 h. Rietveld profile analysis of the X-ray powder diffraction data showed that FeSbO4 adopts the trirutile-type structure (space group P42/mnm, with a ≅ 4.63 Å and c ≅ 9.23 Å). SEM images showed that the powder calcined at 900 °C after being sintered at 1200 °C resulted in ceramics of higher crystallinity, larger grains, and consequently, low porosity. The dielectric properties were measured in the frequency range of 10−1 Hz−1 MHz as a function of temperature (25−250 °C). The real (σ') and imaginary (σ″) parts of the complex conductivity increase with rising annealing temperature for both samples. The real conductivity in the AC region for 𝑓 = 100 kHz was 1.59×10−6 S·cm−1 and 7.04×10−7 S·cm−1 for the ceramic samples obtained from the powder calcined at 900 (C-900) and 1000 °C (C-1000), respectively. Furthermore, the dielectric constants (k') measured at room temperature and f=100 kHz were 13.77 (C-900) and 6.27 (C-1000), while the activation energies of the grain region were Ea = 0.53 eV and Ea = 0.49 eV, respectively. Similar activation energy (Ea = 0.52 eV and 0.49 eV) was also obtained by the brick-layer model and confirmed by the adjustment of activation energy by DC measurements which indicated an absence of the porosity influence on the parameter. Additionally, loss factor values were obtained to be equal to 3.8 (C-900) and 5.99 (C-1000) for measurements performed at 100 Hz, suggesting a contribution of the conductivity originated from the combination or accommodation of the pores in the grain boundary region. Our results prove that the microstructural factors that play a critical role in the electrical and dielectric properties are the average grain size and the porosity interspersed with the grain boundary region.

15.
Environ Sci Technol ; 56(20): 14808-14816, 2022 10 18.
Article in English | MEDLINE | ID: mdl-36201672

ABSTRACT

A hydrogen-based membrane biofilm reactor (H2-MBfR) was operated to investigate the bioreduction of antimonate [Sb(V)] in terms of Sb(V) removal, the fate of Sb, and the pathways of reduction metabolism. The MBfR achieved up to 80% Sb(V) removal and an Sb(V) removal flux of 0.55 g/m2·day. Sb(V) was reduced to Sb(III), which mainly formed Sb2O3 precipitates in the biofilm matrix, although some Sb(III) was retained intracellularly. High Sb(V) loading caused stress that deteriorated performance that was not recovered when the high Sb(V) loading was removed. The biofilm community consisted of DSbRB (dissimilatory Sb-reduction bacteria), SbRB (Sb-resistant bacteria), and DIRB (dissimilatory iron-reducing bacteria). Dissimilatory antimonate reduction, mediated by the respiratory arsenate reductase ArrAB, was the main reduction route, but respiratory reduction coexisted with cytoplasmic Sb(V)-reduction mediated by arsenate reductase ArsC. Increasing Sb(V) loading caused stress that led to increases in the expression of arsC gene and intracellular accumulation of Sb(III). By illuminating the roles of the dissimilatory and cytoplasmic Sb(V) reduction mechanism in the biofilms of the H2-MBfR, this study reveals that the Sb(V) loading should be controlled to avoid stress that deteriorates Sb(V) reduction.


Subject(s)
Arsenate Reductases , Hydrogen , Bacteria/genetics , Biofilms , Bioreactors/microbiology , Iron
16.
Chemosphere ; 308(Pt 2): 136263, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36055583

