Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.138
Filter
1.
Sci Total Environ ; : 174462, 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-38992374

ABSTRACT

This comprehensive study unveils the vast global potential of microalgae as a sustainable bioenergy source, focusing on the utilization of marginal lands and employing advanced machine learning techniques to predict biomass productivity. By identifying approximately 7.37 million square kilometers of marginal lands suitable for microalgae cultivation, this research uncovers the extensive potential of these underutilized areas, particularly within equatorial and low-latitude regions, for microalgae bioenergy development. This approach mitigates the competition for food resources and conserves freshwater supplies. Utilizing cutting-edge machine learning algorithms based on robust datasets from global microalgae cultivation experiments spanning 1994 to 2017, this study integrates essential environmental variables to map out a detailed projection of potential yields across a variety of landscapes. The analysis further delineates the bioenergy and carbon sequestration potential across two effective cultivation methods: Photobioreactors (PBRs), and Open Ponds, with PBRs showcasing exceptional productivity, with a global average daily biomass productivity of 142.81mgL-1d-1, followed by Open Ponds at 122.57mgL-1d-1. Projections based on optimal PBR conditions suggest an annual yield of 99.54 gigatons of microalgae biomass. This yield can be transformed into 64.70 gigatons of biodiesel, equivalent to 58.68 gigatons of traditional diesel, while sequestering 182.16 gigatons of CO2, equating to approximately 4.5 times the global CO2 emissions projected for 2023. Notably, Australia leads in microalgae biomass production, with an annual output of 16.19 gigatons, followed by significant contributions from Kazakhstan, Sudan, Brazil, the United States, and China, showcasing the diverse global potential for microalgae bioenergy across varying ecological and geographical landscapes. Through this rigorous investigation, the study emphasizes the strategic importance of microalgae cultivation in achieving sustainable energy solutions and mitigating climate change, while also acknowledging the scalability challenges and the necessity for significant economic and energy investments.

2.
Sci Total Environ ; : 174665, 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-38992388

ABSTRACT

Addressing the global challenge of energy sustainability and global directives on farming emissions, the United Nations, the European Union, and China have led with strict targets for clean energy, renewable share growth, and carbon neutrality, highlighting a commitment to collective sustainability. This work is situated within the ambit of the Sustainable Development Goals (SDGs), advocating for a transition towards renewable energy sources. With substantial and accessible bioenergy resources, notably in Hubei Province, China, biogas technology has emerged as an emission-cutting solution. This research, focused on the Jianghan Plain, employs an integrated approach combining spatial analyses with machine learning tools to evaluate crop yield stability over two decades, with the aim of maximising the biogas yield from agricultural byproducts, i.e., crop straw and livestock manure. Using Multi-Criteria Decision Analysis (MCDA), which is informed by grey-based DEMATEL, 9 constraints and 13 environmental, social, and economic criteria were assessed to identify optimal sites for biogas facilities. The findings underscore the significant bioenergy potential of agricultural byproducts from the plain of 6.3 × 1012 kJ/year at an 11.4 kJ/m2 density. Stability analyses revealed consistent biomass availability, with rice in Gongan and Shayang and wheat in Jiangling being the primary contributors. Through the MCDA, 45-66 optimal biogas plants were identified across 4 critical counties (Zhongxiang, Shangyang, Jingshan, and Yichen), balancing the energy supply and demand under various stable scenarios. Furthermore, this study demonstrated the criticality of moderate biomass stability for stakeholder consensus and identified areas of high stability essential for energy demand fulfilment. Theoretically, this study offers a practical model for bioenergy resource exploitation that aligns with global sustainability and carbon neutrality goals to address the urgent need for renewable energy solutions amidst the global energy crisis. Practically, this study sets a precedent for policy and planning in environmental, agricultural, and renewable sectors, signifying a step forwards in achieving environmental sustainability and an energy-efficient future.

