Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.988
Filter
1.
J Orthop Translat ; 48: 39-52, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39087139

ABSTRACT

Background: Osteocytes are the main stress-sensing cells in bone. The substances secreted by osteocytes under mechanical loading play a crucial role in maintaining body homeostasis. Osteocytes have recently been found to release exosomes into the circulation, but whether they are affected by mechanical loading or participate in the regulation of systemic homeostasis remains unclear. Methods: We used a tail-suspension model to achieve mechanical unloading on osteocytes. Osteocyte-specific CD63 reporter mice were used for osteocyte exosome tracing. Exosome detection and inhibitor treatment were performed to confirm the effect of mechanical loading on exosome secretion by osteocytes. Co-culture, GW4869 and exosome treatment were used to investigate the biological functions of osteocyte-derived exosomes on brown adipose tissue (BAT) and primary brown adipocytes. Osteocyte-specific Dicer KO mice were used to screen for loading-sensitive miRNAs. Dual luciferase assay was performed to validate the selected target gene. Results: Firstly, we found the thermogenic activity was increased in BAT of mice subjected to tail suspension, which is due to the effect of unloaded bone on circulating exosomes. Further, we showed that the secretion of exosomes from osteocytes is regulated by mechanical loading, and osteocyte-derived exosomes can reach BAT and affect thermogenic activity. More importantly, we confirmed the effect of osteocyte exosomes on BAT both in vivo and in vitro. Finally, we discovered that let-7e-5p contained in exosomes is under regulation of mechanical loading and regulates thermogenic activity of BAT by targeting Ppargc1a. Conclusion: Exosomes derived from osteocytes are loading-sensitive, and play a vital role in regulation on BAT, suggesting that regulation of exosomes secretion can restore homeostasis. The translational potential of this article: This study provides a biological rationale for using osteocyte exosomes as potential agents to modulate BAT and even whole-body homeostasis. It also provides a new pathological basis and a new treatment approach for mechanical unloading conditions such as spaceflight.

3.
Wellcome Open Res ; 9: 246, 2024.
Article in English | MEDLINE | ID: mdl-39045151

ABSTRACT

We present a genome assembly from a female Plecotus auritus (Brown Long-eared bat; Chordata; Mammalia; Chiroptera; Vespertilionidae). The genome sequence is 2163.2 megabases in span. Most of the assembly is scaffolded into 16 chromosomal pseudomolecules, including the X sex chromosome. The mitochondrial genome has also been assembled and is 16.91 kilobases in length.

4.
Article in English | MEDLINE | ID: mdl-38990406

ABSTRACT

PURPOSE OF THE REVIEW: In the last decade, an increasing trend towards a supposedly healthier vegan diet could be observed. However, recently, more cases of allergic reactions to plants and plant-based products such as meat-substitution products, which are often prepared with legumes, were reported. Here, we provide the current knowledge on legume allergen sources and the respective single allergens. We answer the question of which legumes beside the well-known food allergen sources peanut and soybean should be considered for diagnostic and therapeutic measures. RECENT FINDINGS: These "non-priority" legumes, including beans, pea, lentils, chickpea, lupine, cowpea, pigeon pea, and fenugreek, are potentially new important allergen sources, causing mild-to-severe allergic reactions. Severe reactions have been described particularly for peas and lupine. An interesting aspect is the connection between anaphylactic reactions and exercise (food-dependent exercise-induced anaphylaxis), which has only recently been highlighted for legumes such as soybean, lentils and chickpea. Most allergic reactions derive from IgE cross-reactions to homologous proteins, for example between peanut and lupine, which is of particular importance for peanut-allergic individuals ignorant to these cross-reactions. From our findings we conclude that there is a need for large-scale studies that are geographically distinctive because most studies are case reports, and geographic differences of allergic diseases towards these legumes have already been discovered for well-known "Big 9" allergen sources such as peanut and soybean. Furthermore, the review illustrates the need for a better molecular diagnostic for these emerging non-priority allergen sources to evaluate IgE cross-reactivities to known allergens and identify true allergic reactions.

