Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 673
Filter
1.
Int J Biol Macromol ; 279(Pt 3): 135308, 2024 Sep 06.
Article in English | MEDLINE | ID: mdl-39244134

ABSTRACT

The Neuroblastoma RAS (NRAS) oncogene homologue plays crucial roles in diverse cellular processes such as cell proliferation, survival, and differentiation. Several strategies have been developed to inhibit NRAS or its downstream effectors; however, there is no effective drug available to treat NRAS-driven cancers and thus new approaches are needed to be established. The mRNA sequence expressing NRAS containing several guanine(G)-rich regions may form quadruplex structures (G4s) and regulate NRAS translation. Therefore, targeting NRAS mRNA G4s to repress NRAS expression at translational level with ligands may be a feasible strategy against NRAS-driven cancers but it is underexplored. We reported herein a NRAS mRNA G4-targeting ligand, B3C, specifically localized in cytoplasm in HeLa cells. It effectively downregulates NRAS proteins, reactivates the DNA damage response (DDR), causes cell cycle arrest in G2/M phase, and induces apoptosis and senescence. Moreover, combination therapy with NARS mRNA G4-targeting ligands and clinical PI3K inhibitors for cancer cells inhibition treatment is unexplored, and we demonstrated that B3C combining with PI3Ki (pictilisib (GDC-0941)) showed potent antiproliferation activity against HeLa cells (IC50 = 1.03 µM (combined with 10 µM PI3Ki) and 0.42 µM (combined with 20 µM PI3Ki)) and exhibited strong synergistic effects in inhibiting cell proliferation. This study provides new insights into drug discovery against RAS-driven cancers using this conceptually new combination therapy strategy.

2.
Chemistry ; : e202402483, 2024 Sep 24.
Article in English | MEDLINE | ID: mdl-39316423

ABSTRACT

Salinomycin, a naturally occurring polyether ionophore antibiotic isolated from Streptomyces albus, has been demonstrated potent cytotoxic activity against a variety of cancer cell lines. In particular, it exhibits selective targeting of cancer stem cells. However, systemic toxicity, drug resistance and low bioavailability of the drug significantly limit its potential applications. In this study, the C20-epi-isothiocyanate of salinomycin was designed and synthesized, and then reacted with amines as a versatile synthon to assemble a series of salinomycin thiourea derivatives, which improved the druggability of salinomycin. The antiproliferative activities of the compounds were evaluated in vitro against A549, HepG2, Hela, 4T1, and MCF-7 cancer cell lines using the CCK-8 assay. The pharmacological results showed that some salinomycin thiourea derivatives exhibited excellent inhibitory activity against at least one of the tested tumor cells and high selectivity. Further mechanistic studies showed that compound 9f, containing a 3,5-difluorobenzyl moiety, could directly induce apoptosis, probably by increasing caspase-9 protein expression and cell cycle arrest in G1 phase in a concentration dependent manner.

3.
Antioxidants (Basel) ; 13(8)2024 Aug 07.
Article in English | MEDLINE | ID: mdl-39199202

ABSTRACT

Pitaya flower, a medicinal and edible plant commonly used in tropical and subtropical regions, was the focus of this study, which compared the effects of hot-air drying (HAD) and vacuum drying (VD) on phytochemical profiles and biological activities of its four parts: calyx, petals, stamens, and pistils. Both drying methods significantly increased the total phenolic content (TPC) of pitaya flowers, with values ranging from 1.86 to 3.24 times higher than those of fresh samples. Twelve flavonoid compounds were identified in pitaya flowers, with the glycoside derivatives of three flavonols (kaempferol, isorhamnetin, and quercetin) being the most abundant. VD resulted in 1.15 times higher total flavonoid glycoside content than HAD, whereas in petals, HAD yielded a total flavonoid glycoside content 1.21 times higher than VD. Both HAD and VD effectively increased the antioxidant capacities of pitaya flowers, though the difference between the two methods was not significant. Additionally, both drying methods enhanced the antiproliferative activity of pitaya flowers, with HAD showing a more significant effect than VD. The present study emphasized the efficacy of drying methods for enhancing flavonoids in pitaya flowers and provided insights for functional products' innovation with different parts of pitaya flowers.