3.
Article in English | MEDLINE | ID: mdl-38980485

ABSTRACT

In the present study, cellulose purified from finger millet agricultural waste is subjected to enzymatic hydrolysis, and the hydrolysate (predominantly glucose) is used as a carbon source supplement in the media for the mixotrophic growth of Chlamydomonas reinhardtii. Interestingly, a switch between excess starch production and excess lipid (triacylglycerols, TAG) production occurs by a small change in hydrolysate concentration in the media. Starch production increased 4.5-fold with respect to the photoautotrophic control, with a glucose concentration of 3 mg/mL in the media after hydrolysate addition. This culture had TAG production enhancement by 1.5-fold. However, mixotrophic cultivation with 4 mg/mL glucose concentration in the media with hydrolysate addition resulted in TAG productivity enhancement by 4.2-fold compared to control and starch amount increase of 1.3-fold. The organic carbon source (glucose) and the inorganic carbon source (citrate ions) in the hydrolysate together played a role in this delicate switching between starch and lipid pathways. Proteins, starch, and TAG molecules are analyzed in the microalgal cells grown under different conditions with FTIR spectroscopy, a rapid, high-throughput method of biomolecular estimation. High-resolution single-cell AFM studies of the cell wall structure reveal enhanced corrugations in surface morphology during mixotrophic growth with cellulose hydrolysate, illustrating an adaptive mechanism with improved mechanical stress management. Lipid droplet morphology at the single-cell level points to two distinct mechanisms of lipid accumulation: one in which the lipids are segregated as droplets, and the other in which lipid molecules are uniformly dispersed in the cytosol as unresolved, ultra-small droplets. The present study therefore analyzes both the bulk and the single-cell level changes when cellulose hydrolysate is used as a carbon source for Chlamydomonas reinhardtii mixotrophic cultivation, which serves a four-fold purpose: value from waste, fixation of atmospheric CO2, production of lipids for biodiesel, and starch for bioethanol.

4.
J Environ Manage ; 366: 121631, 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-38986370

ABSTRACT

The proper treatment and utilization of kraft black liquor, generated from the pulp and paper industry through the kraft pulping method, is required to reduce environmental impacts prior to the final disposal. It also improves the economic performance through the utilization of waste. Microbial valorization appears to demonstrates the dual benefits of waste management and resource recovery by providing an innovative solution to convert kraft black liquor into resource for reuse. A comprehensive review on the microbial valorization of kraft black liquor, describing the role in valorization and management, is still lacking in the literature, forming the rationale of this article. Thus, the present study reviews and systematically discusses the potential of utilizing microorganisms to valorize kraft black liquor as a sustainable feedstock to develop a numerous portfolio of platform chemicals, bioenergy, and other value-added products. This work contributes to sustainability and resource efficiency within the pulp and paper industry. The recent developments in utilization of synthetic biology tools and molecular techniques, including omics approaches for engineering novel microbial strains, for enhancing kraft black liquor valorization has been presented. This review explores how the better utilization of kraft black liquor in the pulp and paper industry contributes to achieving UN Sustainable Development Goals (SDGs), particularly clean water and sanitation (SDG 6) as well as the affordable and clean energy goal (SDG 7). The current review also addresses challenges related to toxicity, impurities, low productivity, and downstream processing that serve as obstacles to the progress of developing highly efficient bioproducts. The new directions for future research efforts to fill the critical knowledge gaps are proposed. This study concludes that by implementing microbial valorization techniques, the pulp and paper industry can transition from a linear to a circular bioeconomy and eco-friendly manage the kraft black liuor. This approach showed to be effective towards resource recovery, while simultaneously minimizing the environmental burden.