ABSTRACT

Hydrogen autotrophic bioreduction of antimonate (Sb(V)) to antimonite (Sb(III)) is an alternative approach for removing antimony (Sb) from water. This study investigated Sb(V) reduction kinetics and the effects of various parameters on the Sb(V) removal performance in a hydrogen autotrophic reaction system (HARS). Sb(V) reduction in the HARS was well fitted to the Michaelis-Menten model, showing a positive correlation between the reaction rate and biomass. The maximum specific substrate removal rates were 0.29-4.86 and 6.82-15.87 mg Sb(V)/(g·VSS·h) at initial Sb(V) concentrations of 500 µg/L and 10 mg/L, respectively. Coexisting nitrate significantly inhibited Sb(V) reduction, and the inhibition intensified with increasing nitrate concentration. However, coexisting sulfate had a positive effect on Sb(V) reduction, and the sulfate effectively enhanced total antimony (TSb) removal performance by generating sulfide from sulfate reduction. Illumina high-throughput sequencing technology was used to determine the changes in microbial community structure during different periods in the HARS, revealing the effects of co-existing ions on the dominant Sb(V) reducing bacteria. In the HARS, Longilinea and Terrimonas were the dominant genera in the presence of nitrate, and Longilinea was the dominant genus in the presence of sulfate, at initial Sb(V) concentration of 500 µg/L. When the concentration of Sb(V) was 10 mg/L, Longilinea and Thauera were the dominant genus in the HARS for treating water co-polluted with nitrate and sulfate, respectively. These results provide a theoretical basis of the application of HARS for the bio-remediation of Sb(V) contaminated water.


Subject(s)
Antimony , Microbiota , Antimony/chemistry , Antimony/pharmacology , Hydrogen , Nitrates , Sulfates , Sulfides , Water
17.
Materials (Basel) ; 15(16)2022 Aug 19.
Article in English | MEDLINE | ID: mdl-36013874

ABSTRACT

The presented study evaluated a set of beads primarily originating from the Hallstatt period (800-400 BC) and uncovered in the region of Bohemia. Utilizing an SEM/EDS method, the chemical composition of the glass samples was determined and their homogeneity measured. Owing to the presence of opaque glass, Raman spectroscopy was applied, enabling the definition of the phases causing the opacity of the glass, as well as its coloring. This article discusses opacifying agents, including the possible ways in which they entered the artefacts. In addition, the techniques used to produce the glass beads are described, for both the single-colored beads, as well as the so-called eye beads that are present in a significant amount in the set. The majority of the beads examined were found to be made of the LMG glass type (low-magnesium soda-lime glass). An unexpected result was the identification of glass with a high content of K2O not corresponding to the mixed alkali type (LMHK), which is frequently discussed in the literature. The glass type in question most likely does not come from the traditional area of glass production: the eastern Mediterranean territory.

18.
J Hazard Mater ; 437: 129433, 2022 09 05.
Article in English | MEDLINE | ID: mdl-35897190

ABSTRACT

Antimony (Sb) is a toxic metalloid, and excess Sb causes damage to the plant photosynthetic system. However, the underlying mechanisms of Sb toxicity in the plant photosynthetic system are not clear. Hydroponic culture experiments were conducted to illustrate the toxicity differences of antimonite [Sb(III)] and antimonate [Sb(V)] to the photosynthetic system in a rice plant (Yangdao No. 6). The results showed that Sb(III) showed a higher toxicity than Sb(V), judging from (1) lower shoot and root biomass, leaf water moisture content, water use efficiency, stomatal conductance, net photosynthetic rate, and transpiration rate; (2) higher water vapor deficit, soluble sugar content, starch content, and oligosaccharide content (sucrose, stachyose, and 1-kestose). To further analyze the direction of the photosynthetic products, we conducted a metabonomic analysis. More glycosyls were allocated to the synthesis pathways of oligosaccharides (sucrose, stachyose, and 1-kestose), anthocyanins, salicylic acid, flavones, flavonols, and lignin under Sb stress to quench excess oxygen free radicals (ROS), strengthen the cell wall structure, rebalance the cell membrane, and/or regulate cell permeability. This study provides a complete mechanism to elucidate the toxicity differences of Sb(III) and Sb(V) by exploring their effects on photosynthesis, saccharide synthesis, and the subsequent flow directions of glycosyls.