4.
Food Chem X ; 23: 101625, 2024 Oct 30.
Article in English | MEDLINE | ID: mdl-39100251

ABSTRACT

Cherry kernels are a by-product of cherries that are usually discarded, leading to waste and pollution. In this study, the chemical composition of 21 batches of cherry kernels from two different cherry species was analyzed using untargeted metabolomics. The in vitro antioxidant activity, cellular antioxidant activity, and antiproliferative activity of these kernel extracts were also determined, and a correlation analysis was conducted between differential compounds and biological activity. A total of 49 differential compounds were screened. The kernels of Prunus tomentosa were found to have significantly higher total phenol, total flavonoid content, and biological activity than those of Prunus pseudocerasus (P < 0.05). Correlation analysis showed that flavonoids had the greatest contribution to biological activity. The study suggests that both species of cherry kernel, particularly Prunus tomentosa, could be a potential source of bioactive compounds that could be used in the pharmaceutical, cosmetic, and food industries.

5.
Nutr Rev ; 2024 Aug 24.
Article in English | MEDLINE | ID: mdl-39181121

ABSTRACT

Colorectal cancer (CRC) is a growing concern all over the world. There has been a concerted effort to identify natural bioactive compounds that can be used to prevent or overcome this condition. Tocotrienols (T3s) are a naturally occurring form of vitamin E known for various therapeutic effects, such as anticancer, antioxidant, neuroprotective, and anti-inflammatory activities. The literature evidence suggests that two T3 analogues, ie, gamma (γ)- and delta (δ)-T3, can modulate cancers via several cancer-related signaling pathways. The aim of this review was to compile and analyze the existing literature on the diverse anticancer mechanisms of γT3 and δT3 exhibited in CRC cells, to showcase the anticancer potential of T3s. Medline was searched for research articles on anticancer effects of γT3 and δT3 in CRC published in the past 2 decades. A total of 38 articles (26 cell-based, 9 animal studies, 2 randomized clinical trials, and 1 scoping review) that report anticancer effects of γT3 and δT3 in CRC were identified. The findings reported in those articles indicate that γT3 and δT3 inhibit the proliferation of CRC cells, induce cell cycle arrest and apoptosis, suppress metastasis, and produce synergistic anticancer effects when combined with well-established anticancer agents. There is preliminary evidence that shows that T3s affect telomerase functions and support anticancer immune responses. γT3 and δT3 have the potential for development as anticancer agents.

6.
Future Med Chem ; 16(14): 1379-1393, 2024.
Article in English | MEDLINE | ID: mdl-39190474

ABSTRACT

Aim: This study aimed to investigate the in vitro antitumor activity of new series of 2-thiohydanotin derivatives (7 and 9) against two cancer cell lines.Materials & methods: A new series of 2-thioxoimidazolidine derivatives (3-9) were synthesized and investigated for its structure through spectral analysis and also tested against (HepG-2) and (HCT-116) cell line.Results: Among the synthesized compounds, compound 7 halted liver cancer cells at the G0/G1 phase and triggered apoptosis of liver cancer. Contrarily, compound 9 caused colon cancer cells to be arrested at the S phase and trigger apoptosis. Also, they had a good inhibitory effect on (Nrf2).Conclusion: Both compounds had attractive lead molecules for the creation of colon and liver cancer medications.


[Box: see text].


Subject(s)
Antineoplastic Agents , Apoptosis , Drug Screening Assays, Antitumor , Thiones , Humans , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/chemical synthesis , Apoptosis/drug effects , Structure-Activity Relationship , Thiones/chemistry , Thiones/pharmacology , Thiones/chemical synthesis , Cell Proliferation/drug effects , Molecular Structure , Hep G2 Cells , Imidazolidines/chemistry , Imidazolidines/pharmacology , Imidazolidines/chemical synthesis , HCT116 Cells , NF-E2-Related Factor 2/metabolism , NF-E2-Related Factor 2/antagonists & inhibitors , Cell Line, Tumor , Dose-Response Relationship, Drug
7.
Bioorg Chem ; 151: 107661, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39067422

