Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 190
Filter
1.
Angew Chem Int Ed Engl ; : e202417293, 2024 Oct 07.
Article in English | MEDLINE | ID: mdl-39373350

ABSTRACT

Chlorine (Cl2) is one of the most important commodity chemicals that has found widespread utility in chemical industry. Most Cl2 is currently produced via the chlorine evolution reaction (CER) at the anode of chlor-alkali electrolyzers, for which precious group-metal-based mixed metal oxides (MMOs) have been used for more than half a century. However, MMOs suffer from the use of platinum-group metals, which are costly and scarce, and the selectivity issue arises from the parasitic oxygen evolution reaction. Over the last decade, the field of CER catalysis has seen dramatic advances in both the theory and discovery of new catalysts. Theoretical approaches have enabled a fundamental understanding of CER mechanisms and provided catalyst design principles. The exploration of new materials has led to the discovery of CER catalysts other than MMOs, including non-PGM-based oxides, atomically dispersed single-site catalysts, and organic molecules, with some of which following novel reaction pathways. This minireview provides an overview of the recent advances in CER electrocatalyst research and suggests future directions for this revitalized field.

2.
Bioengineering (Basel) ; 11(8)2024 Aug 12.
Article in English | MEDLINE | ID: mdl-39199777

ABSTRACT

This study uses machine learning to identify critical factors influencing the cost-effectiveness of over-the-counter (OTC) medications. By developing a novel cost-effectiveness rating (CER) based on user ratings and prices, we analyzed data from Amazon. The findings indicate that Flexible Spending Account (FSA)/Health Savings Account (HSA) eligibility, symptom treatment range, safety warnings, special effects, active ingredients, and packaging size significantly impact cost-effectiveness across cold, allergy, digestion, and pain relief medications. Medications eligible for FSA or HSA funds, treating a broader range of symptoms, and having smaller packaging are perceived as more cost-effective. Cold medicines with safety warnings were cost-effective due to their lower average price and effective ingredients like phenylephrine and acetaminophen. Allergy medications with kid-friendly features showed higher cost-effectiveness, and ingredients like calcium, famotidine, and magnesium boosted the cost-effectiveness of digestion medicines. These insights help consumers make informed purchasing decisions and assist manufacturers and retailers in enhancing product competitiveness. Overall, this research supports better decision-making in the pharmaceutical industry by highlighting factors that drive cost-effective medication purchases.

3.
Alzheimers Dement ; 20(10): 7403-7410, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39140387

ABSTRACT

Black women are sorely underrepresented in studies of Alzheimer's disease and related dementias (ADRD) despite higher rates of ADRD diagnoses than in non-Hispanic White women. There are many reasons for underrepresentation, including medical mistrust, limited access to clinical studies, and restrictive study inclusion criteria. These pervasive barriers to research participation are often not considered during study development and, if eventually thought of tend to be after the fact. Community-engaged research (CER) approaches are an effective method for reducing participation barriers. This article describes how CER approaches were used to develop the Black Women Inflammation and Tau Study (BWITS), a prospective study to identify biopsychosocial risk factors for ADRD in Black women. Guidelines discussed here for future ADRD research in diverse populations are informed by Community-Based Participatory Research (CBPR), the National Institute on Minority Health and Health Disparities (NIMHD), and the Patient-Centered Outcomes Research Institute (PCORI). HIGHLIGHTS: Understand the historical tragedies related to medical practices and research designs that may contribute to the underrepresentation of Black Americans in research studies today. Highlight community-engaged research approaches that effectively reduce participation barriers in minoritized groups. Review Community-Based Participatory Research, National Institute of Minority Health and Health Disparities, and the Patient-Centered Outcomes Research Institute guidelines for conducting research with minoritized communities. Describe using the three frameworks to inform the study development protocol for the Black Women Inflammation and Tau Study. Conclude by offering study design considerations that we hope can be a helpful starting point for others conducting research with minoritized communities.


Subject(s)
Alzheimer Disease , Black or African American , Community-Based Participatory Research , Humans , Female , Alzheimer Disease/ethnology , Inflammation , Prospective Studies , Research Design , Patient Selection , Aged
4.
Clin Perinatol ; 51(3): 605-616, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39095099

ABSTRACT

The authors summarize the methodology for a new pragmatic comparative effectiveness research investigation, Cooling Prospectively Infants with Mild Encephalopathy (COOLPRIME), which uses sites' existing mild hypoxic-ischemic encephalopathy (HIE) treatment preference (hypothermia or normothermia) to assess hypothermia effectiveness and safety. COOLPRIME's primary aim is to determine the safety and effectiveness of hypothermia compared to normothermia in mild HIE. Engagement of Families and Community Affected by Hypoxic-Ischemic Encephalopathy strongly favored Effectiveness over Efficacy Trials leading to COOL PRIME design.


Subject(s)
Comparative Effectiveness Research , Hypothermia, Induced , Hypoxia-Ischemia, Brain , Humans , Hypothermia, Induced/methods , Hypoxia-Ischemia, Brain/therapy , Infant, Newborn , Prospective Studies , Infant , Treatment Outcome
5.
Brain ; 2024 Jul 16.
Article in English | MEDLINE | ID: mdl-39013020

ABSTRACT

Brain inflammation, with an increased density of microglia and macrophages, is an important component of Alzheimer's disease (AD) and a potential therapeutic target. However, it is incompletely characterized, particularly in patients whose disease begins before the age of 65 years and, thus, have few co-pathologies. Inflammation has been usefully imaged with translocator protein (TSPO) positron emission tomography (PET), but most inflammation PET tracers cannot image subjects with a low-binder TSPO rs6971 genotype. In an important development, participants with any TSPO genotype can be imaged with a novel tracer, [11C]ER176, that has a high binding potential and a more favorable metabolite profile than other TSPO tracers currently available. We applied [11C]ER176 to detect brain inflammation in mild cognitive impairment (MCI) caused by early-onset AD. Furthermore, we sought to correlate the brain localization of inflammation, volume loss, elevated Aß and tau. We studied brain inflammation in 25 patients with early-onset amnestic MCI (average age 59 ± 4.5 years, 10 women) and 23 healthy controls (average age 65 ± 6.0 years, 12 women), both groups with a similar proportion of all three TSPO-binding affinities. [11C]ER176 total distribution volume (VT), obtained with an arterial input function, was compared across patients and controls using voxel-wise and region-wise analyses. In addition to inflammation PET, most MCI patients had Aß (n=23), and tau PET (n=21). For Aß and tau tracers, standard uptake value ratios (SUVRs) were calculated using cerebellar grey matter as region of reference. Regional correlations among the three tracers were determined. Data were corrected for partial volume effect. Cognitive performance was studied with standard neuropsychological tools. In MCI caused by early-onset AD, there was inflammation in the default network, reaching statistical significance in precuneus and lateral temporal and parietal association cortex bilaterally, and in the right amygdala. Topographically, inflammation co-localized most strongly with tau (r= 0.63 ± 0.24). This correlation was higher than the co-localization of Aß with tau (r= 0.55±0.25) and of inflammation with Aß (0.43±0.22). Inflammation co-localized least with atrophy (-0.29±0.26). These regional correlations could be detected in participants with any of the three rs6971 TSPO polymorphisms. Inflammation in AD-related regions correlated with impaired cognitive scores. Our data highlight the importance of inflammation, a potential therapeutic target, in the AD process. Furthermore, they support the notion that, as shown in experimental tissue and animal models, the propagation of tau in humans is associated with brain inflammation.

6.
J Exp Bot ; 75(16): 4978-4992, 2024 Aug 28.
Article in English | MEDLINE | ID: mdl-38706401

ABSTRACT

Wax biosynthesis is closely controlled by many regulators under different environmental conditions. We have previously shown that the module miR156-SQUAMOSA PROMOTER BINDING PROTEIN-LIKE9 (SPL9)-DEWAX is involved in the diurnal regulation of wax production; however, it was not determined whether other SPLs are also involved in wax synthesis. Here, we report that SPL13 also regulates drought-induced wax production, by directly and indirectly affecting the expression of the two wax biosynthesis genes ECERIFERUM1 (CER1) and CER4, respectively. In addition, we show that SPL13 together with SPL9 redundantly regulates wax accumulation under both normal and drought stress conditions, and that simultaneous mutation of both genes additively increases cuticle permeability and decreases drought tolerance. However, in contrast to SPL9, SPL13 does not seem to participate in the DEWAX-mediated diurnal regulation of wax production.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Droughts , Gene Expression Regulation, Plant , Waxes , Arabidopsis/genetics , Arabidopsis/metabolism , Arabidopsis/physiology , Arabidopsis Proteins/metabolism , Arabidopsis Proteins/genetics , Stress, Physiological , Transcription Factors/metabolism , Transcription Factors/genetics , Waxes/metabolism
7.
Front Aging Neurosci ; 16: 1368839, 2024.
Article in English | MEDLINE | ID: mdl-38774265

ABSTRACT

Introduction: Alzheimer's disease (AD) is associated with disturbed metabolism, prompting investigations into specific metabolic pathways that may contribute to its pathogenesis and pathology. Sphingolipids have garnered attention due to their known physiological impact on various diseases. Methods: We conducted comprehensive profiling of sphingolipids to understand their possible role in AD. Sphingolipid levels were measured in AD brains, Cerad score B brains, and controls, as well as in induced pluripotent stem (iPS) cells (AD, PS, and control), using liquid chromatography mass spectrometry. Results: AD brains exhibited higher levels of sphingosine (Sph), total ceramide 1-phosphate (Cer1P), and total ceramide (Cer) compared to control and Cerad-B brains. Deoxy-ceramide (Deoxy-Cer) was elevated in Cerad-B and AD brains compared to controls, with increased sphingomyelin (SM) levels exclusively in Cerad-B brains. Analysis of cell lysates revealed elevated dihydroceramide (dhSph), total Cer1P, and total SM in AD and PS cells versus controls. Multivariate analysis highlighted the relevance of Sph, Cer, Cer1P, and SM in AD pathology. Machine learning identified Sph, Cer, and Cer1P as key contributors to AD. Discussion: Our findings suggest the potential importance of Sph, Cer1P, Cer, and SM in the context of AD pathology. This underscores the significance of sphingolipid metabolism in understanding and potentially targeting mechanisms underlying AD.

8.
BMC Plant Biol ; 24(1): 468, 2024 May 29.
Article in English | MEDLINE | ID: mdl-38811873

ABSTRACT

BACKGROUND: The cuticular wax serves as a primary barrier that protects plants from environmental stresses. The Eceriferum (CER) gene family is associated with wax production and stress resistance. RESULTS: In a genome-wide identification study, a total of 52 members of the CER family were discovered in four Gossypium species: G. arboreum, G. barbadense, G. raimondii, and G. hirsutum. There were variations in the physicochemical characteristics of the Gossypium CER (GCER) proteins. Evolutionary analysis classified the identified GCERs into five groups, with purifying selection emerging as the primary evolutionary force. Gene structure analysis revealed that the number of conserved motifs ranged from 1 to 15, and the number of exons varied from 3 to 13. Closely related GCERs exhibited similar conserved motifs and gene structures. Analyses of chromosomal positions, selection pressure, and collinearity revealed numerous fragment duplications in the GCER genes. Additionally, nine putative ghr-miRNAs targeting seven G. hirsutum CER (GhCER) genes were identified. Among them, three miRNAs, including ghr-miR394, ghr-miR414d, and ghr-miR414f, targeted GhCER09A, representing the most targeted gene. The prediction of transcription factors (TFs) and the visualization of the regulatory TF network revealed interactions with GhCER genes involving ERF, MYB, Dof, bHLH, and bZIP. Analysis of cis-regulatory elements suggests potential associations between the CER gene family of cotton and responses to abiotic stress, light, and other biological processes. Enrichment analysis demonstrated a robust correlation between GhCER genes and pathways associated with cutin biosynthesis, fatty acid biosynthesis, wax production, and stress response. Localization analysis showed that most GCER proteins are localized in the plasma membrane. Transcriptome and quantitative reverse transcription-polymerase chain reaction (qRT-PCR) expression assessments demonstrated that several GhCER genes, including GhCER15D, GhCER04A, GhCER06A, and GhCER12D, exhibited elevated expression levels in response to water deficiency stress compared to control conditions. The functional identification through virus-induced gene silencing (VIGS) highlighted the pivotal role of the GhCER04A gene in enhancing drought resistance by promoting increased tissue water retention. CONCLUSIONS: This investigation not only provides valuable evidence but also offers novel insights that contribute to a deeper understanding of the roles of GhCER genes in cotton, their role in adaptation to drought and other abiotic stress and their potential applications for cotton improvement.


Subject(s)
Droughts , Gossypium , Multigene Family , Plant Proteins , Gossypium/genetics , Gossypium/physiology , Plant Proteins/genetics , Plant Proteins/metabolism , Gene Expression Regulation, Plant , Stress, Physiological/genetics , Genes, Plant , Phylogeny , Adaptation, Physiological/genetics , Waxes/metabolism , MicroRNAs/genetics
9.
Sci Rep ; 14(1): 9821, 2024 Apr 29.
Article in English | MEDLINE | ID: mdl-38684728

ABSTRACT

Dimensionally stable anodes of titanium (Ti) metal coated with mixed metal oxides (MMO) are widely used in several electrochemical applications, especially chloro-alkali electrolysis. Herein, we deposited MMO coatings on Ti substrates in different compositions, namely, (60%RuO2-40%TiO2), (60%RuO2-30%TiO2-10%IrO2), and (60%RuO2-20%TiO2-15%IrO2-5%Ta2O5), where RuO2 has the same percentage ratio in all coatings. The aim was to use these electrodes for chlorine evolution reaction (CER) and oxygen evolution reaction (OER) applications. Electrochemical characterization of the coated samples was performed to identify the best Ti/MMO electrodes with the highest efficiencies among the various prepared combinations. The role of IrO2 and Ta2O5 in enhancing corrosion resistance and electrochemical efficacy was up for debate. Scanning electron microscope (SEM), energy dispersive spectroscopy (EDS), X-ray diffraction (XRD), and X-ray photoelectron spectroscopy (XPS) analyses were exploited to determine the surface morphology, chemical composition, crystallinity, surface composition, and chemical states of the acquired coatings. The differential scanning calorimetry (DSC) method was used to evaluate the apparent activation energy ( E a ) of the deposited MMO. Additionally, the electrochemical performance of our designed coatings was scrutinized by cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS), a current on-off test, a CV stability test (ST), and an accelerated stability test (AST). Furthermore, linear sweep voltammetry (LSV) was incorporated to assess the catalytic efficacy of the prepared anodes toward the CER in a brine solution of pH 2 and the OER in 1 M H2SO4. It became clear that the CER and OER incurred almost the same potential value (1.1 V) on both Ti/RuO2-TiO2 and Ti/RuO2-TiO2-IrO2 electrodes. However, on the Ti/RuO2-TiO2-IrO2-Ta2O5 anode, there was a 0.2 V potential difference between the CER occurring at 1.1 V and the OER happening at 1.3 V.

10.
Sci Rep ; 14(1): 5699, 2024 03 08.
Article in English | MEDLINE | ID: mdl-38459112

ABSTRACT

Mass spectrometry-based lipidomics approaches offer valuable tools for the detection and quantification of various lipid species, including sphingolipids. The present study aimed to develop a new method to simultaneously detect various sphingolipid species that applies to diverse biological samples. We developed and validated a measurement system by employing a single-column liquid chromatography-mass spectrometry system utilizing a normal-phase separation mode with positive ionization. The measurement system provided precision with a coefficient of variant below 20% for sphingolipids in all types of samples, and we observed good linearity in diluted serum samples. This system can measure the following sphingolipids: sphingosine 1-phosphate (S1P), sphingosine (Sph), dihydroS1P (dhS1P), dihydroSph (dhSph), ceramide 1-phosphate (Cer1P), hexosylceramide (HexCer), lactosylceramide (LacCer), dh-ceramide, deoxy-ceramide, deoxy-dh-ceramide, and sphingomyelin (SM). By measuring these sphingolipids in cell lysates where S1P lyase expression level was modulated, we could observe significant and dynamic modulations of sphingolipids in a comprehensive manner. Our newly established and validated measurement system can simultaneously measure many kinds of sphingolipids in biological samples. It holds great promise as a valuable tool for laboratory testing applications to detect overall modulations of sphingolipids, which have been proposed to be involved in pathogenesis processes in a series of elegant basic research studies.


Subject(s)
Sphingolipids , Tandem Mass Spectrometry , Sphingolipids/metabolism , Tandem Mass Spectrometry/methods , Ceramides , Chromatography, Liquid , Sphingomyelins , Sphingosine
11.
Glycobiology ; 34(4)2024 04 10.
Article in English | MEDLINE | ID: mdl-38349796

ABSTRACT

Cell surface biomarkers are fundamental for specific characterization of human pluripotent stem cells (hPSCs). Importantly, they can be applied for hPSC enrichment and/or purification but also to remove potentially teratoma-forming hPSCs from differentiated populations before clinical application. Several specific markers for hPSCs are glycoconjugates comprising the glycosphingolipid (GSL)-based glycans SSEA-3 and SSEA-4. We applied an analytical approach based on multiplexed capillary gel electrophoresis coupled to laser-induced fluorescence detection to quantitatively assess the GSL glycome of human embryonic stem cells and human induced pluripotent stem cells as well as during early stages of differentiation into mesoderm, endoderm, and ectoderm. Thereby, we identified the GSL lacto-N-tetraosylceramide (Lc4-Cer, Galß1-3GlcNAcß1-3Galß1-4Glc-Cer), which comprises a terminal type 1 LacNAc (T1LN) structure (Galß1-3GlcNAc), to be rapidly decreased upon onset of differentiation. Using a specific antibody, we could confirm a decline of T1LN-terminating glycans during the first four days of differentiation by live-cell staining and subsequent flow cytometry. We could further separate T1LN-positive and T1LN-negative cells out of a mixed population of pluripotent and differentiated cells by magnetic activated cell sorting. Notably, not only the T1LN-positive but also the T1LN-negative population was positive for SSEA-3, SSEA-4, and SSEA-5 while expression of nuclear pluripotency markers OCT4 and NANOG was highly reduced in the T1LN-negative population, exclusively. Our findings suggest T1LN as a pluripotent stem cell-specific glycan epitope that is more rapidly down-regulated upon differentiation than SSEA-3, SSEA-4, and SSEA-5.


Subject(s)
Amino Sugars , Induced Pluripotent Stem Cells , Pluripotent Stem Cells , Humans , Epitopes/metabolism , Induced Pluripotent Stem Cells/metabolism , Pluripotent Stem Cells/metabolism , Polysaccharides/metabolism , Cell Differentiation
12.
Molecules ; 29(3)2024 Jan 31.
Article in English | MEDLINE | ID: mdl-38338416

ABSTRACT

Protein tyrosine phosphatases (PTPs) are ubiquitous in living organisms and are promising drug targets for cancer, diabetes/obesity, and autoimmune disorders. In this study, a histone deacetylase inhibitor called suberoylanilide hydroxamic acid (SAHA) was added to a culture of marine fungi (Aspergillus sydowii DL1045) to identify potential drug candidates related to PTP inhibition. Then, the profile of the induced metabolites was characterized using an integrated metabolomics strategy. In total, 46% of the total SMs were regulated secondary metabolites (SMs), among which 20 newly biosynthesized metabolites (10% of the total SMs) were identified only in chemical epigenetic regulation (CER) broth. One was identified as a novel compound, and fourteen compounds were identified from Aspergillus sydowii first. SAHA derivatives were also biotransformed by A. sydowii DL1045, and five of these derivatives were identified. Based on the bioassay, some of the newly synthesized metabolites exhibited inhibitory effects on PTPs. The novel compound sydowimide A (A11) inhibited Src homology region 2 domain-containing phosphatase-1 (SHP1), T-cell protein tyrosine phosphatase (TCPTP) and leukocyte common antigen (CD45), with IC50 values of 1.5, 2.4 and 18.83 µM, respectively. Diorcinol (A3) displayed the strongest inhibitory effect on SHP1, with an IC50 value of 0.96 µM. The structure-activity relationship analysis and docking studies of A3 analogs indicated that the substitution of the carboxyl group reduced the activity of A3. Research has demonstrated that CER positively impacts changes in the secondary metabolic patterns of A. sydowii DL1045. The compounds produced through this approach will provide valuable insights for the creation and advancement of novel drug candidates related to PTP inhibition.


Subject(s)
Aspergillus , Epigenesis, Genetic , Aspergillus/chemistry , Protein Tyrosine Phosphatases , Vorinostat/pharmacology
13.
J Colloid Interface Sci ; 659: 191-202, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38176229

ABSTRACT

Electrolysis for producing hydrogen powered by renewable electricity can be dramatically expanded by adapting different electrolytes (brine, seawater or pure water), which means the anode materials must stand up to complex electrolyte conditions. Here, a novel catalyst/support hybrid of binary Ru3.5Ir1Ox supported by barium strontium sulfate (BaSrSO4) was synthesized (RuIrOx/BSS) by exchanging the anion ligands of support. The as-synthesized RuIrOx/BSS exhibits compelling oxygen evolution (OER) and chlorine evolution (CER) performances, which affords to 10 mA cm-2 with only overpotential of 244 mV and 38 mV, respectively. The performed X-ray adsorption spectra clearly indicate the presence of an interface charge transfer effect, which results in the assignment of more electrons to the d orbitals of the Ru and Ir sites. The theoretical calculations demonstrated that the electronic structures of the catalytic active sites were modulated to give a lower overpotential, confirming the intrinsically high OER and CER catalytic activity.

14.
J Thorac Dis ; 15(10): 5534-5548, 2023 Oct 31.
Article in English | MEDLINE | ID: mdl-37969309

ABSTRACT

Background: Pulmonary cryptococcosis (PC) contributes to the ongoing global disease burden in human immunodeficiency virus (HIV)-negative populations. Since some PC patients are misdiagnosed under existing diagnostic guidelines, new diagnostic markers are needed to improve diagnostic accuracy and therapeutic efficacy and reduce disease risk. Methods: Our previously established sphingolipidomic approach was employed to explore the use of serum sphingolipids (SPLs) in diagnosing HIV-negative patients with PC. A clinical cohort of PC, pulmonary aspergillosis (PA), and tuberculosis (TB) patients and healthy controls was assessed to identify SPL biomarkers. Results: A total of 47 PC, 27 PA, and 18 TB patients and 40 controls were enrolled. PC and TB patients had similar clinical features, laboratory test results and radiological features, excluding plural effusion. The serum ceramide [Cer (d18:1/18:0)] level showed a significant increase in PC patients compared to controls and PA and TB patients (P<0.05). Cer (d18:1/18:0) was identified as a specific diagnostic biomarker for PC. The optimal cut-off value of greater than 18.00 nM showed a diagnostic sensitivity of 76.60% and a specificity of 95.00% and better distinguished PC patients from PA and TB patients. Furthermore, the serum Cer (d18:1/18:0) level gradually decreased after 3 and 6 months of treatment, suggesting the prediction potential for therapeutic efficacy of this biomarker. In addition, Cer (d18:1/18:0) analysis presented a higher sensitivity than the cryptococcal antigen (CrAg) assay. Conclusions: This is the first study to report the use of the SPL Cer (d18:1/18:0) as a serum biomarker for diagnosing Cryptococcus spp. infection in HIV-negative patients.

15.
Skin Pharmacol Physiol ; 36(5): 225-234, 2023.
Article in English | MEDLINE | ID: mdl-38035548

ABSTRACT

BACKGROUND: Linoleate-containing acylglucosylceramide (GLC-CER[EOx], where x = sphingosine [S], dihydrosphingosine [dS], phytosphingosine (P), or 6-hydroxysphingosine [H]) in the viable epidermis serve as the precursors to the linoleate-containing acylceramides (CER[EOx]) in the stratum corneum (SC) and the corneocyte lipid envelope (CLE), both of which are essential for the barrier function of the skin. SUMMARY: CLE formation and envelope maturation take place across the SC. Hypoxic conditions in the epidermis and anaerobic glycolysis with the production of lactic acid are important in proper SC barrier formation. KEY MESSAGE: CLE formation takes place across the SC. Its formation from linoleate-containing GLC-CER[EOx] requires lipoxygenase action, but anaerobic conditions leading to lactate production and hypoxia-inducible factors are essential for proper barrier formation. A number of unanswered questions are raised regarding formation of the CLE and the epidermal permeability barrier.


Subject(s)
Ceramides , Linoleic Acid , Epidermis , Epidermal Cells , Linoleic Acids , Permeability
16.
Lipids Health Dis ; 22(1): 166, 2023 Oct 04.
Article in English | MEDLINE | ID: mdl-37794463

ABSTRACT

BACKGROUND: The criteria for metabolically healthy obesity (MHO) and metabolically unhealthy obesity (MUO) remain controversial. This research aimed to identify a potential biomarker to differentiate the subtypes of obesity. METHODS: The study conducted a lipidomic evaluation of ceramide in the serum of 77 Chinese adults who had undergone hyperinsulinemic-euglycemic clamps. These adults were divided into three groups according to the clinical data: normal weight control group (N = 21), MHO (N = 20), and MUO (N = 36). RESULTS: The serum Cer d18:1/24:1 level in the MHO group was lower than that in the MUO group. As the Cer d18:1/24:1 level increased, insulin sensitivity decreased, and the unfavorable parameters increased in parallel. Multivariate logistic regression analysis revealed that serum Cer d18:1/24:1 levels were independently correlated with MUO in obesity. Individuals with higher levels of Cer d18:1/24:1 also had an elevated risk of cardiovascular disease. Most ceramide subtype levels increased in obesity compared to normal-weight individuals, but the levels of serum Cer d18:0/18:0 and Cer d18:1/16:0 decreased in obesity. CONCLUSIONS: The relationships between ceramide subtypes and metabolic profiles might be heterogeneous in populations with different body weights. Cer d18:1/24:1 could be a biomarker that can be used to differentiate MUO from MHO, and to better predict who will develop unfavorable health outcomes among obese individuals. TRIAL REGISTRATION: The First Affiliated Hospital of Nanjing Medical University's Institutional Review Board authorized this study protocol, and all participants provided written informed consent (2014-SR-003) prior to study entry.


Subject(s)
Insulin Resistance , Metabolic Syndrome , Obesity, Metabolically Benign , Adult , Humans , Ceramides , Obesity , Biomarkers , Outcome Assessment, Health Care , Risk Factors , Body Mass Index
17.
Genes (Basel) ; 14(6)2023 06 18.
Article in English | MEDLINE | ID: mdl-37372466

ABSTRACT

BAHD acyltransferases (BAHDs), especially those present in plant epidermal wax metabolism, are crucial for environmental adaptation. Epidermal waxes primarily comprise very-long-chain fatty acids (VLCFAs) and their derivatives, serving as significant components of aboveground plant organs. These waxes play an essential role in resisting biotic and abiotic stresses. In this study, we identified the BAHD family in Welsh onion (Allium fistulosum). Our analysis revealed the presence of AfBAHDs in all chromosomes, with a distinct concentration in Chr3. Furthermore, the cis-acting elements of AfBAHDs were associated with abiotic/biotic stress, hormones, and light. The motif of Welsh onion BAHDs indicated the presence of a specific BAHDs motif. We also established the phylogenetic relationships of AfBAHDs, identifying three homologous genes of CER2. Subsequently, we characterized the expression of AfCER2-LIKEs in a Welsh onion mutant deficient in wax and found that AfCER2-LIKE1 plays a critical role in leaf wax metabolism, while all AfCER2-LIKEs respond to abiotic stress. Our findings provide new insights into the BAHD family and lay a foundation for future studies on the regulation of wax metabolism in Welsh onion.


Subject(s)
Fatty Acids , Onions , Onions/genetics , Fatty Acids/metabolism , Phylogeny , Plant Epidermis/genetics , Plant Epidermis/metabolism , Waxes/metabolism
18.
Cell Mol Gastroenterol Hepatol ; 16(3): 385-410, 2023.
Article in English | MEDLINE | ID: mdl-37245564

ABSTRACT

BACKGROUND & AIMS: The machinery that prevents colorectal cancer liver metastasis (CRLM) in the context of liver regeneration (LR) remains elusive. Ceramide (CER) is a potent anti-cancer lipid involved in intercellular interaction. Here, we investigated the role of CER metabolism in mediating the interaction between hepatocytes and metastatic colorectal cancer (CRC) cells to regulate CRLM in the context of LR. METHODS: Mice were intrasplenically injected with CRC cells. LR was induced by 2/3 partial hepatectomy (PH) to mimic the CRLM in the context of LR. The alteration of corresponding CER-metabolizing genes was examined. The biological roles of CER metabolism in vitro and in vivo were examined by performing a series of functional experiments. RESULTS: Induction of LR augmented apoptosis but promoted matrix metalloproteinase 2 (MMP2) expression and epithelial-mesenchymal transition (EMT) to increase the invasiveness of metastatic CRC cells, resulting in aggressive CRLM. Up-regulation of sphingomyelin phosphodiesterase 3 (SMPD3) was determined in the regenerating hepatocytes after LR induction and persisted in the CRLM-adjacent hepatocytes after CRLM formation. Hepatic Smpd3 knockdown was found to further promote CRLM in the context of LR by abolishing mitochondrial apoptosis and augmenting the invasiveness in metastatic CRC cells by up-regulating MMP2 and EMT through promoting the nuclear translocation of ß-catenin. Mechanistically, we found that hepatic SMPD3 controlled the generation of exosomal CER in the regenerating hepatocytes and the CRLM-adjacent hepatocytes. The SMPD3-produced exosomal CER critically conducted the intercellular transfer of CER from the hepatocytes to metastatic CRC cells and impeded CRLM by inducing mitochondrial apoptosis and restricting the invasiveness in metastatic CRC cells. The administration of nanoliposomal CER was found to suppress CRLM in the context of LR substantially. CONCLUSIONS: SMPD3-produced exosomal CER constitutes a critical anti-CRLM mechanism in LR to impede CRLM, offering the promise of using CER as a therapeutic agent to prevent the recurrence of CRLM after PH.


Subject(s)
Colorectal Neoplasms , Exosomes , Liver Neoplasms , Mice , Animals , Matrix Metalloproteinase 2 , Liver Regeneration , Sphingomyelin Phosphodiesterase , Ceramides , Colorectal Neoplasms/genetics , Liver Neoplasms/metabolism
19.
Int J Mol Sci ; 24(8)2023 Apr 09.
Article in English | MEDLINE | ID: mdl-37108120

ABSTRACT

Despite the availability and use of numerous cholesterol-lowering drugs, atherosclerotic cardiovascular disease (ASCVD) remains the leading cause of mortality globally. Many researchers have focused their effort on identifying modified lipoproteins. However, lipid moieties such as lysophosphatidylcholine (LPC) and ceramide (CER) contribute to atherogenic events. LPC and CER both cause endothelial mitochondrial dysfunction, leading to fatty acid and triglyceride (TG) accumulation. In addition, they cause immune cells to differentiate into proinflammatory phenotypes. To uncover alternative therapeutic approaches other than cholesterol- and TG-lowering medications, we conducted untargeted lipidomic investigations to assess the alteration of lipid profiles in apolipoprotein E knockout (apoE-/-) mouse model, with or without feeding a high-fat diet (HFD). Results indicated that, in addition to hypercholesterolemia and hyperlipidemia, LPC levels were two to four times higher in apoE-/- mice compared to wild-type mice in C57BL/6 background, regardless of whether they were 8 or 16 weeks old. Sphingomyelin (SM) and CER were elevated three- to five-fold in apoE-/- mice both at the basal level and after 16 weeks when compared to wild-type mice. After HFD treatment, the difference in CER levels elevated more than ten-fold. Considering the atherogenic properties of LPC and CER, they may also contribute to the early onset of atherosclerosis in apoE-/- mice. In summary, the HFD-fed apoE-/- mouse shows elevated LPC and CER contents and is a suitable model for developing LPC- and CER-lowering therapies.


Subject(s)
Atherosclerosis , Lysophosphatidylcholines , Mice , Animals , Mice, Knockout , Ceramides , Lipidomics , Mice, Inbred C57BL , Atherosclerosis/genetics , Triglycerides , Cholesterol , Risk Factors , Apolipoproteins E/genetics , Apolipoproteins
20.
Int J Mol Sci ; 24(5)2023 Mar 06.
Article in English | MEDLINE | ID: mdl-36902463

ABSTRACT

Attached to the outer surface of the corneocyte lipid envelope (CLE), omega-hydroxy ceramides (ω-OH-Cer) link to involucrin and function as lipid components of the stratum corneum (SC). The integrity of the skin barrier is highly dependent on the lipid components of SC, especially on ω-OH-Cer. Synthetic ω-OH-Cer supplementation has been utilized in clinical practice for epidermal barrier injury and related surgeries. However, the mechanism discussion and analyzing methods are not keeping pace with its clinical application. Though mass spectrometry (MS) is the primary choice for biomolecular analysis, method modifications for ω-OH-Cer identification are lacking in progress. Therefore, finding conclusions on ω-OH-Cer biological function, as well as on its identification, means it is vital to remind further researchers of how the following work should be done. This review summarizes the important role of ω-OH-Cer in epidermal barrier functions and the forming mechanism of ω-OH-Cer. Recent identification methods for ω-OH-Cer are also discussed, which could provide new inspirations for study on both ω-OH-Cer and skin care development.


Subject(s)
Ceramides , Epidermis , Ceramides/chemistry , Epidermis/chemistry , Epidermal Cells , Skin/chemistry , Mass Spectrometry
SELECTION OF CITATIONS
SEARCH DETAIL