5.
J Mammal ; 105(4): 823-837, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39081265

ABSTRACT

Although Mexico holds the southernmost hibernating bats in North America, information on winter behavior and hibernacula microclimate use of temperate Mexican bats is limited. We studied hibernating bats at high altitudes (>1,000 m a.s.l.) in northern and central Mexico during 5 consecutive winters. Our aims were to document and describe the hibernacula, winter behavior (such as abundance and roost pattern), and microclimates (estimated as adjacent substrate temperature) of cave-hibernating bats in Mexico. We found 78 hibernacula and 6,089 torpid bats of 10 vespertilionid species, increasing by over 50% the number of cave-hibernating bat species and quadrupling the number of hibernacula for Mexico. Hibernacula were at altitudes between 1,049 and 3,633 m a.s.l., located in 3 mountain ranges, mainly in oak and conifer forests. Myotis velifer was the most common species, followed by Corynorhinus townsendii and C. mexicanus. We recorded the adjacent substrate temperatures from 9 species totaling 1,106 torpid bats and found differences in microclimate use among the 3 most common species. In general, abundance of torpid bats in our region of study was similar to those in the western United States, with aggregations of tens to a few hundred individuals per cave, and was lower than in the eastern United States where a cave may hold thousands of individuals. Knowledge of bat hibernation is crucial for developing conservation and management strategies on current conditions while accommodating environmental changes and other threats such as emerging diseases.


Aunque México tiene los murciélagos hibernantes más sureños en Norteamérica, la información sobre el comportamiento invernal y el uso de microclimas en los refugios de hibernación de los murciélagos templados mexicanos es limitada. Estudiamos a los murciélagos hibernantes en altitudes altas (>1000 msnm) en el norte y centro de México durante cinco inviernos consecutivos. Nuestros objetivos fueron documentar y describir las cuevas de hibernación, el comportamiento invernal (como la abundancia y patrón de percha), y el uso de microclimas (estimado como la temperatura del sustrato adyacente), de los murciélagos que hibernan en cuevas en México. Encontramos 78 cuevas de hibernación con 6089 murciélagos en torpor de 10 especies de vespertiliónidos, incrementando en más del 50% el número de especies de murciélagos que hibernan en cuevas y cuadriplicando el número de cuevas de hibernación para México. Las cuevas de hibernación estuvieron en elevaciones entre 1049 y 3633 msnm, localizadas en tres cadenas montañosas, principalmente en bosques de encinos y coníferas. Myotis velifer fue la especie más común, seguida por Corynorhinus townsendii y C. mexicanus. Reportamos las temperaturas del sustrato adyacente de 1106 murciélagos en torpor de nueve especies y encontramos diferencias en el uso de microclimas entre las tres especies más comunes. Aquí proveemos información relevante para especies de murciélagos templados en la ocurrencia más sureña de hibernación de murciélagos en Norteamérica. En general, la abundancia de murciélagos en torpor que encontramos fue similar a las del oeste de Estados Unidos, con agregaciones de decenas y algunos cientos de individuos por cueva; y fue menor que las del este de Estados Unidos, donde las cuevas pueden albergar miles de murciélagos. El conocimiento de la hibernación de murciélagos es crucial para el desarrollo de estrategias de conservación y manejo adecuadas en la actualidad y mientras se adaptan a los cambios ambientales y a otras amenazas tales como las enfermedades emergentes.

6.
Viruses ; 16(7)2024 Jul 11.
Article in English | MEDLINE | ID: mdl-39066279

ABSTRACT

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the causative agent of COVID-19 and responsible for the global coronavirus pandemic which started in 2019. Despite exhaustive efforts to trace its origins, including potential links with pangolins and bats, the precise origins of the virus remain unclear. Bats have been recognized as natural hosts for various coronaviruses, including the Middle East respiratory coronavirus (MERS-CoV) and the SARS-CoV. This study presents a comparative analysis of the SARS-CoV-2 nucleocapsid protein (N) interactome in human and bat cell lines. We identified approximately 168 cellular proteins as interacting partners of SARS-CoV-2 N in human cells and 196 cellular proteins as interacting partners with this protein in bat cells. The results highlight pathways and events that are both common and unique to either bat or human cells. Understanding these interactions is crucial to comprehend the reasons behind the remarkable resilience of bats to viral infections. This study provides a foundation for a deeper understanding of host-virus interactions in different reservoirs.


Subject(s)
COVID-19 , Chiroptera , Coronavirus Nucleocapsid Proteins , Phosphoproteins , Proteomics , SARS-CoV-2 , Chiroptera/virology , Humans , SARS-CoV-2/metabolism , Animals , Coronavirus Nucleocapsid Proteins/metabolism , Cell Line , Proteomics/methods , Phosphoproteins/metabolism , COVID-19/virology , COVID-19/metabolism , Host-Pathogen Interactions , Protein Interaction Maps
7.
Parasitol Res ; 123(7): 269, 2024 Jul 12.
Article in English | MEDLINE | ID: mdl-38995426

ABSTRACT

Nycteribiidae encompasses a specialized group of wingless blood-sucking flies that parasitize bats worldwide. Such relationships are frequently species- or genus-specific, indicating unique eco-evolutionary processes. However, despite this significance, comprehensive studies on the relationships of these flies with their hosts, particularly in the New World, have been scarce. Here, we provide a detailed description of the parasitological patterns of nycteribiid flies infesting a population of Myotis lavali bats in the Atlantic Forest of northeastern Brazil, considering the potential influence of biotic and abiotic factors on the establishment of nycteribiids on bat hosts. From July 2014 to June 2015, we captured 165 M. lavali bats and collected 390 Basilia travassosi flies. Notably, B. travassosi displayed a high prevalence and was the exclusive fly species parasitizing M. lavali in the surveyed area. Moreover, there was a significant predominance of female flies, indicating a female-biased pattern. The distribution pattern of the flies was aggregated; most hosts exhibited minimal or no parasitism, while a minority displayed heavy infestation. Sexually active male bats exhibited greater susceptibility to parasitism compared to their inactive counterparts, possibly due to behavioral changes during the peak reproductive period. We observed a greater prevalence and abundance of flies during the rainy season, coinciding with the peak reproductive phase of the host species. No obvious correlation was observed between the parasite load and bat body mass. Our findings shed light on the intricate dynamics of nycteribiid-bat interactions and emphasize the importance of considering various factors when exploring bat-parasite associations.


Subject(s)
Chiroptera , Diptera , Host-Parasite Interactions , Animals , Chiroptera/parasitology , Diptera/physiology , Brazil , Male , Female , Prevalence , Seasons
8.
Ecotoxicol Environ Saf ; 282: 116758, 2024 Jul 18.
Article in English | MEDLINE | ID: mdl-39029226

ABSTRACT

Heavy metal residues in natural ecosystems have emerged as a significant global environmental problem requiring urgent resolution. Because these elements are non-biodegradable, organisms can accumulate excessive levels of heavy metal elements into their tissues. Previous studies suggest that prolonged exposure to heavy metal enrichment poses comprehensive toxicity to various organs in vertebrates. However, few studies have focused on elucidating the molecular mechanism underlying the hepatotoxic effects of heavy metal enrichment in Chiroptera. In this study, 10 Hipposideros armiger individuals were dissected from Yingde City (YD, relatively pollution-free) and Chunwan City (CW, excessive heavy metals emission). Environmental samples were also obtained. To investigate the mechanism of heavy metal toxicity in bat livers, we employed a combination of multi-omics, pathology, and molecular biology methods. Our results revealed significant enrichment of Cd and Pb in the bat livers and food sources in the CW group (P<0.05). Furthermore, prolonged accumulation of heavy metals disrupted hepatic transcription profiles associated with the solute carriers family, the ribosome pathway, ATP usage, and heat shock proteins. Excessive heavy metal enrichment also altered the relative abundance of typical gut microbe taxa significantly (P<0.05), inhibiting tight-junction protein expression. We observed a significant decrease in the levels of superoxide dismutase, glutathione peroxidase, and glutathione (P<0.05), along with elevated reactive oxygen species (ROS) density and malondialdehyde content following excessive heavy metal enrichment. Additionally, hepatic fat accumulation and inflammation injuries were present under conditions of excessive heavy metal enrichment, while the contents of metabolism biomarkers significantly decreased (P<0.05). Consequently, prolonged heavy metal enrichment can induce hepatotoxicity by disturbing the microbes-gut-liver axis and hepatic transcription modes, leading to a decrease in overall metabolic activity in bats. Our study offers strategies for biodiversity conservation and highlights the importance of addressing environmental pollution to raise public awareness.

9.
J R Soc Interface ; 21(216): 20230593, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38981517

ABSTRACT

Birds, bats and insects have evolved unique wing structures to achieve a wide range of flight capabilities. Insects have relatively stiff and passive wings, birds have a complex and hierarchical feathered structure and bats have an articulated skeletal system integrated with a highly stretchable skin. The compliant skin of the wing distinguishes bats from all other flying animals and contributes to bats' remarkable, highly manoeuvrable flight performance and high energetic efficiency. The structural and functional complexity of the bat wing skin is one of the least understood although important elements of the bat flight anatomy. The wing skin has two unusual features: a discrete array of very soft elastin fibres and a discrete array of skeletal muscle fibres. The latter is intriguing because skeletal muscle is typically attached to bone, so the arrangement of intramembranous muscle in soft skin raises questions about its role in flight. In this paper, we develop a multi-scale chemo-mechanical constitutive model for bat wing skin. The chemo-mechanical model links cross-bridge cycling to a structure-based continuum model that describes the active viscoelastic behaviour of the soft anisotropic skin tissue. Continuum models at the tissue length-scale are valuable as they are easily implemented in commercial finite element codes to solve problems involving complex geometries, loading and boundary conditions. The constitutive model presented in this paper will be used in detailed finite element simulations to improve our understanding of the mechanics of bat flight in the context of wing kinematics and aerodynamic performance.


Subject(s)
Chiroptera , Flight, Animal , Models, Biological , Muscle, Skeletal , Wings, Animal , Animals , Chiroptera/physiology , Chiroptera/anatomy & histology , Wings, Animal/physiology , Wings, Animal/anatomy & histology , Flight, Animal/physiology , Muscle, Skeletal/physiology , Muscle, Skeletal/anatomy & histology , Biomechanical Phenomena , Skin Physiological Phenomena
10.
Elife ; 132024 Jul 22.
Article in English | MEDLINE | ID: mdl-39037770

ABSTRACT

Bats have unique characteristics compared to other mammals, including increased longevity and higher resistance to cancer and infectious disease. While previous studies have analyzed the metabolic requirements for flight, it is still unclear how bat metabolism supports these unique features, and no study has integrated metabolomics, transcriptomics, and proteomics to characterize bat metabolism. In this work, we performed a multi-omics data analysis using a computational model of metabolic fluxes to identify fundamental differences in central metabolism between primary lung fibroblast cell lines from the black flying fox fruit bat (Pteropus alecto) and human. Bat cells showed higher expression levels of Complex I components of electron transport chain (ETC), but, remarkably, a lower rate of oxygen consumption. Computational modeling interpreted these results as indicating that Complex II activity may be low or reversed, similar to an ischemic state. An ischemic-like state of bats was also supported by decreased levels of central metabolites and increased ratios of succinate to fumarate in bat cells. Ischemic states tend to produce reactive oxygen species (ROS), which would be incompatible with the longevity of bats. However, bat cells had higher antioxidant reservoirs (higher total glutathione and higher ratio of NADPH to NADP) despite higher mitochondrial ROS levels. In addition, bat cells were more resistant to glucose deprivation and had increased resistance to ferroptosis, one of the characteristics of which is oxidative stress. Thus, our studies revealed distinct differences in the ETC regulation and metabolic stress responses between human and bat cells.


Subject(s)
Chiroptera , Fibroblasts , Chiroptera/metabolism , Humans , Fibroblasts/metabolism , Animals , Metabolomics , Reactive Oxygen Species/metabolism , Proteomics/methods , Cell Line , Oxygen Consumption , Multiomics
11.
Viruses ; 16(7)2024 Jun 25.
Article in English | MEDLINE | ID: mdl-39066178

ABSTRACT

Hepatitis B virus (HBV) infection leads to around 800,000 deaths yearly and is considered to be a major public health problem worldwide. However, HBV origins remain poorly understood. Here, we looked for bat HBV (BtHBV) in different bat species in Gabon to investigate the role of these animals as carriers of ancestral hepadnaviruses because these viruses are much more diverse in bats than in other host species. DNA was extracted from 859 bat livers belonging to 11 species collected in caves and villages in the southeast of Gabon and analyzed using PCRs targeting the surface gene. Positive samples were sequenced using the Sanger method. BtHBV DNA was detected in 64 (7.4%) individuals belonging to eight species mainly collected in caves. Thirty-six (36) sequences among the 37 obtained after sequencing were phylogenetically close to the RBHBV strain recently isolated in Gabonese bats, while the remaining sequence was close to a rodent HBV strain isolated in America. The generalized linear mixed model showed that the variable species best explained the occurrence of BtHBV infection in bats. The discovery of a BtHBV strain homologous to a rodent strain in bats raises the possibility that these animals may be carriers of ancestral hepadnaviruses.


Subject(s)
Chiroptera , Genetic Variation , Hepatitis B virus , Hepatitis B , Phylogeny , Chiroptera/virology , Animals , Gabon/epidemiology , Hepatitis B virus/genetics , Hepatitis B virus/classification , Hepatitis B virus/isolation & purification , Prevalence , Hepatitis B/virology , Hepatitis B/epidemiology , Hepatitis B/veterinary , DNA, Viral/genetics , Sequence Analysis, DNA
12.
Int J Mol Sci ; 25(14)2024 Jul 18.
Article in English | MEDLINE | ID: mdl-39063092

ABSTRACT

Obesity, a global pandemic, poses a major threat to healthcare systems worldwide. Adipose tissue, the energy-storing organ during excessive energy intake, functions as a thermoregulator, interacting with other tissues to regulate systemic metabolism. Specifically, brown adipose tissue (BAT) is positively associated with an increased resistance to obesity, due to its thermogenic function in the presence of uncoupled protein 1 (UCP1). Recently, studies on climate change and the influence of environmental pollutants on energy homeostasis and obesity have drawn increasing attention. The reciprocal relationship between increasing adiposity and increasing temperatures results in reduced adaptive thermogenesis, decreased physical activity, and increased carbon footprint production. In addition, the impact of climate change makes obese individuals more prone to developing type 2 diabetes mellitus (T2DM). An impaired response to heat stress, compromised vasodilation, and sweating increase the risk of diabetes-related comorbidities. This comprehensive review provides information about the effects of climate change on obesity and adipose tissue, the risk of T2DM development, and insights into the environmental pollutants causing adipose tissue dysfunction and obesity. The effects of altered dietary patterns on adiposity and adaptation strategies to mitigate the detrimental effects of climate change are also discussed.


Subject(s)
Adipose Tissue , Air Pollution , Climate Change , Diabetes Mellitus, Type 2 , Obesity , Humans , Air Pollution/adverse effects , Diabetes Mellitus, Type 2/etiology , Diabetes Mellitus, Type 2/metabolism , Diabetes Mellitus, Type 2/epidemiology , Obesity/metabolism , Obesity/etiology , Obesity/epidemiology , Animals , Adipose Tissue/metabolism , Thermogenesis , Adipose Tissue, Brown/metabolism , Energy Metabolism , Adiposity
13.
Wellcome Open Res ; 9: 107, 2024.
Article in English | MEDLINE | ID: mdl-39022322

ABSTRACT

We present a genome assembly from an individual male Myotis daubentonii (Daubenton's bat; Chordata; Mammalia; Chiroptera; Vespertilionidae). The genome sequence is 2,127.8 megabases in span. Most of the assembly is scaffolded into 23 chromosomal pseudomolecules, including the X and Y sex chromosomes. The mitochondrial genome has also been assembled and is 17.34 kilobases in length.

14.
J Virol ; : e0034224, 2024 Jul 19.
Article in English | MEDLINE | ID: mdl-39028202

ABSTRACT

The recurrent spillovers of coronaviruses (CoVs) have posed severe threats to public health and the global economy. Bat severe acute respiratory syndrome (SARS)-like CoVs RsSHC014 and WIV1, currently circulating in bat populations, are poised for human emergence. The trimeric spike (S) glycoprotein, responsible for receptor recognition and membrane fusion, plays a critical role in cross-species transmission and infection. Here, we determined the cryo-electron microscopy (EM) structures of the RsSHC014 S protein in the closed state at 2.9 Å, the WIV1 S protein in the closed state at 2.8 Å, and the intermediate state at 4.0 Å. In the intermediate state, one receptor-binding domain (RBD) is in the "down" position, while the other two RBDs exhibit poor density. We also resolved the complex structure of the WIV1 S protein bound to human ACE2 (hACE2) at 4.5 Å, which provides structural basis for the future emergence of WIV1 in humans. Through biochemical experiments, we found that despite strong binding affinities between the RBDs and both human and civet ACE2, the pseudoviruses of RsSHC014, but not WIV1, failed to infect 293T cells overexpressing either human or civet ACE2. Mutagenesis analysis revealed that the Y623H substitution, located in the SD2 region, significantly improved the cell entry efficiency of RsSHC014 pseudoviruses, which is likely accomplished by promoting the open conformation of spike glycoproteins. Our findings emphasize the necessity of both efficient RBD lifting and tight RBD-hACE2 binding for viral infection and underscore the significance of the 623 site of the spike glycoprotein for the infectivity of bat SARS-like CoVs. IMPORTANCE: The bat SARS-like CoVs RsSHC014 and WIV1 can use hACE2 for cell entry without further adaptation, indicating their potential risk of emergence in human populations. The S glycoprotein, responsible for receptor recognition and membrane fusion, plays a crucial role in cross-species transmission and infection. In this study, we determined the cryo-EM structures of the S glycoproteins of RsSHC014 and WIV1. Detailed comparisons revealed dynamic structural variations within spike proteins. We also elucidated the complex structure of WIV1 S-hACE2, providing structural evidence for the potential emergence of WIV1 in humans. Although RsSHC014 and WIV1 had similar hACE2-binding affinities, they exhibited distinct pseudovirus cell entry behavior. Through mutagenesis and cryo-EM analysis, we revealed that besides the structural variations, the 623 site in the SD2 region is another important structural determinant of spike infectivity.

15.
J Wildl Dis ; 2024 Jul 26.
Article in English | MEDLINE | ID: mdl-39053909

ABSTRACT

It has been proposed that the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus that spread through human populations as a pandemic originated in Asian bats. There is concern that infected humans could transmit the virus to native North American bats; therefore, the susceptibility of several North American bat species to the pandemic virus has been experimentally assessed. Big brown bats (Eptesicus fuscus) were shown to be resistant to infection by SARS-CoV-2, whereas Mexican free-tailed bats (Tadarida brasiliensis) became infected and orally excreted moderate amounts of virus for up to 18 d postinoculation. Little brown bats (Myotis lucifugus) frequently contact humans, and their populations are threatened over much of their range due to white-nose syndrome, a fungal disease that is continuing to spread across North America. We experimentally challenged little brown bats with SARS-CoV-2 to determine their susceptibility and host potential and whether the virus presents an additional risk to this species. We found that this species was resistant to infection by SARS-CoV-2. These findings provide reassurance to wildlife rehabilitators, biologists, conservation scientists, and the public at large who are concerned with possible transmission of this virus to threatened bat populations.

16.
Trop Med Infect Dis ; 9(7)2024 Jul 05.
Article in English | MEDLINE | ID: mdl-39058193

ABSTRACT

Lyssaviruses are neurotropic viruses capable of inducing fatal encephalitis. While rabies virus has been successfully eradicated in Belgium, the prevalence of other lyssaviruses remains uncertain. In this study, we conducted a survey on live animals and passive surveillance to investigate the presence of lyssaviruses in Belgium. In 2018, a total of 113 saliva samples and 87 blood samples were collected from bats. Saliva was subjected to RT-qPCR to identify lyssavirus infections. Additionally, an adapted lyssavirus neutralisation assay was set up for the detection of antibodies neutralising EBLV-1 in blood samples. Furthermore, we examined 124 brain tissue samples obtained from deceased bats during passive surveillance between 2016 and 2018. All saliva samples tested negative for lyssaviruses. Analysis of the blood samples uncovered the presence of lyssavirus-neutralising antibodies in five bat species and 32% of samples with a wide range depending on bat species, suggesting past exposure to a lyssavirus. Notably, EBLV-1 was detected in brain tissue samples from two Eptesicus serotinus specimens collected in 2016 near Bertrix and 2017 near Étalle, confirming for the first time the presence of EBLV-1 in Belgium and raising awareness of the potential risks associated with this species of bats as reservoirs of the virus.

17.
Horm Behav ; 164: 105606, 2024 Jul 25.
Article in English | MEDLINE | ID: mdl-39059233

ABSTRACT

Several polygynous mammals exhibit reproductive skew in which only a few males reproduce. Successful males need strength, stamina and fighting ability to exclude competitors. Consequently, during the mating season their androgens and glucocorticoids are expected to increase to support spermatogenesis and aggressive behavior. But, during the nonmating season these hormones should decline to minimize deleterious effects, such as reduced immune function. Bats that exhibit harem polygyny in which males aggressively defend large groups of females year-round are ideal for assessing hormonal and other consequences of extreme polygyny. Here we use DNA methylation to estimate age and gas chromatography, tandem mass spectrometry to profile steroid metabolites in urine of wild greater spear-nosed bats, Phyllostomus hastatus, across seasons. We find that condition, measured by relative weight, is lower during the mating season for both sexes, although it remains high in harem males during the mating season. Average age of females is greater than males, and females exhibit substantial seasonal differences in androgens, estrogens and glucocorticoids with higher levels of all hormones during the mating season. Males, however, show little seasonal differences but substantial age-associated increases in most steroid metabolites. Harem males have larger, persistently scrotal testes and are older than bachelor males. While cortisone generally declines with age, harem males maintain higher amounts of biologically active cortisol than bachelor males all year and cortisol levels increase more quickly in response to restraint in males than in females. Taken together, these results suggest that attaining reproductive dominance requires hormone levels that reduce lifespan.

18.
PeerJ ; 12: e17651, 2024.
Article in English | MEDLINE | ID: mdl-38993980

ABSTRACT

Background: Genomic resource development for non-model organisms is rapidly progressing, seeking to uncover molecular mechanisms and evolutionary adaptations enabling thriving in diverse environments. Limited genomic data for bat species hinder insights into their evolutionary processes, particularly within the diverse Myotis genus of the Vespertilionidae family. In Mexico, 15 Myotis species exist, with three-M. vivesi, M. findleyi, and M. planiceps-being endemic and of conservation concern. Methods: We obtained samples of Myotis vivesi, M. findleyi, and M. planiceps for genomic analysis. Each of three genomic DNA was extracted, sequenced, and assembled. The scaffolding was carried out utilizing the M. yumanensis genome via a genome-referenced approach within the ntJoin program. GapCloser was employed to fill gaps. Repeat elements were characterized, and gene prediction was done via ab initio and homology methods with MAKER pipeline. Functional annotation involved InterproScan, BLASTp, and KEGG. Non-coding RNAs were annotated with INFERNAL, and tRNAscan-SE. Orthologous genes were clustered using Orthofinder, and a phylogenomic tree was reconstructed using IQ-TREE. Results: We present genome assemblies of these endemic species using Illumina NovaSeq 6000, each exceeding 2.0 Gb, with over 90% representing single-copy genes according to BUSCO analyses. Transposable elements, including LINEs and SINEs, constitute over 30% of each genome. Helitrons, consistent with Vespertilionids, were identified. Values around 20,000 genes from each of the three assemblies were derived from gene annotation and their correlation with specific functions. Comparative analysis of orthologs among eight Myotis species revealed 20,820 groups, with 4,789 being single copy orthogroups. Non-coding RNA elements were annotated. Phylogenomic tree analysis supported evolutionary chiropterans' relationships. These resources contribute significantly to understanding gene evolution, diversification patterns, and aiding conservation efforts for these endangered bat species.


Subject(s)
Chiroptera , Genome , Genomics , Phylogeny , Animals , Mexico , Genome/genetics , Chiroptera/genetics , Genomics/methods
19.
Metabol Open ; 22: 100277, 2024 Jun.
Article in English | MEDLINE | ID: mdl-39011164

ABSTRACT

Adipose tissue is a crucial metabolic organ in the human body. It stores and exerts distinct physiological functions in different body regions. Fat not only serves as a cushion and insulator but also stores energy and conveys endocrine signals within the body. There is a growing recognition that adipose tissue is an organ that is misunderstood and underestimated in contribution to human health and disease progression by regulating its size and functionality. In mammals, the adipose tissue reservoir consists of three functionally distinct types of fat: white adipose tissue (WAT), brown adipose tissue (BAT), and beige or inducible brown adipose tissue (iWAT), which exhibits thermogenic capabilities intermediate between the other two. Fat in different depots exhibits considerable differences in origin, characteristics, and functions. They vary not only in adipocyte lineage, properties, thermogenesis, and endocrine functions but also in their immunological functions. In a recent study published in Nature Metabolism, Zhang et al. investigated the role of JunB in the thermogenic capacity of adipocytes and its significance in obesity and metabolic disorders. The study revealed that JunB expression in BAT coexists with both low and high thermogenic adipocytes, indicating a fundamental feature of heterogeneity and plasticity within BAT. In summary, this article demonstrates that research targeting JunB holds promise for improving diet-induced obesity and insulin resistance, offering new avenues for treating metabolic disorders.

20.
Environ Health Insights ; 18: 11786302241266051, 2024.
Article in English | MEDLINE | ID: mdl-39071234

ABSTRACT

This research intricately explores the dynamics surrounding the coexistence of humans and roosting bats in urban areas, meticulously examining both the advantageous and detrimental aspects of their living arrangement. The study conducted a comprehensive survey with 286 residents in Iwo and Ogbomoso, where Eidolon helvum bats are known to roost, generating a robust dataset for thorough analysis. Rigorous statistical assessments, including the KMO and Bartlett's tests, confirmed the data's reliability at a significance level of P < .05. The respondent demographic revealed a predominance of 65% male participants, with an overwhelming 85% claiming familiarity with bats in their respective domains. Utilizing factor analysis, the study identified 8 salient variables from the initial 26, shedding light on diverse perceptions regarding bats: (i) Urban roosting (16.729%); (ii) Impact on tree growth (12.607%); (iii) Failed dislodgement attempts (11.504%); (iv) Medicinal value (10.240%); (v) Co-habitation preference (9.963%); (vi) Costly dislodgment consequences (9.963%); (vii) Beautification disruption (5.615%); and (viii) Structure defacement (5.510%). These factors were systematically categorized into 4 distinct themes: (A) Forced cohabitation (26.762%); (B) Environmental degradation by bats (23.732%); (C) Consequences of dislodging bats (21.477%); and (D) Acknowledged benefits of bats (10.240%). Co-habitation with bats becomes a necessity for ecological balance and, importantly, to safeguard the livelihood of roosting bats within their natural ecology, which man has encroached upon through urbanization, making all negatives arising from such existence self-inflicted by man. However, this study underscores the importance of human-bat cohabitation for mutual benefits, emphasizing potential detrimental consequences, including significant costs, associated with displacing bats from their natural ecosystem. These consequences may exacerbate the impacts of climate change, environmental degradation, and ecological imbalance. Further research is recommended to explore the positive aspects of the sustainable roosting bats' existence in the natural environment.

SELECTION OF CITATIONS
SEARCH DETAIL