ABSTRACT

SHP2 (Src homology-2-containing protein tyrosine phosphatase 2) plays an important role in cell proliferation, survival, migration by affecting RAS-ERK, PI3K-AKT, JAK-STAT signaling pathways and so on. Overexpression or gene mutation of SHP2 is closely linked with a variety of cancers, making it a potential therapeutic target for cancer disease. In this paper, 30 target compounds bearing pyrido[1,2-a]pyrimidin-4-one core were synthesized via two-round design strategy by means of scaffold hopping protocol. It was evaluated the in vitro enzymatic inhibition and cell antiproliferation assay of these targets. 13a, designed in the first round, presented relatively good inhibitory activity, but its molecular rigidity might limit further improvement by hindering the formation of the desired "bidentate ligand", as revealed by molecular docking studies. In our second-round design, S atom as a linker was inserted into the core and the 7-aryl group to enhance the flexibility of the structure. The screening result revealed that 14i could exhibit high enzymatic activity against full-length SHP2 (IC50 = 0.104 µM), while showing low inhibitory effect on SHP2-PTP (IC50 > 50 µM). 14i also demonstrated high antiproliferative activity against the Kyse-520 cells (IC50 = 1.06 µM) with low toxicity against the human brain microvascular endothelial cells HBMEC (IC50 = 30.75 µM). 14i also displayed stronger inhibitory activities on NCI-H358 and MIA-PaCa2 cells compared to that of SHP099. Mechanistic studies revealed that 14i could induce cell apoptosis, arrest the cell cycle at the G0/G1 phase and downregulate the phosphorylation levels of Akt and Erk1/2 in Kyse-520 cells. Molecular docking and molecular dynamics studies displayed more detailed information on the binding mode and binding mechanism of 14i and SHP2. These data suggest that 14i has the potential to be a promising lead compound for our further investigation of SHP2 inhibitors.


Subject(s)
Cell Proliferation , Dose-Response Relationship, Drug , Drug Design , Enzyme Inhibitors , Molecular Docking Simulation , Protein Tyrosine Phosphatase, Non-Receptor Type 11 , Protein Tyrosine Phosphatase, Non-Receptor Type 11/antagonists & inhibitors , Protein Tyrosine Phosphatase, Non-Receptor Type 11/metabolism , Humans , Cell Proliferation/drug effects , Structure-Activity Relationship , Molecular Structure , Enzyme Inhibitors/pharmacology , Enzyme Inhibitors/chemical synthesis , Enzyme Inhibitors/chemistry , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Drug Screening Assays, Antitumor , Allosteric Regulation/drug effects , Pyrimidinones/pharmacology , Pyrimidinones/chemical synthesis , Pyrimidinones/chemistry , Pyrimidines/pharmacology , Pyrimidines/chemical synthesis , Pyrimidines/chemistry , Pyridines/pharmacology , Pyridines/chemistry , Pyridines/chemical synthesis
8.
Luminescence ; 39(7): e4831, 2024 Jul.
Article in English | MEDLINE | ID: mdl-39051545

ABSTRACT

For the first time, we suggest using leaf extract from Ocimum americanum as the economically viable bio-fabrication of copper nanomaterials. The residuals of leaf extract bio-capping provide the stability of the nanomaterials in-situ. UV-Vis and XRD confirmed the formation, with the UV-Vis spectrum of Cu-NMs revealing a surface plasmon resonance characteristic peak at 350 nm. FT-IR analysis was employed to examine the functional groups. FE-SEM with EDX was used to assess the morphology and carry out an elemental analysis of the nanomaterials. Diffusion and MTT assays were used to study the antimicrobial and anticancer activities. The synthesized copper nanomaterials exhibited in-vitro cytotoxicity against human skin cancer (A431) cell lines. Green nanomaterial was examined against the methylene blue dye, photodegradation was reduced by up to 90.6% within 50 minutes. The copper nanomaterials synthesized in our study exhibit promising applications in biomedicine and environmental pollution research.


Subject(s)
Cell Proliferation , Copper , Copper/chemistry , Copper/pharmacology , Humans , Cell Proliferation/drug effects , Cell Line, Tumor , Nanostructures/chemistry , Green Chemistry Technology , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Metal Nanoparticles/chemistry , Luminescence , Plant Extracts/chemistry , Plant Extracts/pharmacology , Drug Screening Assays, Antitumor , Plant Leaves/chemistry , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Particle Size , Microbial Sensitivity Tests , Luminescent Agents/chemistry , Luminescent Agents/pharmacology , Luminescent Agents/chemical synthesis
9.
Pharmaceuticals (Basel) ; 17(7)2024 Jul 10.
Article in English | MEDLINE | ID: mdl-39065774

ABSTRACT

Cancer remains a formidable global health challenge, with current treatment modalities such as chemotherapy, radiotherapy, surgery, and targeted therapy often hindered by low efficacy and adverse side effects. The indole scaffold, a prominent heterocyclic structure, has emerged as a promising candidate in the fight against cancer. This review consolidates recent advancements in developing natural and synthetic indolyl analogs, highlighting their antiproliferative activities against various cancer types over the past five years. These analogs are categorized based on their efficacy against common cancer types, supported by biochemical assays demonstrating their antiproliferative properties. In this review, emphasis is placed on elucidating the mechanisms of action of these compounds. Given the limitations of conventional cancer therapies, developing targeted therapeutics with enhanced selectivity and reduced side effects remains a critical focus in oncological research.

10.
Article in English | MEDLINE | ID: mdl-38988166

ABSTRACT

BACKGROUND: With conventional cancer treatments facing limitations, interest in plant-derived natural products as potential alternatives is increasing. Although resveratrol has demonstrated antitumor effects in various cancers, its impact and mechanism on nasopharyngeal carcinoma remain unclear. OBJECTIVE: This study aimed to systematically investigate the anti-cancer effects of resveratrol on nasopharyngeal carcinoma using a combination of experimental pharmacology, network pharmacology, and molecular docking approaches. METHODS: CCK-8, scratch wound, and transwell assays were employed to confirm the inhibitory effect of resveratrol on the proliferation, migration, and invasion of nasopharyngeal carcinoma cells. H&E and TUNEL stainings were used to observe the morphological changes and apoptosis status of resveratrol-treated cells. The underlying mechanisms were elucidated using a network pharmacology approach. Immunohistochemistry and Western blotting were utilized to validate key signaling pathways. RESULTS: Resveratrol inhibited the proliferation, invasion, and migration of nasopharyngeal carcinoma cells, ultimately inducing apoptosis in a time- and dose-dependent manner. Network pharmacology analysis revealed that resveratrol may exert its anti-nasopharyngeal carcinoma effect mainly through the MAPK pathway. Immunohistochemistry results from clinical cases showed MAPK signaling activation in nasopharyngeal carcinoma tissues compared to adjacent tissues. Western blotting validated the targeting effect of resveratrol, demonstrating significant inhibition of the MAPK signaling pathway. Furthermore, molecular docking supported its multi-target role with MAPK, TP53, PIK3CA, SRC, etc. Conclusion: Resveratrol has shown promising potential in inhibiting human nasopharyngeal carcinoma cells by primarily targeting the MAPK pathway. These findings position resveratrol as a potential therapeutic agent for nasopharyngeal carcinoma.

11.
Heliyon ; 10(12): e32954, 2024 Jun 30.
Article in English | MEDLINE | ID: mdl-38994074

ABSTRACT

Jazan Industrial Economic City (JIEC) is located on the Red Sea coast in the province of Jazan, southwest of Saudi Arabia anchors diverse heavy and secondary industries in the energy, water desalination, petroleum, aluminum, copper, refineries, pharmaceuticals and food manufacturing fields. These various industries generate a large quantity of industrial wastewaters containing various toxicants. The present work represents ecologically beneficial alternatives for the advancement of environmental biotechnology, which could help mitigate the adverse impacts of environmental pollution resulting from petroleum refining effluents. The mycobiome (32 fungal strains) isolated from the industrial wastewater of the refinery sector in Jazan were belonged to five fungal genera including Fusarium, Verticillium, Purpureocillium, Clavispora and Scedosporium with a distribution percentage of 31.25, 21.88, 15.63, 12.50 and 18.75 %, respectively. These isolates showed multimetals tolerance and bioremoval efficiency against a large number of heavy metals (Fe2+, Ni2+, Cr6+, Zn2+, As3+, Cu2+, Cd2+, Pb2+, Ag+ and Hg2+) along with potent bioremediation activity toward crude oil and the polycyclic aromatic hydrocarbons. Interestingly, the mycobiome resistance patterns obtained against different classes of fungal antibiotics including azole (fluconazole, itraconazole, voriconazole, posaconazole, isavuconazole and ketoconazole), echinocandin (anidulafungin, caspofungin and micafungin) and polyene (amphotericin B) drugs proved the prevalence of antibiotic resistance among the mycobiome of refinery industry in Saudi Arabia is relatively low. The fungal isolate under isolation code JAZ-20 showed the highest bioremoval efficiency against heavy metals (90.8-100.0 %), crude oil (89.50 %), naphthalene (96.7 %), phenanthrene (92.52 %), fluoranthene (100.0 %), anthracene (90.34 %), pyrene (85.60 %) and chrysene (83.4 %). It showed the highest bioremoval capacity ranging from 85.72 % to 100.0 % against numerous pollutants found in a wide array of industrial effluents, including diclofenac, ibuprofen, carbamazepine, acetaminophen, sulfamethoxazole, bisphenol, bleomycin, vincristine, dicofol, methyl parathion, atrazine, diuron, dieldrin, chlorpyrifos, profenofos and phenanthrene. The isolate JAZ-20 was chosen for molecular typing, cytotoxicity assessment, analysis of volatile compounds and optimization investigations. Based on phenotypic, biochemical and phylogenetic analysis, strain JAZ-20 identified as Scedosporium apiospermum JAZ-20. This strain is newly discovered in industrial effluents in Saudi Arabia. Fungal strain JAZ-20 consistently produced various types of saturated and unsaturated fatty acids. the main fatty acids were C14:0 (1.95 %), iso-C14:0 (2.98 %), anteiso-C14:0 (2.13 %), iso-C15:0 (9.16 %), anteiso-C15:0 (11.75 %), C15:0 (7.42 %), C15:1 (2.37 %), anteiso-C16:0 (3.4 %), C16:0 (10.3 %), iso-C16:0 (9.5 %), C17:1 (1.36 %), anteiso-C17:1 (8.64 %), iso-C18:0 (11.0 %), C18:0 (3.63 %), anteiso-C19:0 (3.78 %), anteiso-C20:0 (2.0 %), iso-C21:0 (2.44 %), C23:0 (1.15 %), and C24:0 (2.17 %). These fatty acids serve as natural and eco-friendly antifungal agents, promoting fungal resistance and inhibiting the production of mycotoxins in the environment. Despite being an environmental isolate, its cytotoxicity was assessed against both normal and cancerous human cell lines. The IC50 values of JAZ-20 extract were 8.92, 10.41, 20.0, 16.5, and 40.0 µg/mL against WI38, MRC5, MCF10A, HEK293 and HDFs normal cells and 43.26, 33.75, and 40.0 µg/mL against liver (HepG2), breast (A549) and cervix (HeLa) cancers, respectively. Based on gas chromatography-mass spectrometry (GC-MS), analysis the extract of S. apiospermum JAZ-20 showed 47 known volatile compounds (VOCs) for varied and significant biological activities. Enhancing the bioremoval efficiency of heavy metals from actual refining wastewater involves optimizing process parameters. The parameters optimized were the contact time, the fungal biomass dosage, pH, temperature and agitation rate.

12.
Chem Pharm Bull (Tokyo) ; 72(7): 693-699, 2024.
Article in English | MEDLINE | ID: mdl-39048375

ABSTRACT

This study evaluated the ability of isolated or semisynthesized trichothecene sesquiterpenes to prevent cancer emergence and proliferation and inhibit signal transducer and activator of transcription-3 (STAT3) phosphorylation through in vitro assays. Trichothecinol A (TTC-A), which bears a hydroxy group at C3, exhibited greater cancer prevention, antiproliferation, and STAT3 phosphorylation inhibition effects than trichothecin (TTC), which lacks a hydroxy group at C3. Furthermore, trichothecinol B (TTC-B), which is a reduced derivative of TTC and has similar cytotoxic effect, showed substantially weaker chemoprotection and STAT3 phosphorylation inhibition effects than TTC. These results clearly indicate that the hydroxy group at C3 and carbonyl group at C8 are crucial for inducing both potent chemoprevention and STAT3 phosphorylation inhibition.


Subject(s)
Cell Proliferation , STAT3 Transcription Factor , Trichothecenes , STAT3 Transcription Factor/antagonists & inhibitors , STAT3 Transcription Factor/metabolism , Trichothecenes/chemistry , Trichothecenes/pharmacology , Trichothecenes/antagonists & inhibitors , Humans , Cell Proliferation/drug effects , Structure-Activity Relationship , Phosphorylation/drug effects , Cell Line, Tumor , Molecular Structure , Drug Screening Assays, Antitumor , Dose-Response Relationship, Drug , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry
13.
J Biochem Mol Toxicol ; 38(7): e23762, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38967723

ABSTRACT

Given the malignancy of gastric cancer, developing highly effective and low-toxic targeted drugs is essential to prolong patient survival and improve patient outcomes. In this study, we conducted structural optimizations based on the benzimidazole scaffold. Notably, compound 8 f presented the most potent antiproliferative activity in MGC803 cells and induced cell cycle arrest at the G0/G1 phase. Further mechanistic studies demonstrated that compound 8 f caused the apoptosis of MGC803 cells by elevating intracellular reactive oxygen species (ROS) levels and activating the mitogen-activated protein kinase (MAPK) signaling pathway, accompanied by corresponding markers change. In vivo investigations additionally validated the inhibitory effect of compound 8 f on tumor growth in xenograft models bearing MGC803 cells without obvious toxicity. Our studies suggest that compound 8 f holds promise as a potential and safe lead compound for developing anti-gastric cancer agents.


Subject(s)
Antineoplastic Agents , Benzimidazoles , MAP Kinase Signaling System , Stomach Neoplasms , Animals , Humans , Mice , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Apoptosis/drug effects , Benzimidazoles/pharmacology , Benzimidazoles/chemistry , Cell Line, Tumor , MAP Kinase Signaling System/drug effects , Mice, Nude , Reactive Oxygen Species/metabolism , Stomach Neoplasms/drug therapy , Stomach Neoplasms/pathology , Stomach Neoplasms/metabolism , Xenograft Model Antitumor Assays
14.
Metabolites ; 14(6)2024 May 21.
Article in English | MEDLINE | ID: mdl-38921427

ABSTRACT

Breonadia salicina (Vahl) Hepper & J.R.I. Wood is widely distributed throughout Africa. It is used ethnobotanically to treat various diseases. However, the metabolic profile of the Breonadia species is not well characterized and the metabolites that are responsible for the bioactivity of this plant remain unknown. Therefore, there is a need to determine the phytochemical and bioactivity profile to identify metabolites that contribute to the antidiabetic, anti-inflammatory and antiproliferation activity, including the genotoxicity and cytotoxic effects, of Breonadia salicina. The study is aimed at exploring the metabolomic profile antidiabetic, anti-inflammatory and antiproliferation activity, as well as the genotoxicity and cytotoxicity effects, of constituents of B. salicina. The compounds in the B. salicina extract were analyzed by ultra-performance liquid chromatography with quadrupole time-of-flight mass spectrometry (UPLC-QTOF-MS), and the resultant data were further analyzed using a molecular networking approach. The crude stem bark and root extracts showed the highest antidiabetic activity against α-amylase at the lowest test concentration of 62.5 µg/mL, with 74.53 ± 0.74% and 79.1 ± 1.5% inhibition, respectively. However, the crude stem bark and root extracts showed the highest antidiabetic activity against α-glucosidase at the lowest test concentration of 31.3 µg/mL, with 98.20 ± 0.15% and 97.98 ± 0.22% inhibition, respectively. The crude methanol leaf extract showed a decrease in the nitrite concentration at the highest concentration of 200 µg/mL, with cell viability of 90.34 ± 2.21%, thus showing anti-inflammatory activity. No samples showed significant cytotoxic effects at a concentration of 10 µg/mL against HeLa cells. Furthermore, a molecular network of Breonadia species using UPLC-QTOF-MS with negative mode electrospray ionization showed the presence of organic oxygen compounds, lipids, benzenoids, phenylpropanoids and polyketides. These compound classes were differentially distributed in the three different plant parts, indicating the chemical differences between the stem bark, root and leaf extracts of B. salicina. Therefore, the identified compounds may contribute to the antidiabetic and anti-inflammatory activity of Breonadia salicina. The stem bark, root and leaf extracts of B. salicina yielded thirteen compounds identified for the first time in this plant, offering a promising avenue for the discovery of new lead drugs for the treatment of diabetes and inflammation. The use of molecular networking produced a detailed phytochemical overview of this Breonadia species. The results reported in this study show the importance of searching for bioactive compounds from Breonadia salicina and provide new insights into the phytochemical characterization and bioactivity of different plant parts of Breonadia salicina.