5.
Article in English | MEDLINE | ID: mdl-38990261

ABSTRACT

Food waste is produced for intended human consumption and is normally lost, discharged, contaminated, or finally degraded. The rising problem of food waste is increasing rapidly, so every sector is involved in minimizing food waste generation as well as waste management from collection to disposal, and scientists are developing the best eco-friendly and sustainable solutions for all sectors in the food supply chain, from the agricultural sector to the industrial sector and even up to the retailer to human consumption. Sustainable management is needed for the food wastes in the agricultural and industrial sectors, which are a major burning headache for environmentalists, health departments, and the government all over the earth. Various strategies can be employed to effectively control food waste, and these strategies can be ranked in a manner similar to the waste management hierarchy. The most desirable options involve the act of avoiding and donating edible portions to social agencies. Food waste is utilized in industrial operations to produce biofuels or biopolymers. The next stages involve the retrieval of nutrients and the sequestration of carbon through composting. The government implements appropriate management practices, laws, and orders to minimize food waste generation. Different contemporary methods are utilized to produce biofuel utilizing various types of food waste. In order for composting techniques to recover nutrients and fix carbon, food waste must be processed. Both the management of food waste and the creation of outgrowths utilizing biomaterials require additional study. This review aims to present a comprehensive analysis of the ongoing discourse surrounding the definitions of food waste, the production and implementation of methods to reduce it, the emergence of conversion technologies, and the most recent trends.

6.
World J Microbiol Biotechnol ; 40(8): 239, 2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38862848

ABSTRACT

Anaerobic digestion (AD) emerges as a pivotal technique in climate change mitigation, transforming organic materials into biogas, a renewable energy form. This process significantly impacts energy production and waste management, influencing greenhouse gas emissions. Traditional research has largely focused on anaerobic bacteria and methanogens for methane production. However, the potential of anaerobic lignocellulolytic fungi for degrading lignocellulosic biomass remains less explored. In this study, buffalo rumen inocula were enriched and acclimatized to improve lignocellulolytic hydrolysis activity. Two consortia were established: the anaerobic fungi consortium (AFC), selectively enriched for fungi, and the anaerobic lignocellulolytic microbial consortium (ALMC). The consortia were utilized to create five distinct microbial cocktails-AF0, AF20, AF50, AF80, and AF100. These cocktails were formulated based on varying of AFC and ALMC by weights (w/w). Methane production from each cocktail of lignocellulosic biomasses (cassava pulp and oil palm residues) was evaluated. The highest methane yields of CP, EFB, and MFB were obtained at 337, 215, and 54 mL/g VS, respectively. Cocktails containing a mix of anaerobic fungi, hydrolytic bacteria (Sphingobacterium sp.), syntrophic bacteria (Sphaerochaeta sp.), and hydrogenotrophic methanogens produced 2.1-2.6 times higher methane in cassava pulp and 1.1-1.2 times in oil palm empty fruit bunch compared to AF0. All cocktails effectively produced methane from oil palm empty fruit bunch due to its lipid content. However, methane production ceased after 3 days when oil palm mesocarp fiber was used, due to long-chain fatty acid accumulation. Anaerobic fungi consortia showed effective lignocellulosic and starchy biomass degradation without inhibition due to organic acid accumulation. These findings underscore the potential of tailored microbial cocktails for enhancing methane production from diverse lignocellulosic substrates.


Subject(s)
Biomass , Fungi , Lignin , Methane , Microbial Consortia , Methane/metabolism , Anaerobiosis , Lignin/metabolism , Fungi/metabolism , Fungi/classification , Animals , Rumen/microbiology , Biofuels , Hydrolysis , Fermentation , Bacteria/metabolism , Bacteria/classification , Industrial Waste , Agriculture/methods
7.
Sci Total Environ ; 940: 173660, 2024 Aug 25.
Article in English | MEDLINE | ID: mdl-38834100

ABSTRACT

The use of sustainable biomass can be a cost-effective way of reducing the greenhouse gas emissions in the maritime and aviation sectors. Biomass, however, is a limited resource, and therefore, it is important to use the biomass where it creates the highest value, not only economically, but also in terms of GHG reductions. This study comprehensively evaluates the GHG reduction potential of utilising forestry residue in different bioenergy technologies using a consequential LCA approach. Unlike previous studies that assess GHG impacts per unit of fuel produced, this research takes a feedstock-centric approach which enables comparisons across systems that yield diverse products and by-products. Three technologies-combined heat and power plant with carbon capture, hydrothermal liquefaction, and gasification-are assessed, while considering both carbon capture and storage (CCS) or carbon capture and utilisation (CCU). Through scenario analysis, the study addresses uncertainty, and assumptions in the LCA modelling. It explores the impact of energy systems, fuel substitution efficiency, renewable energy expansion, and the up/down stream supply chain. All technology pathways showed a potential for net emissions savings when including avoided emissions from substitution of products, with results varying from -111 to -1742 kgCO2eq per tonne residue. When combining the bioenergy technologies with CCU the dependency on the energy system in which they are operated was a significantly higher compared to CCS. The breakpoint was found to be 44 kg CO2eq/kWh electricity meaning that the marginal electricity mix has to be below this point for CCU to obtain lower GHG emissions. Furthermore, it is evident that the environmental performance of CCU technologies is highly sensitive to how it will affect the ongoing expansion of renewable electricity capacity.

8.
Polymers (Basel) ; 16(11)2024 May 29.
Article in English | MEDLINE | ID: mdl-38891474

ABSTRACT

The present study aims to resolve the existing research gaps on olive pomace (OP) hydrochars application as a fuel by evaluating its molecular structures (FTIR and solid NMR analysis), identifying influential characteristics (Pearson correlation analysis), process optimization (response surface methodology), slagging-fouling risks (empirical indices), and combustion performance (TG-DSC analysis). The response surfaces plot for hydrothermal carbonization (HTC) of OP slurry performed in a pressure reactor under varied temperatures (180-250 °C) and residence times (2-30 min) revealed 250 °C for 30 min to be optimal conditions for producing hydrochar fuel with a higher heating value (32.20 MJ·Kg-1) and energy densification ratio (1.40). However, in terms of process efficiency and cost-effectiveness, the optimal HTC conditions for producing the hydrochar with the highest energy yield of 87.9% were 202.7 °C and 2.0 min. The molecular structure of hydrochar was mainly comprised of aromatic rings with methyl groups, alpha-C atoms of esters, and ether bond linkages of lignin fractions. The slagging and fouling risks of hydrochars were comparatively lower than those of raw OP, as indicated by low slagging and fouling indices. The Pearson correlation analysis emphasized that the enrichment of acid-insoluble lignin and extractive contents, carbon densification, and reduced ash content were the main pivotal factors for hydrochar to exhibit better biofuel characteristics for energy applications.

9.
J Environ Manage ; 364: 121422, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38878572

ABSTRACT

Biochar is a carbonaceous solid that is prepared through thermo-chemical decomposition of biomass under an inert atmosphere. The present study compares the performance of biochar prepared from Peanut shell, coconut shell and walnut shell in dual chamber microbial fuel cell. The physicochemical and electrochemical analysis of biochar reveals that prepared biochar is macroporous, amorphous, biocompatible, and electrochemically conductive. Polarization studies show that Peanut shell biochar (PSB) exhibited a maximum power density of 165 mW/m2 followed by Coconut shell biochar (CSB) Activated Charcoal (AC) and Walnut shell biochar (WSB). Enhanced power density of PSB was attributed to its surface area and suitable pore size distribution which proved conducive for biofilm formation. Furthermore, the high electrical capacitance of PSB improved the electron transfer between microbes and anode.


Subject(s)
Bioelectric Energy Sources , Charcoal , Electrodes , Charcoal/chemistry , Cocos , Juglans , Arachis , Biofilms
10.
Biodegradation ; 2024 Jun 22.
Article in English | MEDLINE | ID: mdl-38909143

ABSTRACT

The microbial fuel cell (MFC) is considered a modern technology used for treating wastewater and recovering electrical energy. In this study, a new dual technology combining MFC and a specialized biofilter was used. The anodic materials in the system were crushed graphite, either without coating (UFB-MFC) or coated with nanomaterials (nano-UFB-MFC). This biofilter served as a barrier to retain and remove turbidity and suspended solids, while also facilitating the role of bacteria in the removal of organic pollutants, phosphates, nitrates, sulfates, oil and greases. The results demonstrated that both systems exhibited high efficiency in treating kitchen wastewater, specifically greywater and dishwashing wastewater with high detergent concentrations. The removal efficiencies of COD, oil and grease, suspended solids, turbidity, nitrates, sulfates, and phosphates in first UFB-MFC were found to be 88, 95, 89, 86, 87, 75, and 94%, respectively, and in Nano-UFB-MFC were 86, 99, 95, 91, 81, 88, and 95%, respectively, with a high efficiency in recovering bioenergy reaching a value of 1.8 and 1.5 A m-3, respectively. The results of this study demonstrate the potential for developing MFC and utilizing it as a domestic system to mitigate pollution risks before discharging wastewater into the sewer network.

11.
Microbiol Resour Announc ; : e0113323, 2024 Jun 06.
Article in English | MEDLINE | ID: mdl-38842313

ABSTRACT

We provide a collection of 78 bacterial isolates from the rhizosphere of switchgrass (Panicum virgatum L.) at the Lux Arbor Reserve in Delton, MI, a site of the Great Lakes Bioenergy Research Center (GLBRC), Michigan State University, MI, USA. We include information on isolation conditions and full-length 16S rRNA sequences.

12.
J Environ Manage ; 362: 121317, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38833919

ABSTRACT

In this study, livestock manure digestate (LMD) was used as feedstock for hydrothermal carbonization (HTC) at different temperature (180-260 °C) and residence time (0-4 h). Nutrient flow and distribution during the HTC process were evaluated by comparing the effects of livestock manure biogas slurry (LBS) and ultrapure water (UW) to determine the optimal reaction conditions for the synergistic production and application of hydrochars (HC) and aqueous phases (AP). Compared with UW, the HC yields derived from LBS as solvent were increased by 27.05-38.24% under the same conditions. The C content, high heating value (HHV), and energy densification of HC obtained from LMD and UW were higher than those obtained from LMD and LBS, and the ash content was lower. While, LBS circumstance improved the porosity, N content and some trace elements e.g. Ca, Fe and Mg in HC that showed excellent fertility potential. In addition, the recovery rate of K, TOC, NH4+-N, and TN concentrations in AP were significantly higher in the LBS circumstance than in UW. The results show that the addition of UW is more favorable for fuel generation, and the HC obtained from LMD and UW at 220 °C has the potential to be used as a fuel. Whereas, the addition of LBS enhanced the potential of HC and AP for agricultural applications simultaneously. It is recommended to use HC and AP obtained from LMD and LBS at 240 °C for using as fertilizer.


Subject(s)
Biofuels , Manure , Biofuels/analysis , Carbon/chemistry , Animals
13.
Bioresour Technol ; 406: 131038, 2024 Jun 24.
Article in English | MEDLINE | ID: mdl-38925410

ABSTRACT

Cytotoxic, malignant, and mutagenic pollutants like heavy metals have emerged as a serious global threat to the ecosystem. Additionally, the quantity of noxious metals in water bodies has increased due to expanding industrial activities and the application of incompetent wastewater treatment techniques. Owing to the benefits of eco-friendly phytoremediation, the utilization of algae in photosynthetic microbial fuel cell (PMFC) for removal of heavy metals has attracted increasing attention among researchers. Therefore, a successful fabrication and operation of a modular PMFC for simultaneous algal biomass production was exhibited, thus resulting in significant removal efficiency of Cu(II) (94 %) and Co(II) (88 %). Moreover, Co(II)-accumulated algal biochar after thermal activation was utilized as a cathode catalyst for the first time and attained 64.2 mW/m2 of power density through PMFC. Hence, this easily synthesised green cathode catalyst proved its ability to enhance the overall performance of PMFC by attaining higher power output while treating wastewater.

14.
Environ Res ; 256: 119234, 2024 Sep 01.
Article in English | MEDLINE | ID: mdl-38802031

ABSTRACT

Bioenergy generation from microalgae can significantly contribute to climate mitigation and renewable energy production. In this regard, several multi-criteria decision-making method were employed to prioritize appropriate microalgae culture system for bioenergy production. Entropy weight, Criteria Importance Through Intercriteria Correlation (CRITIC) and Technique for Order of Preference by Similarity to Ideal Solution (TOPSIS) were the employed MCDA method. Fourteen microalgae culture systems were selected as a case study, which contain teen monoculture and four dual-culture. Initially, through ans in-depth review of the literature and expert views, four categories total eight indicators were selected as the evaluation indices of the study, namely 1) Proliferation: Half growth cycle and Max growth rate,2) Biomass output: Bio-crude yield and Lipid yield, 3) Nutrient utilization: residual concentration of total Nitrogen and total Phosphorus, and, 4) Stability: coefficient of variation of Bio-crude yield and Lipid yield. The result indicated that "Pediastrum sp. & Micractinium sp." was identified as the most bioenergy potential microalgae culture system, and the evaluation results of entropy weight method and CRITIC method are similar. It is pertinent to note that 1)the entropy weight method exhibits lower sample size requirements, 2) the critic method excels when dealing with larger sample sizes, and 3) the TOPSIS method necessitates the incorporation of appropriate weighting methods to ensure credible results. In the application stage, the key indicators related to cost can be further included in the evaluation indices.


Subject(s)
Biofuels , Microalgae , Wastewater , Microalgae/growth & development , Microalgae/metabolism , Wastewater/microbiology , Biomass , Decision Support Techniques
15.
Chemosphere ; 359: 142293, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38723689

ABSTRACT

The role of hydrazine (N2H4) in anammox metabolism has been widely studied; however, studies on N2H4 biosynthesis by anammox bacteria are limited in the literature. In this context, the current research aims to investigate the enhancement of biological N2H4 production in the anammox process in a long-term manner. The experimental studies started with the optimization of the operating conditions to achieve maximum N2H4 accumulation. Under favorable conditions (pH = 8.97 ± 0.08; T = 35.5 ± 0.5 °C; initial hydroxylamine dose = 1.46 ± 0.01 mM), 17.16 ± 0.64 mg L-1 of N2H4 accumulated in the batch systems. The continuity of N2H4 bioproduction was then evaluated by long-term observations. A continuous flow bioreactor was operated in four consecutive manipulated periods under optimized conditions. In the long-term operated bioreactor, 55.10 ± 0.30 mg L-1 N2H4 was accumulated at optimal conditions, which was 2.5 times higher than reported in the literature. Although manipulation of the bioreactor operating conditions initially resulted in a significant increase in N2H4 bioaccumulation, it subsequently caused a severe deterioration in anammox activity. However, this could be mitigated by increasing the biomass concentration in the anammox systems. In addition, the relative abundance of Candidatus Kuenenia decreased by 1.88% throughout the long-term operation.


Subject(s)
Bioreactors , Hydrazines , Bioreactors/microbiology , Hydrazines/metabolism , Anaerobiosis , Bacteria/metabolism , Oxidation-Reduction , Biomass
16.
Chemosphere ; 359: 142268, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38734254