Subject(s)
Antimony , Oryza , Anthocyanins , Antimony/metabolism , Antimony/toxicity , Carbon/metabolism , Electrons , Metabolome , Oryza/metabolism , Photosynthesis , Plant Leaves/metabolism , Sucrose
19.
Environ Pollut ; 308: 119653, 2022 Sep 01.
Article in English | MEDLINE | ID: mdl-35724945

ABSTRACT

Antimony (Sb) and arsenic (As) are chemical analogs, but their behaviors in plants are different. To investigate the Sb uptake, translocation and speciation in As-hyperaccumulator P. cretica, a hydroponic experiment was conducted. In this study, P. cretica was exposed to 0.2-strength Hoagland nutrient solution, which contained 0.5 or 5 mg/L antimonite (SbIII) or antimonate (SbV). After 14 d exposure, P. cretica took up 1.4-2.8 times more SbIII than SbV. Since P. cretica was unable to translocate Sb, its roots accumulated >97% Sb with the highest at 7965 mg/kg. In both SbIII and SbV treatments, SbIII was the predominant species in P. cretica, with 90-100% and 46-100% SbIII in the roots. As the first barrier against Sb to enter plant cells, more Sb was accumulated in cell wall than cytosol or organelles. The results suggest that P. cretica may detoxify Sb by reducing SbV to SbIII and immobilizing it in root cell walls. Besides, the presence of SbIII significantly reduced the concentrations of dissolved organic C including organic acids in P. cretica root exudates. Further, increasing Sb levels promoted P accumulation in the plant, especially in the fronds, which may help P. cretica growth. The information from this study shed light on metabolic transformation of Sb in As-hyperaccumulators P. cretica, which helps to better understand Sb uptake and detoxification by plants.


Subject(s)
Arsenic , Pteris , Soil Pollutants , Antimony/analysis , Arsenic/analysis , Biodegradation, Environmental , Plant Roots/metabolism , Pteris/metabolism , Soil Pollutants/analysis
20.
Sci Total Environ ; 838(Pt 3): 156217, 2022 Sep 10.
Article in English | MEDLINE | ID: mdl-35623523

ABSTRACT

Antimony (Sb) is a typical pollutant in sulfate-rich industrial wastewater. This study investigated the Sb removal efficiency in sulfate-rich water by anaerobic granular sludge (AnGS) and the stimulation of amended anthraquinone-2-sulfonate (AQS). Results showed that 89.0% of 5 mg/L Sb(V) was reduced by AnGS within 24 h, along with the observed first accumulation (up to 552.2 µg/L) and then precipitation of Sb(Ш); coexistence of 2 g/L sulfate inhibited the removal of Sb(V) by 71.4% within 24 h, along with gradual accumulation of Sb(Ш) by 3257.4 µg/L, indicating the potential competition of adsorption sites and electron donors between Sb(V) and sulfate. Amendment of 31 mg/L AQS successfully removed the inhibition from sulfate, contributing to 99.5% Sb(V) removal and minimum Sb(Ш) accumulation in Sb(V) + sulfate+AQS group. Further test results suggested that Sb(V) removal by AnGS was mainly through dissimilatory reduction instead of bio-sorption, while Sb(Ш) removal mainly relied on instant bio-sorption by AnGS followed by precipitation in the form of Sb2O3 and Sb2S3. Extracellular Polymeric Substances (EPS) characterization showed that AQS promoted the accumulation of Sb(V) and Sb(Ш) in EPS. High-throughput sequencing analysis showed the enrichment of sulfate-reducing bacteria (SRB) in Sb(V) + sulfate group and suppressed SRB growth in Sb(V) + sulfate+AQS group.


Subject(s)
Sewage , Wastewater , Anaerobiosis , Quinones , Sulfates , Sulfur Oxides
SELECTION OF CITATIONS
SEARCH DETAIL