Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters








Publication year range
1.
Talanta ; 272: 125824, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38422906

ABSTRACT

In this study, a self-powered biosensor based on an enzymatic biofuel cell was proposed for the first time for the ultrasensitive detection of soluble CD44 protein. The as-prepared biosensor was composed of the co-exist aptamer and glucose oxidase bioanode and bilirubin oxidase modified biocathode. Initially, the electron transfer from bioanode to biocathode was hindered due to the presence of the aptamer with high insulation, generating a low open-circuit voltage (EOCV). Once the target CD44 protein was present, it was recognized and captured by the aptamer at the bioanode, thus the interaction between the target CD44 protein and the immobilized aptamer caused the structural change at the surface of the electrode, which facilitated the transfer of electrons. The EOCV showed a good linear relationship with the logarithm of the CD44 protein concentrations in the range of 0.5-1000 ng mL-1 and the detection limit was 0.052 ng mL-1 (S/N = 3). The sensing platform showed excellent anti-interference performance and outstanding stability that maintained over 97% of original EOCV after 15 days. In addition, the relative standard deviation (1.40-1.96%) and recovery (100.23-101.31%) obtained from detecting CD44 protein in real-life blood samples without special pre-treatment indicated that the constructed biosensor had great potential for early cancer diagnosis.


Subject(s)
Bioelectric Energy Sources , Biosensing Techniques , Electron Transport , Glucose Oxidase/chemistry , Oligonucleotides/metabolism , Electrodes , Limit of Detection
2.
Eur J Pharm Sci ; 195: 106711, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38290610

ABSTRACT

Methotrexate (MTX) is a first-line drug in treating psoriasis because of its strong anti-proliferation and anti-inflammatory effects. However, systemic administration of MTX will lead to many side effects, such as gastrointestinal irritation, liver and kidney toxicity, etc. Herein, we developed liposome-loaded microneedles (MNs) system to improve transdermal efficiency, which was used to overcome the problems of low transdermal efficiency and poor therapeutic effect of traditional transdermal drug delivery methods. Hyaluronic acid (HA) was modified on the surface of MTX-loaded liposomes. The interaction of HA and CD44 could increase the adhesion of HA-MTX-Lipo to HaCaT cells, thereby promoting the apoptosis or death of HaCaT cells. Results indicated HA-MTX-Lipo MNs could inhibit the development of psoriasis and reduce the degree of skin erythema, scaling, and thickening. The mRNA levels of proinflammatory cytokines such as IL-17A, IL-23, and TNF-α were decreased. The epidermal thickness and proliferative cell-associated antigen Ki67 expression were also reduced. Specifically, the expression of mRNA levels of proinflammatory cytokines was down-regulated. The MNs transdermal delivery of HA-modified-MTX liposomes provided a promising method for treating psoriasis.


Subject(s)
Methotrexate , Psoriasis , Humans , Methotrexate/therapeutic use , Methotrexate/pharmacology , Liposomes , Hyaluronic Acid/pharmacology , Psoriasis/drug therapy , Administration, Cutaneous , Drug Delivery Systems/methods , Cytokines , RNA, Messenger
3.
Cancer Biol Ther ; 24(1): 2195363, 2023 12 31.
Article in English | MEDLINE | ID: mdl-37005380

ABSTRACT

CD44 protein and its variant isoforms are expressed in cancer stem cells (CSCs), and various CD44 isoforms can have different functional roles in cells. Our goal was to investigate how different CD44 isoforms contribute to the emergence of stem cell (SC) overpopulation that drives colorectal cancer (CRC) development. Specific CD44 variant isoforms are selectively expressed in normal colonic SCs and become overexpressed in CRCs during tumor development. We created a unique panel of anti-CD44 rabbit genomic antibodies to 16 specific epitopes that span the entire length of the CD44 molecule. Our panel was used to comprehensively investigate the expression of different CD44 isoforms in matched pairs (n = 10) of malignant colonic tissue and adjacent normal mucosa, using two (IHC & IF) immunostaining approaches. We found that: i) CD44v8-10 is selectively expressed in the normal human colonic SC niche; ii) CD44v8-10 is co-expressed with the SC markers ALDH1 and LGR5 in normal and malignant colon tissues; iii) colon carcinoma tissues frequently (80%) stain for CD44v8-10 while staining for CD44v6 was less frequent (40%). Given that CD44v8-10 expression is restricted to cells in the normal human colonic SC niche and CD44v8-10 expression progressively increases during CRC development, CD44v8-10 expression likely contributes to the SC overpopulation that drives the development and growth of colon cancers. Since the CD44 variant v8-10 epitope is located on CD44's extracellular region, it offers great promise for targeted anti-CSC treatment approaches.


Subject(s)
Carcinoma , Colonic Neoplasms , Stem Cell Niche , Animals , Humans , Carcinoma/genetics , Carcinoma/pathology , Colonic Neoplasms/genetics , Colonic Neoplasms/pathology , Hyaluronan Receptors/genetics , Hyaluronan Receptors/metabolism , Protein Isoforms/genetics , Protein Isoforms/metabolism , Stem Cell Niche/genetics
4.
Rev. Assoc. Med. Bras. (1992, Impr.) ; Rev. Assoc. Med. Bras. (1992, Impr.);69(7): e20230371, 2023. tab, graf
Article in English | LILACS-Express | LILACS | ID: biblio-1449106

ABSTRACT

SUMMARY OBJECTIVE: The expression of cytotoxic T lymphocyte-associated antigen 4, E-cadherin, and CD44 in the area of tumor budding was investigated in breast carcinomas in our study. METHODS: Tumor budding was counted at the invasive margins in 179 breast carcinomas. To understand the microenvironment of tumor budding, we examined the expression status of the immune checkpoint molecules such as cytotoxic T lymphocyte-associated antigen 4, E-cadherin, and CD44. RESULTS: Tumors were separated into low (≤5) and high tumor budding groups (>5) based on the median budding number. Lymphovascular, perineural invasion, and the number of metastatic lymph nodes were significantly higher in high-grade budding tumors (p=0.001, p<0.001, and p=0.019, respectively). Tumor-infiltrating lymphocytes were significantly higher in tumors without tumor buddings (p<0.001). When the number of budding increases by one unit, overall survival decreases by 1.07 times (p=0.013). Also, it increases the risk of progression by 1.06 times (p=0.048). In high tumor budding groups, the cytotoxic T lymphocyte-associated antigen 4 staining percentage of lymphocytes was significantly higher (p=0.026). With each increase in the number of buds, an increase in the percentage of cytotoxic T lymphocyte-associated antigen 4 staining was seen in lymphocytes in the microenvironment of TB (p=0.034). CONCLUSION: Tumor budding could predict poor prognosis in breast carcinomas, and anti-cytotoxic T lymphocyte-associated antigen 4 immunotherapies may be beneficial in patients with high tumor budding tumors.

5.
Biosens Bioelectron ; 208: 114217, 2022 Jul 15.
Article in English | MEDLINE | ID: mdl-35367702

ABSTRACT

Measuring cancer biomarkers at ultralow detection limit and high sensitivity could be a promising tool for early diagnosis, monitoring treatment and post-treatment recurrence. Soluble CD44 is a promising diagnostic and prognostic biomarker in several types of cancer including gastric, colon and breast cancer. Several highly sensitive biosensors have been built to measure this important biomarker. However, they did not reach attomolar level of detection. The aim of this work was to build a biosensor capable of detecting CD44 concentrations down to attomolar (aM) level while measuring it in a wide concentration range. Herein, we demonstrate a biosensor that offers 4 key advantages over existing platforms for CD44 detection: 1) detection of CD44 was carried out in a diluted serum down to attomolar level (4.68 aM) which is about 6 orders of magnitude lower than that of a traditional ELISA; 2) fabrication of the sensor is done in a fast way using inexpensive materials making it a disposable fiber optic biosensor; 3) detection of CD44 was performed in a wide dynamic range previously not shown in other similar biosensors; 4) a proof-of-concept experiment was performed using the biosensor to embed it in a catheter to measure the protein in flow conditions.


Subject(s)
Biosensing Techniques , Breast Neoplasms , Biomarkers, Tumor , Female , Fiber Optic Technology , Humans , Hyaluronan Receptors , Limit of Detection , Optical Fibers
6.
J. oral res. (Impresa) ; 9(6): 449-456, dic. 31, 2020. ilus, tab
Article in English | LILACS | ID: biblio-1178938

ABSTRACT

Objetive: To determine the expressions of the bone surface marker CD44 in samples of alveolar bone previously regenerated with allograft, xenograft, and mixed, using the technique of guided bone regeneration. Material and Methods: This exploratory study was approved by the institutional research and ethics committee. By means of intentional sampling and after obtaining informed consent for tissue donation, 20 samples of alveolar bone previously regenerated with guided bone regeneration therapy with particulate bone graft and membrane were taken during implant placement. The samples were stained with hematoxylin-eosin for histological analysis, and by immunohistochemistry for the detection of CD44. Results: Sections with hematoxylin-eosin showed bone tissue with the presence of osteoid matrix and mature bone matrix of usual appearance. Of the CD44+ samples, 80% were allograft and 20% xenograft. The samples with allograft-xenograft were negative. There were no differences in the intensity of CD44 expression between the positive samples. The marker was expressed in osteocytes, stromal cells, mononuclear infiltrate, and some histiocytes. Eighty percent of the CD44+ samples and 100% of the samples in which 60 or more cells were labelled corresponded to allografts (p=0.000). A total of 67% of the samples from the anterior sector, and 40% from the posterior sector were CD44+ (p=0.689). Conclusion: This study shows for the first time that guided bone regeneration using allografts is more efficient for the generation of mature bone determined by the expression of CD44, compared to the use of xenografts and mixed allograft-xenograft, regardless of the regenerated anatomical area.


Objetivo: Determinar la expresión del marcador de membrana óseo CD44 en muestras de hueso alveolar previamente regenerado con aloinjerto, xenoinjerto y mezcla mediante la técnica de regeneración ósea guiada. Material y Métodos: Con aval del Comité de Investigación y Ética, se realizó un estudio exploratorio. Por muestreo intencional y firma de consentimiento informado de donación, se tomaron durante la colocación del implante, 20 muestras de hueso alveolar previamente regenerado con terapia de regeneración ósea guiada con injerto óseo particulado y membrana. Las muestras fueron teñidas con hematoxilina-eosina para el análisis histológico y por inmunohistoquímica para la detección del CD44. Resultados: : Los cortes con hematoxilina-eosina mostraron tejido óseo con presencia de matriz osteoide y matriz ósea madura de aspecto usual. De las muestras CD44+, 80% fueron de aloinjerto y 20% de xenoinjerto. Las muestras con aloinjerto-xeoninjerto fueron negativas. No hubo diferencias en la intensidad de la expresión del CD44 entre las muestras positivas. El marcador se expresó en osteocitos, células estromales, infiltrado mononuclear y algunos histiocitos. El 80% de las muestras CD44+ y el 100% de las muestras con marcación de 60 o más células correspondían a aloinjertos (p=0,000). El 67% de las muestras del sector anterior y el 40% del sector posterior fueron CD44+ (p=0,689). Conclusión: Este estudio muestra por primera vez que la regeneración ósea guiada usando aloinjertos, es más eficiente para la generación de hueso maduro determinado por la expresión de CD44, comparado con el uso de xenoinjertos y mezcla de aloinjerto-xenoinjerto, independientemente del sector anatómico regenerado.


Subject(s)
Humans , Male , Female , Hyaluronan Receptors/metabolism , Alveolar Bone Grafting , Osteocytes , Bone Regeneration , Dental Implants , Hyaluronan Receptors/genetics , Allografts , Heterografts
7.
Urolithiasis ; 48(2): 109-116, 2020 Apr.
Article in English | MEDLINE | ID: mdl-31506763

ABSTRACT

Nephrolithiasis is a very common disease in which cell-crystal adhesion is an essential mechanism for kidney stone formation. This study has explored the anti-adhesion function of the microRNA, miR-34a, by targeting CD44, a cell surface receptor, in human renal epithelial (HK-2) cells. The expression of CD44 was monitored by qPCR and western blot. A luciferase assay validated the target of miR-34a in CD44 3' UTR. Immunofluorescence staining under confocal microscopy was used to detect the cell-crystal adhesion effects in vitro. Pizzolato staining was performed to examine the adhesion role of miR-34a in vivo. In HK-2 cells, miR-34a was down-regulated and CD44 was up-regulated when exposed to calcium oxalate monohydrate crystals. Moreover, miR-34a negatively regulated the expression of CD44. According to the luciferase report assay, miR-34a direct targeted a binding site in the CD44 3'UTR. In vitro experiments, miR-34a overexpression inhibited CD44 expression and cell-crystals adhesion; whereas CD44 overexpression showed reversed results. Furthermore, miR-34a suppressed cell-crystals adhesion and stone formation in vivo. These findings indicate that miR-34a targets CD44 in HK-2 cells and inhibits cell-crystal adhesion both in vitro and in vivo. Based on these results, miR-34a may be a potential therapeutic target for renal stone disease.


Subject(s)
Cell Adhesion/genetics , Epithelial Cells/pathology , Hyaluronan Receptors/genetics , Kidney Calculi/genetics , MicroRNAs/metabolism , Calcium Oxalate/metabolism , Cell Line , Down-Regulation , Epithelial Cells/metabolism , Gene Expression Profiling , Humans , Kidney Calculi/drug therapy , Kidney Calculi/pathology , MicroRNAs/agonists , Real-Time Polymerase Chain Reaction
8.
Acta Clin Croat ; 58(3): 455-462, 2019 Sep.
Article in English | MEDLINE | ID: mdl-31969757

ABSTRACT

Glioblastoma multiforme (GBM) is the most common and most aggressive malignant primary brain tumor in humans. Clinically useful molecular markers that help predict response to therapy and prognosis are still rare. The research was conducted in 55 patients with GBM, 26 (47.3%) women and 29 (52.7%) men, mean age 62.58 years. On immunohistochemical analysis, primary antibody to CD44 (dilution 1:50) and primary antibody to endoglin (CD105) (dilution 1:250) were used to evaluate neovascularization. Statistical analysis showed negative correlation between CD44 and survival (p=0.023) (higher expression of CD44 was correlated with shorter survival), but there was no correlation between neovascularization determined by CD105 in GBM and patient survival. Thus, significant individual predictors of longer survival were lower expression of CD44 (p=0.004), higher Karnofsky score (p=0.045), and female gender (p=0.017). The results obtained suggested the possible role of CD44 in the progression and tumor neovascularization of GBM.


Subject(s)
Brain Neoplasms , Endoglin/immunology , Glioblastoma , Hyaluronan Receptors/immunology , Neovascularization, Pathologic , Antibodies/analysis , Biomarkers, Tumor/analysis , Brain Neoplasms/diagnosis , Brain Neoplasms/immunology , Brain Neoplasms/pathology , Female , Glioblastoma/diagnosis , Glioblastoma/immunology , Glioblastoma/pathology , Humans , Immunohistochemistry , Male , Middle Aged , Neovascularization, Pathologic/diagnosis , Neovascularization, Pathologic/immunology , Predictive Value of Tests , Prognosis
9.
Nanomaterials (Basel) ; 8(6)2018 Jun 14.
Article in English | MEDLINE | ID: mdl-29899207

ABSTRACT

The CD44 protein, as a predominant receptor for hyaluronan (HA), is highly expressed on the surface of multiple tumor cells. HA, as a targeting molecule for a CD44-contained delivery system, increases intracellular drug concentration in tumor tissue. However, due to the weak binding ability of hyaluronan oligosaccharide to CD44, targeting for tumor drug delivery has been restricted. In this study, we first use a HA tetrasaccharide cluster as the target ligand to enhance the binding ability to CD44. A polyamidoamine (PAMAM) dendrimer was modified by a HA tetrasaccharide cluster as a nonviral vector for small interfering RNA (siRNA) delivery. The dendrimer/siRNA nanocomplexes increased the cellular uptake capacity of siRNA through the CD44 receptor-mediated endocytosis pathway, allowing the siRNA to successfully escape the endosome/lysosome. Compared with the control group, nanocomplexes effectively reduced the expression of GFP protein and mRNA in MDA-MB-231-GFP cells. This delivery system provides a foundation to increase the clinical applications of PAMAM nanomaterials.

10.
Am J Cancer Res ; 7(2): 260-274, 2017.
Article in English | MEDLINE | ID: mdl-28337375

ABSTRACT

High mobility group AT-hook 2 (HMGA2) is a transcriptional modulator that mediates motility and self-renewal in cancer stem cells. Gastric cancer (GC) is the third leading cause of cancer-related deaths worldwide. GC contains a population of stem-like cells that promote tumor invasion and resistance to therapy. In the current study, we investigated the expression of HMGA2 and the cancer stem cell marker CD44 in 200 GC samples and found that HMGA2 and CD44 were significantly associated with distant metastasis, histological differentiation and poor prognosis in GC patients. Positive clinical correlations of HMGA2 with CD44 were also observed in tissue sections. In vitro, overexpression of HMGA2 promoted GC sphere formation and migration in MKN74/MKN28 cells, whereas downregulation of HMGA2 decreased GC sphere formation and migration in MKN45/MGC803 cells. In addition, western blot and immunofluorescent analyses showed that HMGA2 increased the expression of the stem cell markers CD44, ALDH1, Sox2, and Oct4 and the EMT-related factors Snail and ß-catenin. In a xenograft mouse model, overexpression of HMGA2 promoted tumor growth. Further immunohistochemical (IHC) analysis showed that HMGA2 increased the expression of CD44 and ß-catenin, resulting in the promotion of tumor growth. Taken together, our findings indicate that HMGA2 promotes GC cancer stem cell induction and cell motility by regulating the expression of CD44. Therefore, targeting HMGA2 in GC may be therapeutically beneficial.

11.
J Clin Neurosci ; 34: 1-5, 2016 Dec.
Article in English | MEDLINE | ID: mdl-27578526

ABSTRACT

A transmembrane molecule with several isoforms, CD44 is overexpressed in many tumors and promotes tumor formation through interactions with the tumor microenvironment. CD44 has been implicated in malignant processes including cell motility, tumor growth, and angiogenesis. The role of CD44 has been examined in many cancer types. This paper provides, to our knowledge, the first focused review of the role of CD44 in glioblastoma multiforme (GBM), the most common and fatal of primary brain cancers. We summarize research that describes how CD44 promotes GBM aggressiveness by increasing tumor cell invasion, proliferation and resistance to standard chemoradiation therapy. Effects of CD44 inhibition in GBM are also explored. Clinical trials investigating CD44 targeting in CD44-positive solid tumors are underway, and the evidence presented here suggests that CD44 inhibition in GBM may be a promising therapy.


Subject(s)
Brain Neoplasms/metabolism , Glioblastoma/metabolism , Hyaluronan Receptors/metabolism , Brain Neoplasms/drug therapy , Glioblastoma/drug therapy , Humans
12.
J Urol ; 192(4): 1229-37, 2014 Oct.
Article in English | MEDLINE | ID: mdl-24866595

ABSTRACT

PURPOSE: We investigated the potential functions of miR-34a in CD44 transcriptional complexes in renal cell carcinoma. MATERIALS AND METHODS: We detected miR-34a expression by quantitative real-time polymerase chain reaction. Oligonucleotides were used to over express miR-34a. Cell proliferation and xenograft assays, colony formation and flow cytometry were done to examine effects on cancer cell proliferation in vitro and in vivo. Luciferase assay was performed to verify the precise target of miR-34a. RESULTS: Promoter methylation contributed to miR-34a loss in the ACHN, 786-O and SN12PM6 renal carcinoma cell lines. Ectopic over expression of miR-34a restrained cell growth, tube formation and migration/invasion, and significantly suppressed the growth of renal carcinoma xenografts and metastasis in nude mice. Dual luciferase assay revealed that CD44 was a direct target of miR-34a in renal cancer cells and CD44 knockdown by RNAi in renal cancer cells suppressed tumor progression. In contrast, CD44 ectopic expression partially reversed the antitumor effects of miR-34a in renal cancer cells. CONCLUSIONS: Our findings indicate that miR-34a targets CD44 in renal cancer cells and suppresses renal cancer cell growth, tube formation and metastasis in vitro and in vivo. Thus, miR-34a may be a potential molecular target for novel therapeutic strategies for clear cell renal carcinoma.


Subject(s)
Carcinoma, Renal Cell/genetics , Gene Expression Regulation, Neoplastic , Hyaluronan Receptors/immunology , Kidney Neoplasms/genetics , MicroRNAs/genetics , RNA, Neoplasm/genetics , Animals , Carcinoma, Renal Cell/immunology , Carcinoma, Renal Cell/secondary , Cell Line, Tumor , Cell Proliferation , Cell Transformation, Neoplastic/genetics , Humans , Kidney Neoplasms/immunology , Kidney Neoplasms/pathology , Mice , Mice, Nude , MicroRNAs/biosynthesis , Neoplasms, Experimental , Real-Time Polymerase Chain Reaction
SELECTION OF CITATIONS
SEARCH DETAIL