15.
Mar Drugs ; 22(6)2024 Jun 13.
Article in English | MEDLINE | ID: mdl-38921588

ABSTRACT

Two new meroterpenoids, aspergienynes O and P (1 and 2), one new natural compound, aspergienyne Q (3), and a new α-pyrone derivative named 3-(4-methoxy-2-oxo-2H-pyran-6-yl)butanoic acid (4) were isolated from the mangrove endophytic fungal strain Aspergillus sp. GXNU-Y85, along with five known compounds (5-9). The absolute configurations of those new isolates were confirmed through extensive analysis using spectroscopic data (HRESIMS, NMR, and ECD). The pharmacological study of the anti-proliferation activity indicated that isolates 5 and 9 displayed moderate inhibitory effects against HeLa and A549 cells, with the IC50 values ranging from 16.6 to 45.4 µM.


Subject(s)
Aspergillus , Pyrones , Terpenes , Aspergillus/chemistry , Humans , Pyrones/pharmacology , Pyrones/chemistry , Pyrones/isolation & purification , Terpenes/pharmacology , Terpenes/chemistry , Terpenes/isolation & purification , A549 Cells , HeLa Cells , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/isolation & purification , Molecular Structure , Endophytes/chemistry , Inhibitory Concentration 50 , Cell Line, Tumor , Cell Proliferation/drug effects , Magnetic Resonance Spectroscopy
16.
Cancers (Basel) ; 16(12)2024 Jun 17.
Article in English | MEDLINE | ID: mdl-38927944

ABSTRACT

Mortalin, a member of the Hsp70 family of proteins, is commonly enriched in many types of cancers. It promotes carcinogenesis and metastasis in multiple ways of which the inactivation of the tumor suppressor activity of p53 has been firmly established. The downregulation of mortalin and/or disruption of mortalin-p53 interactions by small molecules has earlier been shown to activate p53 function yielding growth arrest/apoptosis in cancer cells. Mortaparibs (Mortaparib, MortaparibPlus, and MortaparibMild) are chemical inhibitors of mortalin isolated by cell-based two-way screening involving (i) a shift in the mortalin staining pattern from perinuclear (characteristics of cancer cells) to pancytoplasmic (characteristics of normal cells) and (ii) the nuclear enrichment of p53. They have similar structures and also cause the inhibition of PARP1 and hence were named Mortaparibs. In the present study, we report the anticancer and anti-metastasis activity of MortaparibMild (4-[(4-amino-5-thiophen-2-yl-1,2,4-triazol-3-yl)sulfanylmethyl]-N-(4-methoxyphenyl)-1,3-thiazol-2-amine) in p53-null cells. By extensive molecular analyses of cell proliferation, growth arrest, and apoptosis pathways, we demonstrate that although it causes relatively weaker cytotoxicity compared to Mortaparib and MortaparibPlus, its lower concentrations were equally potent to inhibit cell migration. We developed combinations (called MortaparibMix-AP, MortaparibMix-AM, and MortaparibMix-AS) consisting of different ratios of three Mortaparibs for specifically enhancing their anti-proliferation, anti-migration, and antistress activities, respectively. Based on the molecular analyses of control and treated cells, we suggest that the three Mortaparibs and their mixtures may be considered for further laboratory and clinical studies validating their use for the treatment of cancer as well as prevention of its relapse and metastasis.

17.
Heliyon ; 10(11): e32483, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38933967

ABSTRACT

Ginsenoside Rd is a tetracyclic triterpenoid derivative, widely existing in Panax ginseng, Panax notoginseng and other traditional Chinese medicines. Many studies have proved that ginsenoside Rd have a variety of significant biological activities on certain types of cancer. However, the mechanism of ginsenoside Rd remains unclear in lung cancer. The findings of this study reveal that GS-Rd inhibits the proliferation of NSCLC cells, induces apoptosis, and suppresses migration and invasion. The results showed Ginsenoside Rd inhibited the cell proliferation (∼99.52 %) by S phase arrest in cell cycle and promoted the apoptosis (∼54.85 %) of NSCLC cells. It also inhibited the migration and invasion of cells (p < 0.001). The expression levels of related mitochondrial apoptosis proteins (Bax/Bcl-2/Cytochrome C) and matrix metalloproteinases (MMP-2/-9) were significantly changed. The results showed that ginsenoside Rd inhibited the proliferation of tumor cells by activating p53/bax-mediated mitochondrial apoptosis and the expression of key enzymes for cell apoptosis caspase-3/cleaved-caspase-3 were significantly increased. This research contributes to a better understanding of the anti-tumor effects and molecular mechanisms of GS-Rd, paving the way for its potential development and clinical application in NSCLC therapy.

18.
Microb Cell Fact ; 23(1): 163, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38824527

ABSTRACT

BACKGROUND: Type I interferons (IFN-I)-a group of cytokines with immunomodulatory, antiproliferative, and antiviral properties-are widely used as therapeutics for various cancers and viral diseases. Since IFNs are proteins, they are highly susceptible to degradation by proteases and by hydrolysis in the strong acid environment of the stomach, and they are therefore administered parenterally. In this study, we examined whether the intestinal bacterium, enteropathogenic Escherichia coli (EPEC), can be exploited for oral delivery of IFN-Is. EPEC survives the harsh conditions of the stomach and, upon reaching the small intestine, expresses a type III secretion system (T3SS) that is used to translocate effector proteins across the bacterial envelope into the eukaryotic host cells. RESULTS: In this study, we developed an attenuated EPEC strain that cannot colonize the host but can secrete functional human IFNα2 variant through the T3SS. We found that this bacteria-secreted IFN exhibited antiproliferative and antiviral activities similar to commercially available IFN. CONCLUSION: These findings present a potential novel approach for the oral delivery of IFN via secreting bacteria.


Subject(s)
Enteropathogenic Escherichia coli , Type III Secretion Systems , Enteropathogenic Escherichia coli/metabolism , Humans , Type III Secretion Systems/metabolism , Interferon-alpha/metabolism , Antiviral Agents/pharmacology , Antiviral Agents/metabolism , Interferon alpha-2/metabolism , Cell Proliferation/drug effects
19.
Phytochemistry ; 223: 114133, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38710375

ABSTRACT

Five undescribed elesesterpenes L-U, along with nine known 3,4-seco-lupane-type triterpenoids were isolated from the leaves of Eleutherococcus sessiliflorus (Rupr. & Maxim.) S. Y. Hu. Elesesterpene L-S, and U were lupane-type triterpenoids, whereas elesesterpene T was an oleanane-type triterpenoid, probably artifact, as suggested by LC-MS analysis. Out of the nine known compounds, five were initially identified in E. sessiliflorus. Moreover, their structures were definitively determined using spectroscopic analyses, and the absolute configurations of elesesterpenes L-M and sachunogenin 3-O-glucoside were clarified using X-ray crystallographic techniques. The absolute configuration of elesesterpene T was determined by measuring and calculating its ECD. In addition, all compounds were tested to examine their ability to inhibit the proliferation of HFLS-RA cells induced by TNF-α in vitro. Elesesterpene M, chiisanogenin, chiisanoside, and 3-methylisochiisanoside significantly inhibited HFLS-RA proliferation.


Subject(s)
Eleutherococcus , Plant Leaves , Triterpenes , Eleutherococcus/chemistry , Plant Leaves/chemistry , Tumor Necrosis Factor-alpha/pharmacology , Humans , Triterpenes/analysis , Triterpenes/isolation & purification , Triterpenes/pharmacology , Cells, Cultured , Spectrum Analysis , Cell Proliferation/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL