Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 2.231
Filter
1.
J Environ Sci (China) ; 148: 665-682, 2025 Feb.
Article in English | MEDLINE | ID: mdl-39095198

ABSTRACT

Emission characteristics of biogenic volatile organic compounds (BVOCs) from dominant tree species in the subtropical pristine forests of China are extremely limited. Here we conducted in situ field measurements of BVOCs emissions from representative mature evergreen trees by using dynamic branch enclosures at four altitude gradients (600-1690 m a.s.l.) in the Nanling Mountains of southern China. Composition characteristics as well as seasonal and altitudinal variations were analyzed. Standardized emission rates and canopy-scale emission factors were then calculated. Results showed that BVOCs emission intensities in the wet season were generally higher than those in the dry season. Monoterpenes were the dominant BVOCs emitted from most broad-leaved trees, accounting for over 70% of the total. Schima superba, Yushania basihirsuta and Altingia chinensis had relatively high emission intensities and secondary pollutant formation potentials. The localized emission factors of isoprene were comparable to the defaults in the Model of Emissions of Gases and Aerosols from Nature (MEGAN), while emission factors of monoterpenes and sesquiterpenes were 2 to 58 times of those in the model. Our results can be used to update the current BVOCs emission inventory in MEGAN, thereby reducing the uncertainties of BVOCs emission estimations in forested regions of southern China.


Subject(s)
Air Pollutants , Environmental Monitoring , Forests , Volatile Organic Compounds , Volatile Organic Compounds/analysis , China , Air Pollutants/analysis , Trees , Seasons
2.
J Colloid Interface Sci ; 677(Pt B): 271-283, 2025 Jan.
Article in English | MEDLINE | ID: mdl-39146815

ABSTRACT

The task of creating a remarkably stable and effective electrochemical catalyst for efficient hydrogen evolution is arduous, primarily due to the multitude of factors that need to be taken into account for the industrial utilization of Pt. In this work, hybrid formation through in-situ reduction of Pt onto biogenic porous silica (Pt-SiO2) is tested for its use as an efficient catalyst for hydrogen production. Exceptionally high electrocatalytic activity and excellent reusability of catalysts up to 200 cycles have been demonstrated. Pt-SiO2 with low Pt content of 0.48 to 0.82 at% with active catalytic sites exhibit superior catalytic activity with a Tafel slope of 22 mV dec-1 and an overpotential of 28 mV (vs. RHE at 10 mA cm-2) as compared to the Pt wire and previously reported bare Pt-SiO2 (0.65 at% and 0.48 at% of Pt), and hybrid (Pt/Ag) structures formed onto two different biogenic porous SiO2 substrates. The best catalytic performance of the Pt1Ag3 cluster, representing a low Pt concentration, has been validated by Density Functional Theory (DFT) calculations. Here, the high production from the Pt1Ag3 cluster is assigned to the mutual synergistic effect between Pt/Ag atoms. The Pt atoms transfer the excess charge to the nearest Ag neighbors inside the cluster, facilitating hydrogen diffusion on the activated sites. These important findings authenticate the superior hydrogen production at reduced Pt concentration on amine-functionalized biogenic porous silica.

3.
Talanta ; 282: 126946, 2024 Sep 29.
Article in English | MEDLINE | ID: mdl-39357405

ABSTRACT

Sensing biogenic amine (BAs) content is very important for assessing food freshness. To address the limitations such as small color difference values (ΔE) and complex preparation of probes for visualizing the freshness of seafood, a pH-responsive ratiometric fluorescent probe (EnEB) was prepared by Eu(NO3)3, trimeric acid (BTC), and hydrochloric acid norepinephrine (Enr). EnEB emitted blue (446 nm) and red fluorescence (616 nm) originating from Enr and Eu3+, respectively, and exhibiting a fluorescence wavelength difference up to 170 nm. The ratiometric fluorescent signals of EnEB showed a linear correlation with pH in the range of 5.5-8.0. Thus, EnEB can rapidly and precisely detect BAs, such as histamine, tyramine, and spermine, with detection limits and response times of 1.14 µmol/L (3 s), 1.04 µmol/L (8 s), and 0.41 µmol/L (2 s), respectively. Furthermore, an EnEB aerogel was prepared by loading EnEB in a matrix formed by polyvinyl alcohol (PVA) and agarose (AG). EnEB aerogel exhibited excellent acid-base gas-sensing properties. The fluorescence color of EnEB aerogel can change significantly with the deterioration of seafood. When seafood changed from fresh to decayed, the ΔE value of EnEB aerogel was as high as 80.9. Importantly, the results of seafood freshness by naked eye using EnEB aerogel was consistent well with the TVB-N content and the freshness standard stipulated by national food standard, indicating EnEB aerogel can accurately visually and real-time monitor seafood freshness. Furthermore, the strategy for sensing food freshness based on EnEB aerogel also offered multiple color variations to indicate fine freshness levels of seafood. This work provided a convenient, efficient, and accurate approach to assessing the freshness of seafood. Additionally, EnEB also has promising applications in security and anti-counterfeiting.

4.
PeerJ ; 12: e18191, 2024.
Article in English | MEDLINE | ID: mdl-39372718

ABSTRACT

Nanotechnology is an exciting area with great potential for use in biotechnology due to the far-reaching effects of nanoscale materials and their size-dependent characteristics. Silver and other metal nanoparticles have attracted a lot of attention lately because of the exceptional optical, electrical, and antimicrobial characteristics they possess. Silver nanoparticles (AgNPs) stand out due to their cost-effectiveness and abundant presence in the earth's crust, making them a compelling subject for further exploration. The vital efficacy of silver nanoparticles in addressing environmental concerns is emphasized in this thorough overview that dives into their significance in environmental remediation. Leveraging the distinctive properties of AgNPs, such as their antibacterial and catalytic characteristics, innovative solutions for efficient treatment of pollutants are being developed. The review critically examines the transformative potential of silver nanoparticles, exploring their various applications and promising achievements in enhancing environmental remediation techniques. As environmental defenders, this study advocates for intensified investigation and application of silver nanoparticles. Furthermore, this review aims to assist future investigators in developing more cost-effective and efficient innovations involving AgNPs carrying nanoprobes. These nanoprobes have the potential to detect numerous groups of contaminants simultaneously, with a low limit of detection (LOD) and reliable reproducibility. The goal is to utilize these innovations for environmental remediation purposes.


Subject(s)
Environmental Restoration and Remediation , Metal Nanoparticles , Silver , Silver/chemistry , Metal Nanoparticles/chemistry , Metal Nanoparticles/therapeutic use , Environmental Restoration and Remediation/methods , Nanotechnology/methods , Green Chemistry Technology/methods , Environmental Pollutants/chemistry
5.
Sci Total Environ ; : 176827, 2024 Oct 08.
Article in English | MEDLINE | ID: mdl-39389137

ABSTRACT

Seawater and groundwater interactions shape the hydrogeochemical profile of mangrove aquifers, revealing how biogeochemical processes adapt to saline-freshwater mixing via the fluctuating patterns of key hydrochemical indicators and primary biogenic elements. This study, utilizing a multi-level monitoring profile spanning the entire submerged aquifer within a mangrove wetland, analyzed the spatiotemporal dynamics of DO, ORP, pH, alkalinity and biogenic elements (C, N, S). The results revealed that among the basic hydrochemical parameters, total alkalinity showed the most stable spatiotemporal distribution and was positively correlated with salinity. pH demonstrated a significant negative correlation with salinity, whereas the correlations of ORP and DO with salinity were not substantial. The discharge of terrestrial freshwater into the mangrove wetland is marked by hydrogeochemical reactions favoring the input of Mg2+ and DIC, with potential iron mineral precipitation within the aquifer. Spatial distribution of biogenic elements in the groundwater showed no apparent pattern across sampling periods. DOC concentrations ranged from 0.3 to 1.3 mmol/L. Three components of dissolved organic matter were identified using three-dimensional fluorescence spectroscopy, with high molecular weight components (C1 + C2) accounting for an average of 47 to 73 %. Both elevated DOC concentrations and high molecular weight component ratios were primarily found in shallow layers of dense mangrove areas, decreasing with depth. Concentrations of ammonia, nitrite, and nitrate varied dynamically, reflecting active biochemical processes in the shallow to mid-layers of the aquifer. Furthermore, sulfate and sulfide concentrations, ranging from 0 to 26 mmol/L and 0.4 to 576.8 µmol/L, respectively, underscore the interplay of biogeochemical reactions, especially sulfate reduction. These findings highlight valuable insights into the complex biogeochemical processes within mangrove aquifers and provide theoretical guidance for protecting the ecological health of mangrove wetlands.

6.
Front Psychiatry ; 15: 1460631, 2024.
Article in English | MEDLINE | ID: mdl-39381610

ABSTRACT

Mood disorders, including major depressive disorder and bipolar disorder, have a profound impact on more than 300 million people worldwide. It has been demonstrated mood disorders were closely associated with deviations in biogenic amine metabolites, which are involved in numerous critical physiological processes. The peripheral and central alteration of biogenic amine metabolites in patients may be one of the potential pathogeneses of mood disorders. This review provides a concise overview of the latest research on biogenic amine metabolites in mood disorders, such as histamine, kynurenine, and creatine. Further studies need larger sample sizes and multi-center collaboration. Investigating the changes of biogenic amine metabolites in mood disorders can provide biological foundation for diagnosis, offer guidance for more potent treatments, and aid in elucidating the biological mechanisms underlying mood disorders.

7.
BMC Microbiol ; 24(1): 391, 2024 Oct 07.
Article in English | MEDLINE | ID: mdl-39375633

ABSTRACT

BACKGROUND: This study investigates the safety evaluation of enterocin-producing 11 E. mundtii and two E. faecium strains previously isolated from small livestock colostrums. Enterococcus species do not possess Generally Recognized as Safe (GRAS) status. Hence, it is critical to scrutinize enterococci's antibiotic resistance, virulence characteristics, and biogenic amine production capabilities in order to assess their safety before using them as starter or adjunct cultures. RESULTS: Enterococcus strains showed susceptibility to medically significant antibiotics. Multiple-drug resistance (MDR) was found in only E. faecium HC121.4, and its multiple antibiotic resistance (MAR) index was detected to be 0.22. The tetL and aph(3')-IIIa were the most commonly found antibiotic resistance genes in the strains. However, E. mundtii strains HC56.3, HC73.1, HC147.1, and E. faecium strain HC121.4 were detected to lack any of the antibiotic resistance genes examined in this study. Only E. mundtii HC166.3 showed hemolytic activity, while none of the strains engage in gelatinase activity. The strains were identified to have virulence factor genes with a low rate. None of the virulence factor genes could be detected in E. mundtii HC26.1, HC56.3, HC73.1, HC165.3, HC166.8, and E. faecium HC121.4. The E. mundtii HC73.2 strain displayed the highest presence of virulence factor genes, namely gelE, efaAfs, cpd, and ccf. Similarly, the E. mundtii HC112.1 strain showed a significant presence of genes efaAfm, ccf, and acm. There was no decarboxylation of histidine, ornithine, or lysine seen in any of the strains. Nevertheless, E. faecium HC121.4 and HC161.1 strains could decarboxylate tyrosine, but E. mundtii HC26.1, HC56.3, HC73.1, HC73.2, HC112.1, HC147.1, HC155.2, HC165.3, HC166.3, HC166.5, and HC166.8 strains only showed a limited capacity for tyrosine decarboxylation. None of the strains possessed the hdc, odc, or ldc genes, but all of them had the tdc gene. CONCLUSION: The E. mundtii HC56.3 and HC73.1 strains were deemed appropriate for utilization in food production. Using the remaining 11 strains as live cultures in food production activities could pose a possible risk to consumer health.


Subject(s)
Anti-Bacterial Agents , Colostrum , Enterococcus , Goats , Microbial Sensitivity Tests , Animals , Sheep , Enterococcus/genetics , Enterococcus/isolation & purification , Enterococcus/metabolism , Enterococcus/pathogenicity , Enterococcus/classification , Enterococcus/drug effects , Anti-Bacterial Agents/pharmacology , Colostrum/microbiology , Bridged-Ring Compounds/metabolism , Drug Resistance, Multiple, Bacterial/genetics , Virulence Factors/genetics , Enterococcus faecium/genetics , Enterococcus faecium/isolation & purification , Enterococcus faecium/metabolism , Enterococcus faecium/pathogenicity , Enterococcus faecium/drug effects , Virulence/genetics
8.
J Nanobiotechnology ; 22(1): 617, 2024 Oct 12.
Article in English | MEDLINE | ID: mdl-39395991

ABSTRACT

BACKGROUND: Tomato (Solanum lycopersicum L.) production is severely threatened by bacterial wilt, caused by the phytopathogenic bacterium Ralstonia solanacearum. Recently, nano-enabled strategies have shown tremendous potential in crop disease management. OBJECTIVES: This study investigates the efficacy of biogenic nanoformulations (BNFs), comprising biogenic silica nanoparticles (SiNPs) and melatonin (MT), in controlling bacterial wilt in tomato. METHODS: SiNPs were synthesized using Zizania latifolia leaves extract. Further, MT containing BNFs were synthesized through the one-pot approach. Nanomaterials were characterized using standard characterization techniques. Greenhouse disease assays were conducted to assess the impact of SiNPs and BNFs on tomato plant immunity and resistance to bacterial wilt. RESULTS: The SiNPs and BNFs exhibited a spherical morphology, with particle sizes ranging from 13.02 nm to 22.33 nm for the SiNPs and 17.63 nm to 21.79 nm for the BNFs, indicating a relatively uniform size distribution and consistent shape across both materials. Greenhouse experiments revealed that soil application of BNFs outperformed SiNPs, significantly enhancing plant immunity and reducing bacterial wilt incidence by 78.29% in tomato plants by maintaining oxidative stress homeostasis via increasing the activities of antioxidant enzymes such as superoxide dismutase (31.81%), peroxidase (32.9%), catalase (32.65%), and ascorbate peroxidase (47.37%) compared to untreated infected plants. Additionally, BNFs induced disease resistance by enhancing the production of salicylic acid and activating defense-related genes (e.g., SlPAL1, SlICS1, SlNPR1, SlEDS, SlPD4, and SlSARD1) involved in phytohormones signaling in infected tomato plants. High-throughput 16 S rRNA sequencing revealed that BNFs promoted growth of beneficial rhizosphere bacteria (Gemmatimonadaceae, Ramlibacter, Microscillaceae, Anaerolineaceae, Chloroplast and Phormidium) in both healthy and diseased plants, while suppressing R. solanacearum abundance in infected plants. CONCLUSION: Overall, these findings suggest that BNFs offer a more promising and sustainable approach for managing bacterial wilt disease in tomato plants.


Subject(s)
Melatonin , Nanoparticles , Plant Diseases , Ralstonia solanacearum , Rhizosphere , Silicon Dioxide , Solanum lycopersicum , Solanum lycopersicum/microbiology , Ralstonia solanacearum/drug effects , Plant Diseases/microbiology , Plant Diseases/prevention & control , Nanoparticles/chemistry , Silicon Dioxide/chemistry , Silicon Dioxide/pharmacology , Melatonin/pharmacology , Disease Resistance/drug effects , Plant Immunity/drug effects , Immunomodulating Agents/pharmacology , Immunomodulating Agents/chemistry , Signal Transduction/drug effects , Plant Leaves/chemistry , Plant Leaves/microbiology
9.
Sci Total Environ ; 954: 176668, 2024 Oct 05.
Article in English | MEDLINE | ID: mdl-39370005

ABSTRACT

Biogenic volatile organic compounds (BVOCs) emitted by tropical plants represent a significant proportion of global emissions, but the in-situ BVOC measurements in tropical rainforests are extremely sparse. Herein, a vehicle-mounted mobile monitoring system was developed for in-situ online investigations of BVOC emissions from thirty representative tree species in the tropical rainforests of Hainan Island, southern China. The results showed that monoterpenes were the primary BVOCs emitted from most broadleaf trees. Isoprene, sabinene, γ-terpinene and ß-ocimene were the most abundant BVOCs. Localized canopy-scale emission factors (EFs) exhibited notable discrepancies with the defaults in the Model of Emissions of Gases and Aerosols from Nature (MEGAN), specifically with isoprene EFs being slightly lower than the model, while the EFs for monoterpenes and sesquiterpenes were 1 to 27 times higher than those in MEGAN. The BVOC emission inventory for the predominant mature forest species in Hainan Island in 2023 was further estimated to be 244.43 Gg C·yr-1, with isoprene and monoterpenes accounting for 74 % and 16 %, respectively. Additionally, unimodal monthly variation patterns were revealed, with BVOC emissions peaked in July (30.08 Gg C·yr-1) and bottomed in January (8.84 Gg C·yr-1). This study demonstrates the potential and versatility of the applied mobile platform for in-situ online measurements of plant volatiles. Our findings provide important data support for reducing uncertainties in BVOC emission estimations in tropical rainforests and for evaluating their health benefits in the context of forest therapy.

10.
Environ Technol ; : 1-12, 2024 Sep 02.
Article in English | MEDLINE | ID: mdl-39221764

ABSTRACT

Secondary iron minerals play significant roles in the immobilization of As under acidic conditions, such as acid mine drainage. However, previous research works have not clarified the effect of pH on As(III) removal through coprecipitation with secondary minerals. Therefore, in this study, we aimed to investigate the discrepancy in As(III) coprecipitation with biogenic synthesized schwertmannite (Sch) and jarosite (Jar) at different pH values. For this, concentrations of Fe2+, TFe, SO42-, and As(III) in shake flasks were monitored during an overall incubation period of 83 h at initial pH of 1.5, 2.0, and 2.5. In addition, the physicochemical properties of collected minerals after incubation were identified using scanning electron microscopy, X-ray diffraction, pore size distribution, and Brunauer - Emmett - Teller surface area analyses. Our results showed that almost no mineral synthesis and no As(III) removal were detected in coprecipitated schwertmannite (Co-Sch) system and coprecipitated jarosite (Co-Jar) system at an initial pH of 1.5. The TFe precipitation efficiencies and As(III) removal efficiencies increased considerably and morphologies of Co-Sch and Co-Jar improved significantly when the initial pH value increased from 2.0-2.5. The maximum TFe precipitation efficiency and As(III) removal efficiency reached 30.8% and 89.6%, respectively, for the Co-Sch system, and were 47.5% and 37.4%, respectively, for the Co-Jar system. The overall results show that pH significantly affects the formation of Co-Sch and Co-Jar and the behaviour of As(III) coprecipitation.

11.
Environ Pollut ; 361: 124895, 2024 Sep 06.
Article in English | MEDLINE | ID: mdl-39243933

ABSTRACT

Variability in biogenic volatile organic compound (BVOC) emissions across species and seasons poses challenges for accurate regional emission estimates and effective ozone (O3) control policies. To address this issue, we conducted in-situ measurements of emission factors for six dominant tree species in Beijing across four seasons. Subsequently, we developed monthly dynamic standard emission factors (SER-MDs) to model monthly BVOC emissions and their impacts on O3 formation at citywide and district levels. Our observations revealed pronounced seasonal differences in the BVOC composition and emission rates, as well as their responsiveness to monthly average temperature. By introducing the SER-MDs, we estimated BVOC emissions from the dominant tree species in Beijing to be 38.2 Gg yr-1, with monoterpenes and isoprene contributing 49% and 11%, respectively. This calculation reduced the overestimation associated with constant standard emission factors by 31%-38% at district level. The estimates also revealed regional differences in plant compositions rather than simple feedback from regional temperature and photosynthetically active radiation periods. Under these conditions, the maximum monthly BVOC-induced O3 concentration occurred in August and ranged from 4 to 17 µg m-3 across districts, with isoprene being the dominant contributor. Quercus mongolica and Populus tomentosa played significant roles in the formation of BVOC-induced O3 due to their strong isoprene emitting potential in July-August. These results indicate the necessity of introducing species-specific rhythms of BVOC emissions from dominant species in the development of urban BVOC emission inventories. This approach could inform the development of air pollution management policies that are consistent with the local vegetation composition and O3 pollution characteristics. For Beijing and other similar northern cities, reducing the use of tree species emitting substantial amounts of isoprene during periods of regional peak ambient O3 concentrations could constitute an effective nature-based solution for improving urban air quality in the future.

12.
Food Microbiol ; 124: 104609, 2024 Dec.
Article in English | MEDLINE | ID: mdl-39244361

ABSTRACT

Fino Sherry wine undergoes biological aging carried out by a velum of flor yeast within a traditional dynamic system known as "criaderas and solera". The complex microbiota of biofilm-forming Saccharomyces cerevisiae strains play a crucial role in shaping the distinctive organoleptic profile of these types of wines. For this reason, the aim of this study is to analyze the changes produced by different flor yeast strains in the volatilome and the aminogram of different wines from the criaderas and solera system during biological aging in the laboratory, simulating a flor yeast velum condition at different stages of the system. Results suggest that each strain metabolizes wine differently, finding that depending on the wine, some strains are better suited for the process than others. In addition, it is found that the content of biogenic amines in Fino Sherry wines, previously attributed to malolactic bacteria, varies according to the yeast strain metabolizing the wine, suggesting that flor yeast could be used to modify biogenic amines content during biological aging. Results indicate that the use of selected flor yeast starters in biological aging may be of interest to modulate some parameters during Fino Sherry wine aging.


Subject(s)
Fermentation , Saccharomyces cerevisiae , Volatile Organic Compounds , Wine , Wine/analysis , Wine/microbiology , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae/growth & development , Volatile Organic Compounds/metabolism , Volatile Organic Compounds/analysis , Nitrogen Compounds/metabolism , Biogenic Amines/metabolism , Biogenic Amines/analysis
13.
Luminescence ; 39(9): e4891, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39229976

ABSTRACT

Lepidagathis cristata (L. cristata) plant produces reducing and capping agents; this study utilized microwave-assisted biogenic synthesis to manufacture silver nanoparticles (AgNPs) using this plant. The structure, morphology, and crystallinity phases of prepared nanoparticles (NPs) were characterized by ultraviolet-visible spectroscopy (UV-viz), powder X-ray diffraction (XRD), Fourier-transform infrared (FTIR) spectroscopy, and scanning electron microscopy (SEM). Biologically synthesized AgNPs were treated against pathogenic bacteria species including Escherichia coli (E. coli), Bacillus subtilis (B. subtilis), and Staphylococcus aureus (S. aureus) and its highest zone of inhibition 10 ± 1.45 mm, 10 ± 0.74 mm, and 6 ± 0.43 mm, respectively, at the concentration of 100 µg/mL. The cytotoxic activity of AgNPs against MCF-7 breast cancer cells revealed significant growth inhibition by inhibiting cell viability, inhibitory concentration of 50% (IC50) of NPs observed at 55.76 µg/mL concentration. Finally, our findings concluded that the L. cristata-mediated biosynthesized AgNPs proved its potential antibacterial and neoplastic properties against MCF cells by endorsing the inhibition of cell proliferation especially with low concentration.


Subject(s)
Anti-Bacterial Agents , Drug Screening Assays, Antitumor , Metal Nanoparticles , Microbial Sensitivity Tests , Plant Extracts , Silver , Silver/chemistry , Silver/pharmacology , Metal Nanoparticles/chemistry , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/chemical synthesis , Humans , MCF-7 Cells , Plant Extracts/chemistry , Plant Extracts/pharmacology , Bacillus subtilis/drug effects , Escherichia coli/drug effects , Cell Survival/drug effects , Cell Proliferation/drug effects , Breast Neoplasms/drug therapy , Breast Neoplasms/pathology , Breast Neoplasms/metabolism , Staphylococcus aureus/drug effects , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents, Phytogenic/pharmacology , Antineoplastic Agents, Phytogenic/chemistry , Antineoplastic Agents, Phytogenic/chemical synthesis , Water/chemistry , Dose-Response Relationship, Drug , Female
14.
J Environ Manage ; 369: 122363, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39232323

ABSTRACT

Green roof systems have been developed to improve the environmental, economic, and social aspects of sustainability. Selecting the appropriate version of the green roof composition plays an important role in the life cycle assessment of a green roof. In this study, 10 compositions of an intensive green roof for moderate zone and 4 green roof compositions for different climatic conditions were designed and comprehensively assessed in terms of their environmental and economic impacts within the "Cradle-to-Cradle" system boundary. The assessment was carried out over a 50-year period for a moderate climate zone. The results showed that asphalt strips and concrete slab produced the highest total emissions. It was found that most greenhouse gases emissions were released in the operational energy consumption phase and in the production phase. The energy consumption phase (48.78%) for automatic irrigation and maintenance caused the highest Global Warming Potential (GWP) value (758.39 kg CO2e) in the worst variant, which also caused the highest life cycle cost (878.47€). On the contrary, in the best variant, planting more vegetation and lower maintenance and irrigation requirements led to a reduction in GWP (445.0 kg CO2e), but in terms of cost (506.6€) this composition didn't represent the best variant. The Global Warming Potential Biogenic (GWP-bio) compared to the Global Warming Potential Total (GWP-total) represents a proportion ranging from 0.8% to 78% depending on the proposed vegetation. Overall higher biogenic carbon values (up to 1525 kg CO2e) were observed for the proposed tall vegetation of Magnolia, Red Mulberry, Hawthorne, Cherry, and Crab-apple Tree. Based on the results of the multicriteria analysis, which included core environmental & economic parameters, biogenic carbon emission levels, the outcome of this paper proposed optimal green roof composition. Optimal intensive green roof composition was subjected to a sensitivity analysis to determine the impact of changing climatic conditions on CO2 emissions and life cycle costs. The results of the sensitivity analysis show that the optimal variant of the green roof can be implemented in the cold and subtropical zone with regard to CO2 emissions, but not with regard to life cycle costs.


Subject(s)
Global Warming , Conservation of Natural Resources , Greenhouse Gases/analysis , Construction Materials , Hydrocarbons
15.
Int J Mol Sci ; 25(17)2024 Aug 31.
Article in English | MEDLINE | ID: mdl-39273447

ABSTRACT

Nanotechnology has gained popularity in recent years due to its wide-ranging applications within the scientific community. The three main methods for synthesizing nanoparticles are physical, chemical, and biological. However, the adverse effects associated with physical and chemical methods have led to a growing interest in biological methods. Interestingly, green synthesis using plants has gained prominence in developing new treatments for bacterial infections. Zinc oxide nanoparticles (ZnO NPs) produced using environmentally friendly methods are more biocompatible and have potential applications as antibacterial agents in the biomedical field. As a result, this review discusses the green synthesis of ZnO NPs, factors influencing optimal synthesis, characterization techniques, and the antibacterial activity of some plant-mediated ZnO NPs. It also provides a comprehensive and analytical exploration of ZnO NP biosynthesis, the role of phytochemical compounds as reducing and stabilizing agents, the mechanism of action of their antibacterial properties and further highlights the challenges and prospects in this innovative research area.


Subject(s)
Anti-Bacterial Agents , Green Chemistry Technology , Metal Nanoparticles , Zinc Oxide , Zinc Oxide/chemistry , Zinc Oxide/pharmacology , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/chemical synthesis , Metal Nanoparticles/chemistry , Green Chemistry Technology/methods , Humans , Bacteria/drug effects
16.
Plants (Basel) ; 13(17)2024 Aug 24.
Article in English | MEDLINE | ID: mdl-39273843

ABSTRACT

The application of nanotechnology in agriculture has received much attention in order to improve crop yield, quality and food safety. In the present study, a Cd-tolerant endophytic fungus Colletotrichum fructicola KL19 was first ever reported to produce SeNPs, and the production conditions were optimized using the Box-Behnken design in the Response Surface Methodology (RSM-BBD), achieving a peak yield of 1.06 mM under optimal conditions of 2.62 g/20 mL biomass, 4.56 mM Na2SeO3, and pH 6.25. Following this, the properties of the biogenic SeNPs were elucidated by using TEM, DLS, and FTIR, in which the 144.8 nm spherical-shaped SeNPs were stabilized by different functional groups with a negative zeta potential of -18.3 mV. Furthermore, strain KL19 and SeNPs (0, 5, 10, 20 and 50 mg/L) were inoculated in the root zone of small-leaf spinach (Spinacia oleracea L.) seedlings grown in the soil with 33.74 mg/kg Cd under controlled conditions for seven weeks. Impressively, compared with Cd stress alone, the strain KL19 and 5 mg/L SeNPs treatments significantly (p < 0.05) exhibited a reduction in Cd contents (0.62 and 0.50 folds) within the aboveground parts of spinach plants and promoted plants' growth by improving the leaf count (0.92 and 1.36 folds), fresh weight (2.94 and 3.46 folds), root dry weight (4.00 and 5.60 folds) and root length (0.14 and 0.51 folds), boosting total chlorophyll synthesis (0.38 and 0.45 folds), enhancing antioxidant enzymes (SOD, POD) activities, and reducing the contents of reactive oxygen species (MDA, H2O2) in small-leaf spinach under Cd stress. Overall, this study revealed that utilizing endophytic fungus C. fructicola or its derived SeNPs could mitigate reactive oxygen species generation by enhancing antioxidant enzyme activity as well as diminish the absorption and accumulation of Cd in small-leaf spinach, promoting plant growth under Cd stress.

17.
J Microbiol Biotechnol ; 34(10): 1-21, 2024 Aug 30.
Article in English | MEDLINE | ID: mdl-39263788

ABSTRACT

Fungi play a significant role in the deterioration of various types of monuments. Therefore, the protection of ancient monuments from fungal attacks is an important goal that must attract the attention of researchers worldwide. A total of 69 fungal isolates were recovered from 22 deteriorated objects compromising paper, textiles, wood, and stone in the National Museum of Egyptian Civilization (NMEC) storeroom, Cairo, Egypt. The isolates were identified as 12 different species categorized into three different genera, namely, Aspergillus (9 species), Penicillium (2 species) and Trichoderma (1 species). Among them, Aspergillus fumigatus was the most prevalent species. Three essential oils were assessed for antifungal activity and compared with the antifungal effects of five synthetic microcides to identify a natural inhibitory treatment. Thyme oil and sodium azide were found to be the most active growth inhibitors, with minimum inhibitory concentrations (MICs) of 625 and 100 ppm, with inhibition zone diameters of 19.0 ± 0.70 - 23.76 ± 1.15 and 13.30 ± 0.35 - 19.66 ± 0.54 mm, respectively. An in vitro simulation of the biodeterioration process was conducted using spores of the A. fumigatus strain NMEC-PSTW.1 on model cubes made of paper, textile, wood, and stone materials. The changes in the characteristics of the artificially deteriorated materials were analyzed using environmental scanning electron microscopy/energy dispersive X-ray spectroscopy and Fourier transform infrared spectroscopy. The results revealed changes in the morphology, physical properties, and chemical composition induced by A. fumigatus NMEC-PSTW.1. Overall, thyme oil is recommended as a natural inhibitor to protect carbonate and cellulosic monuments in NMEC against fungal attack.

18.
Mar Environ Res ; 202: 106738, 2024 Sep 04.
Article in English | MEDLINE | ID: mdl-39265327

ABSTRACT

Seismic activity, erosion, sedimentation, and extreme temperatures can cause compounding large-scale disturbances to marine organisms, like large intertidal foundational seaweeds. In November 2016, a 7.8 Mw earthquake uplifted 130 km of coastline by 0.5-6 m near Kaikoura, New Zealand and thereby increased intertidal desiccation, aerial temperatures, reef erosion, and water turbidity. Furthermore, stress on uplifted intertidal species was compounded by unprecedented marine heatwaves over the summer of 2017/18. Here we documented altered dominances of large foundational seaweed and possible flow-on effects on seaweed-associated flora and fauna, following the uplift and heatwaves. These compounding disturbances caused instant high canopy loss of the dominant primary foundation species - the large perennial canopy-forming southern bull kelp Durvillaea antarctica - and no post-disturbance recovery, suggesting a maintenance threshold has been exceeded. After canopy loss of the primary foundation species, alternative foundation species - i.e., subordinate competitors under pre-disturbance conditions (the perennial canopy-forming fucoids Carpophyllum maschalocarpum, Cystophora scalaris, and Hormosira banksii) increased in abundance. Furthermore, field observations of attachment interaction networks demonstrated that the primary and alternative foundation species facilitated different sessile and mobile taxa. For example, the smaller and more morphologically complex C. maschalocarpum, H. banksii, and C. scalaris, supported more novel attachment associations, whereas the larger Durvillaea supported longer attachment chains. Overall, our results highlight abrupt and potentially long-lasting ecological changes after compounding disturbances, which altered dominance hierarchies. Alternative foundation species are now more common than the pre-disturbance primary foundation species, with flow-on effects on wider communities that depend on biogenic habitats.

19.
Molecules ; 29(18)2024 Sep 15.
Article in English | MEDLINE | ID: mdl-39339385

ABSTRACT

Oligoamines in cellular metabolism carry extremely diverse biological functions (i.e., regulating Ca2+-influx, neuronal nitric oxide synthase, membrane potential, Na+, K+-ATPase activity in synaptosomes, etc.). Furthermore, they also act as longevity agents and have a determinative role in autophagy, cell growth, proliferation, and death, while oligoamines dysregulation is a key in a variety of cancers. However, many of their mechanisms of actions have just begun to be understood. In addition to the numerous biosensing methods, only a very few simple small molecule-based tests are available for their selective but reversible tracking or fluorescent labeling. Motivated by this, we present herein a new fluorescent bis(acridino)-crown ether as a sensor molecule for biogenic oligoamines. The sensor molecule can selectively distinguish oligoamines from aliphatic mono- and diamino-analogues, while showing a reversible 1:2 (host:guest) complexation with a stepwise binding process accompanied by a turn-on fluorescence response. Both computational simulations on molecular docking and regression methods on titration experiments were carried out to reveal the oligoamine-recognition properties of the sensor molecule. The new fluorescent chemosensor molecule has a high potential for molecular-level functional studies on the oligoamine systems in cell processes (cellular uptake, transport, progression in cancers, etc.).


Subject(s)
Crown Ethers , Molecular Docking Simulation , Spermine , Crown Ethers/chemistry , Spermine/metabolism , Spermine/chemistry , Fluorescent Dyes/chemistry , Amines/chemistry , Amines/metabolism , Acridines/chemistry
20.
Environ Sci Technol ; 2024 Sep 26.
Article in English | MEDLINE | ID: mdl-39327447

ABSTRACT

Aerosol particles originating from the Qinghai-Tibet Plateau (QTP) readily reach the free troposphere, potentially affecting global radiation and climate. Although new particle formation (NPF) is frequently observed at such high altitudes, its precursors and their underlying chemistry remain poorly understood. This study presents direct observational evidence of anthropogenic influences on biogenic NPF on the southeastern QTP, near the Himalayas. The mean particle nucleation rate (J1.7) is 2.6 cm-3 s-1, exceeding the kinetic limit of sulfuric acid (SA) nucleation (mean SA: 2.4 × 105 cm-3). NPF is predominantly driven by highly oxygenated organic molecules (HOMs), possibly facilitated by low SA levels. We identified 1538 ultralow-volatility HOMs driving particle nucleation and 764 extremely low-volatility HOMs powering initial particle growth, with mean total concentrations of 1.5 × 106 and 3.7 × 106 cm-3, respectively. These HOMs are formed by atmospheric oxidation of biogenic precursors, unexpectedly including sesquiterpenes and diterpenes alongside the commonly recognized monoterpenes. Counterintuitively, over half of HOMs are organic nitrates, mainly produced by interacting with anthropogenic NOx via RO2+NO terminations or NO3-initiated oxidations. These findings advance our understanding of NPF mechanisms in this climate-sensitive region and underscore the importance of heavy terpene and NOx-influenced chemistry in assessing anthropogenic-biogenic interactions with climate feedbacks.

SELECTION OF CITATIONS
SEARCH DETAIL