ABSTRACT

The study explores the synthesis and utilization of biochar (BC) and multi-layer MXene to MXene/biochar (MB) composites for wastewater treatment. Simultaneously, it also investigates their energy generation potential through biomass and soil property assessments. The integrated column and batch treatments have shown significant results, elevating total dissolved solids from 63.7 to 125.5 mg L-1 with column treatment, while reducing them to 6.37 % and 1.35 % with BC and MB treatment, respectively. BC with high carbon content, demonstrated increased hydrophobicity, which was amplified by the integration of MXene, thereby enhancing its potential for advanced wastewater treatment. Treated wastewater exhibited elevated nutrient concentrations (Ca, Cu, Fe, K, Na, and NH4+), promoting the growth of Pennisetum purpureum. WW_B shows promising energy potential, with a higher heating value of 25.03 MJ kg-1 and a lower heating value of 23.57 MJ kg-1. They demonstrated high volatile matter exceeding 70.9 wt %, and a fixed carbon from 10.02 to 27.53 wt %, signifying their potential for efficient conversion and bio-oil yield during pyrolysis. The ultimate analysis emphasized significant carbon, with oxygen content ranging from 43.42 to 47.78 wt %., influencing combustion characteristics. MT_B exhibited its suitability for energy production through thermochemical conversion, underlined by its high flammability and low volatile ignition values. In the absence of BC, the Ea ranged from 24.77 to 77.88 kJ mol-1 in wastewater and from 21.67 to 69.6 kJ mol-1 in MB treated wastewater. Meanwhile, when soil contained BC and was irrigated with wastewater, the Ea varied from 24.66 to 80.91 kJ mol-1. In the case of MB treated wastewater, it ranged from 25.01 to 75.79 kJ mol-1. The research thereby affirms the potential of MB composites to advance water and energy sustainability setting us for broader nexus-based applications.


Subject(s)
Charcoal , Thermodynamics , Waste Disposal, Fluid , Wastewater , Wastewater/chemistry , Charcoal/chemistry , Kinetics , Waste Disposal, Fluid/methods , Biomass , Biofuels , Water Purification/methods , Pennisetum
17.
Biomass Convers Biorefin ; 14(10): 11113-11130, 2024.
Article in English | MEDLINE | ID: mdl-38698922

ABSTRACT

Lignocellulosic residues (LRs) are one of the most abundant wastes produced worldwide. Nevertheless, unlocking the full energy potential from LRs for biofuel production is limited by their complex structure. This study investigated the effect of N-methylmorpholine N-oxide (NMMO) pretreatment on almond shell (AS), spent coffee grounds (SCG), and hazelnut skin (HS) to improve their bioconversion to methane. The pretreatment was performed using a 73% NMMO solution heated at 120 °C for 1, 3, and 5 h. The baseline methane productions achieved from raw AS, SCG, and HS were 54.7 (± 5.3), 337.4 (± 16.5), and 265.4 (± 10.4) mL CH4/g VS, respectively. The NMMO pretreatment enhanced the methane potential of AS up to 58%, although no changes in chemical composition and external surface were observed after pretreatment. Opposite to this, pretreated SCG showed increased porosity (up to 63%) and a higher sugar percentage (up to 27%) after pretreatment despite failing to increase methane production. All pretreatment conditions were effective on HS, achieving the highest methane production of 400.4 (± 9.5) mL CH4/g VS after 5 h pretreatment. The enhanced methane production was due to the increased sugar percentage (up to 112%), lignin removal (up to 29%), and loss of inhibitory compounds during the pretreatment. An energy assessment revealed that the NMMO pretreatment is an attractive technology to be implemented on an industrial scale for energy recovery from HS residues. Supplementary Information: The online version contains supplementary material available at 10.1007/s13399-022-03173-x.

18.
Molecules ; 29(9)2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38731469

ABSTRACT

The growing demand for agricultural products has increased exponentially, causing their waste to increase and become a problem for society. Searching for sustainable solutions for organic waste management is increasingly urgent. This research focuses on considering the waste of an Andean tuber, such as Olluco, as a fuel source for generating electricity and becoming a potential sustainable energy source for companies dedicated to this area. This research used Olluco waste as fuel in single-chamber microbial fuel cells using carbon and zinc electrodes. An electric current and electric potential of 6.4 ± 0.4 mA and 0.99 ± 0.09 V were generated, operating with an electrical conductivity of 142.3 ± 6.1 mS/cm and a pH of 7.1 ± 0.2. It was possible to obtain a 94% decrease in COD and an internal resistance of 24.9 ± 2.8 Ω. The power density found was 373.8 ± 28.8 mW/cm2 and the current density was 4.96 A/cm2. On day 14, the cells were connected in earnest, achieving a power of 2.92 V and generating enough current to light an LED light bulb, thus demonstrating the potential that Olluco waste has to be used as fuel in microbial fuel cells.

19.
Am J Bot ; 111(5): e16349, 2024 May.
Article in English | MEDLINE | ID: mdl-38783552

ABSTRACT

PREMISE: Leaf tensile resistance, a leaf's ability to withstand pulling forces, is an important determinant of plant ecological strategies. One potential driver of leaf tensile resistance is growing season length. When growing seasons are long, strong leaves, which often require more time and resources to construct than weak leaves, may be more advantageous than when growing seasons are short. Growing season length and other ecological conditions may also impact the morphological traits that underlie leaf tensile resistance. METHODS: To understand variation in leaf tensile resistance, we measured size-dependent leaf strength and size-independent leaf toughness in diverse genotypes of the widespread perennial grass Panicum virgatum (switchgrass) in a common garden. We then used quantitative genetic approaches to estimate the heritability of leaf tensile resistance and whether there were genetic correlations between leaf tensile resistance and other morphological traits. RESULTS: Leaf tensile resistance was positively associated with aboveground biomass (a proxy for fitness). Moreover, both measures of leaf tensile resistance exhibited high heritability and were positively genetically correlated with leaf lamina thickness and leaf mass per area (LMA). Leaf tensile resistance also increased with the growing season length in the habitat of origin, and this effect was mediated by both LMA and leaf thickness. CONCLUSIONS: Differences in growing season length may promote selection for different leaf lifespans and may explain existing variation in leaf tensile resistance in P. virgatum. In addition, the high heritability of leaf tensile resistance suggests that P. virgatum will be able to respond to climate change as growing seasons lengthen.


Subject(s)
Plant Leaves , Seasons , Plant Leaves/anatomy & histology , Plant Leaves/genetics , Plant Leaves/physiology , Plant Leaves/growth & development , Panicum/genetics , Panicum/physiology , Panicum/anatomy & histology , Panicum/growth & development , Tensile Strength , Biomass , Phenotype , Genotype , Quantitative Trait, Heritable
20.
Sci Rep ; 14(1): 10391, 2024 05 06.
Article in English | MEDLINE | ID: mdl-38710729

ABSTRACT

Colombia has great potential to produce clean energy through the use of residual biomass from the agricultural sector, such as residues obtained from the life cycle of rice production. This document presents a mixed approach methodology study to examine the combustion of rice husks as a possible energy alternative in the Tolima department of Colombia. First, the physicochemical characteristics of the rice husk were analyzed to characterize the raw material. Next, System Advisor Model (SAM) software was used to model a bioenergy plant to obtain biochar, bio-oil, and biogas from the combustion of rice husks and generate performance matrices, such as thermal efficiency, heat rate, and capacity factor. Then, the project was evaluated for financial feasibility using a mathematical model of net present value (NPV) with a planning horizon of 5 years. Finally, a subset of the local population was surveyed to assess perspectives on the project in the region. The results of the rice husk physicochemical analysis were the following: nitrogen content (0.74%), organic carbon (38.04%), silica (18.39%), humidity determination (7.68%), ash (19.4%), presence of carbonates (< 0.01%), and pH (6.41). These properties are adequate for the combustion process. The SAM simulation showed that the heat transferred in the boiler was 3180 kW, maintaining an efficiency between 50 and 52% throughout the 12 months of the year, meaning that the rice husk can generate electricity and thermal energy. The financial analysis showed that the internal rate of return (IRR) was 6% higher than the opportunity interest rate (OIR), demonstrating economic feasibility of the project. The design and creation of a rice husk processing plant is socially and environmentally viable and has the potential to contribute to the economic development of the Tolima community and reduce greenhouse gases. Likewise, this activity has the potential to promote energy security for consumers and environmental sustainability while at the same time being economically competitive.


Subject(s)
Oryza , Oryza/chemistry , Colombia , Biofuels/analysis , Biomass , Agriculture/methods , Charcoal/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL