Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 144
Filter
1.
Lab Med ; 2024 Sep 08.
Article in English | MEDLINE | ID: mdl-39244676

ABSTRACT

The dihydrorhodamine 123 assay is generally applied to measure the production of intracellular reactive oxygen species in neutrophils using flow cytometry and is considered a diagnostic evaluation for chronic granulomatous disease. In fact, there is a broad range of variables that can directly or indirectly affect test results, either individually or collectively. It is therefore crucial to identify the ideal requirements to achieve reliable results as well as using these requirements to provide standard operating procedures that should be taken into account. Therefore, we focus on aligning optimum results by comparing preanalytical and analytical phases that influence test results, such as the effect of various anticoagulants, transport and maintaining temperature (24°C or 4°C) of samples, test prime run time, appropriate solution concentrations, and effect of incubation temperature (24°C or 37°C) during the test run.

3.
J Clin Med ; 13(15)2024 Jul 29.
Article in English | MEDLINE | ID: mdl-39124702

ABSTRACT

Chronic granulomatous disease (CGD) is a group of rare primary inborn errors of immunity characterised by a defect in the phagocyte respiratory burst, which leads to severe and life-threatening infective and inflammatory complications. Despite recent advances in our understanding of the genetic and molecular pathophysiology of X-linked and autosomal recessive CGD, and growth in the availability of functional and genetic testing, there remain significant barriers to early and accurate diagnosis. In the current review, we provide an up-to-date summary of CGD pathophysiology, underpinning current methods of diagnostic testing for CGD and closely related disorders. We present an overview of the benefits of early diagnosis and when to suspect and test for CGD. We discuss current and historical methods for functional testing of NADPH oxidase activity, as well as assays for measuring protein expression of NADPH oxidase subunits. Lastly, we focus on genetic and genomic methods employed to diagnose CGD, including gene-targeted panels, comprehensive genomic testing and ancillary methods. Throughout, we highlight general limitations of testing, and caveats specific to interpretation of results in the context of CGD and related disorders, and provide an outlook for newborn screening and the future.

4.
Animals (Basel) ; 14(16)2024 Aug 15.
Article in English | MEDLINE | ID: mdl-39199891

ABSTRACT

Gill health has become a significant global challenge for Atlantic salmon (Salmo salar) aquaculture, particularly during the marine phase of farming. The increasing prevalence of gill pathologies has been linked to rising seawater temperatures, underscoring the need to evaluate existing tools for monitoring gill health and to develop novel approaches for early detection. In this study, we investigated the gill responses of commercially farmed Atlantic salmon to natural infection with Neoparamoeba perurans during an outbreak of amoebic gill disease (AGD) in Tasmania. Our focus spanned the low AGD prevalence, high AGD prevalence, and post-freshwater treatment stages of the outbreak. Evaluations of gill tissue included assessments of the gross AGD score, histopathological score, abundance of N. perurans (measured by 18S rRNA gene expression), and expression levels of inflammation-related transcripts. We demonstrated a strong correlation between different measures of AGD-related gill pathology and significant differences between distinct stages of the N. perurans outbreak. Post-treatment, fish exhibited considerable variability in their responses to the freshwater bath, highlighting the necessity for personalized management strategies that consider genetic, environmental, and health status factors. The expression patterns of angiogenin-1 (ANG1) and complement C1q tumour necrosis factor-related protein 3-like (C1QTNF3) emphasize their potential as biomarkers for early detection of gill damage in salmon aquaculture worldwide.

5.
Genes (Basel) ; 15(6)2024 May 28.
Article in English | MEDLINE | ID: mdl-38927642

ABSTRACT

Chronic granulomatous disease (CGD) is an inherited immunodeficiency disease mainly caused by mutations in the X-linked CYBB gene that abrogate reactive oxygen species (ROS) production in phagocytes and microbial defense. Gene repair using the CRISPR/Cas9 system in hematopoietic stem and progenitor cells (HSPCs) is a promising technology for therapy for CGD. To support the establishment of efficient and safe gene therapies for CGD, we generated a mouse model harboring a patient-derived mutation in the CYBB gene. Our CybbC517del mouse line shows the hallmarks of CGD and provides a source for Cybb-deficient HSPCs that can be used to evaluate gene-therapy approaches in vitro and in vivo. In a setup using Cas9 RNPs and an AAV repair vector in HSPCs, we show that the mutation can be repaired in 19% of treated cells and that treatment restores ROS production by macrophages. In conclusion, our CybbC517del mouse line provides a new platform for refining and evaluating novel gene therapies and studying X-CGD pathophysiology.


Subject(s)
CRISPR-Cas Systems , Disease Models, Animal , Genetic Therapy , Granulomatous Disease, Chronic , NADPH Oxidase 2 , Granulomatous Disease, Chronic/therapy , Granulomatous Disease, Chronic/genetics , Animals , Genetic Therapy/methods , Mice , NADPH Oxidase 2/genetics , Reactive Oxygen Species/metabolism , Hematopoietic Stem Cells/metabolism , Humans , Macrophages/metabolism , Mutation
6.
Microbiol Spectr ; 12(7): e0041024, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38809005

ABSTRACT

The Burkholderia cepacia complex (Bcc) is a group of Gram-negative opportunistic bacteria often associated with fatal pulmonary infections in patients with impaired immunity, particularly those with cystic fibrosis (CF) and chronic granulomatous disease (CGD). Some Bcc strains are known to naturally produce pyomelanin, a brown melanin-like pigment known for scavenging free radicals; pigment production has been reported to enable Bcc strains to overcome the host cell oxidative burst. In this work, we investigated the role of pyomelanin in resistance to oxidative stress and virulence in strains J2315 and K56-2, two epidemic CF isolates belonging to the Burkholderia cenocepacia ET-12 lineage. We previously reported that a single amino acid change from glycine to arginine at residue 378 in homogentisate 1,2-dioxygenase (HmgA) affects the pigment production phenotype: pigmented J2315 has an arginine at position 378, while non-pigmented K56-2 has a glycine at this position. Herein, we performed allelic exchange to generate isogenic non-pigmented and pigmented strains of J2315 and K56-2, respectively, and tested these to determine whether pyomelanin contributes to the protection against oxidative stress in vitro as well as in a respiratory infection in CGD mice in vivo. Our results indicate that the altered pigment phenotype does not significantly impact these strains' ability to resist oxidative stress with H2O2 and NO in vitro and did not change the virulence and infection outcome in CGD mice in vivo suggesting that other factors besides pyomelanin are contributing to the pathophysiology of these strains.IMPORTANCEThe Burkholderia cepacia complex (Bcc) is a group of Gram-negative opportunistic bacteria that are often associated with fatal pulmonary infections in patients with impaired immunity, particularly those with cystic fibrosis and chronic granulomatous disease (CGD). Some Bcc strains are known to naturally produce pyomelanin, a brown melanin-like pigment known for scavenging free radicals and overcoming the host cell oxidative burst. We investigated the role of pyomelanin in Burkholderia cenocepacia strains J2315 (pigmented) and K56-2 (non-pigmented) and performed allelic exchange to generate isogenic non-pigmented and pigmented strains, respectively. Our results indicate that the altered pigment phenotype does not significantly impact these strains' ability to resist H2O2 or NO in vitro and did not alter the outcome of a respiratory infection in CGD mice in vivo. These results suggest that pyomelanin may not always constitute a virulence factor and suggest that other features are contributing to the pathophysiology of these strains.


Subject(s)
Burkholderia Infections , Burkholderia cenocepacia , Granulomatous Disease, Chronic , Homogentisate 1,2-Dioxygenase , Melanins , Animals , Female , Humans , Mice , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Burkholderia cenocepacia/genetics , Burkholderia cenocepacia/pathogenicity , Burkholderia cenocepacia/metabolism , Burkholderia Infections/microbiology , Cystic Fibrosis/microbiology , Disease Models, Animal , Granulomatous Disease, Chronic/microbiology , Granulomatous Disease, Chronic/genetics , Homogentisate 1,2-Dioxygenase/genetics , Homogentisate 1,2-Dioxygenase/metabolism , Lung/microbiology , Lung/pathology , Melanins/metabolism , Mutation , Oxidative Stress , Virulence/genetics
7.
Front Pediatr ; 12: 1389650, 2024.
Article in English | MEDLINE | ID: mdl-38720948

ABSTRACT

Staphylococcus aureus (S. aureus) is a significant human pathogen, in particular in patients with an underlying medical condition. It is equipped with a large variety of virulence factors enabling both colonization and invasive disease. The spectrum of manifestation is broad, ranging from superficial skin infections to life-threatening conditions like pneumonia and sepsis. As a major cause of healthcare-associated infections, there is a great need in understanding staphylococcal immunity and defense mechanisms. Patients with inborn errors of immunity (IEI) frequently present with pathological infection susceptibility, however, not all of them are prone to S. aureus infection. Thus, enhanced frequency or severity of S. aureus infections can serve as a clinical indicator of a specific underlying immunological impairment. In addition, the analysis of immunological functions in patients with susceptibility to S. aureus provides a unique opportunity of understanding the complex interplay between staphylococcal virulence and host immune predisposition. While the importance of quantitatively and qualitatively normal neutrophils is widely known, less awareness exists about the role of specific cytokines such as functional interleukin (IL)-6 signaling. This review categorizes well-known IEI in light of their susceptibility to S. aureus and discusses the relevant associated pathomechanisms. Understanding host-pathogen-interactions in S. aureus infections in susceptible individuals can pave the way for more effective management and preventive treatment options. Moreover, these insights might help to identify patients who should be screened for an underlying IEI. Ultimately, enhanced understanding of pathogenesis and immune responses in S. aureus infections may also be of relevance for the general population.

8.
Cureus ; 16(4): e59374, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38817488

ABSTRACT

Primary immunodeficiency (PID) Disorders include a variable group of diseases that are classified according to the functional defects encountered. Chronic granulomatous disease (CGD) is inherited as an X-linked recessive disorder in many cases, and it is the clinical model of disorders of phagocytosis. Skin and solid organs abscesses are the most common presenting symptoms; we will report the case of a four-day-old boy admitted to our hospital for a neck mass with purulent discharges associated with umbilical stump and circumcision site infection; the diagnosis of CGD was later confirmed by the Dihydrorhodamine (DHR) test that turned out to be positive.

9.
Mikrochim Acta ; 191(5): 295, 2024 05 03.
Article in English | MEDLINE | ID: mdl-38700804

ABSTRACT

White blood cells (WBCs) are robust defenders during antigenic challenges and prime immune cell functioning indicators. High-purity WBC separation is vital for various clinical assays and disease diagnosis. Red blood cells (RBCs) are a major hindrance in WBC separation, constituting 1000 times the WBC population. The study showcases a low-cost micropump integrated microfluidic platform to provide highly purified WBCs for point-of-care testing. An integrated user-friendly microfluidic platform was designed to separate WBCs from finger-prick blood (⁓5 µL), employing an inertial focusing technique. We achieved an efficient WBC separation with 86% WBC purity and 99.99% RBC removal rate in less than 1 min. In addition, the microdevice allows lab-on-chip colorimetric evaluation of chronic granulomatous disease (CGD), a rare genetic disorder affecting globally. The assay duration, straight from separation to disease detection, requires only 20 min. Hence, the proposed microfluidic platform can further be implemented to streamline various clinical procedures involving WBCs in healthcare industries.


Subject(s)
Cell Separation , Granulomatous Disease, Chronic , Lab-On-A-Chip Devices , Leukocytes , Microfluidic Analytical Techniques , Humans , Granulomatous Disease, Chronic/diagnosis , Granulomatous Disease, Chronic/blood , Leukocytes/cytology , Cell Separation/instrumentation , Cell Separation/methods , Microfluidic Analytical Techniques/instrumentation , Microfluidic Analytical Techniques/methods
10.
J Mol Biol ; 436(9): 168547, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38508304

ABSTRACT

Plant C-glycosylated aromatic polyketides are important for plant and animal health. These are specialized metabolites that perform functions both within the plant, and in interaction with soil or intestinal microbes. Despite the importance of these plant compounds, there is still limited knowledge of how they are metabolized. The Gram-positive aerobic soil bacterium Deinococcus aerius strain TR0125 and other Deinococcus species thrive in a wide range of harsh environments. In this work, we identified a C-glycoside deglycosylation gene cluster in the genome of D. aerius. The cluster includes three genes coding for a GMC-type oxidoreductase (DaCGO1) that oxidizes the glucosyl C3 position in aromatic C-glucosyl compounds, which in turn provides the substrate for the C-glycoside deglycosidase (DaCGD; composed of α+ß subunits) that cleaves the glucosyl-aglycone C-C bond. Our results from size-exclusion chromatography, single particle cryo-electron microscopy and X-ray crystallography show that DaCGD is an α2ß2 heterotetramer, which represents a novel oligomeric state among bacterial CGDs. Importantly, the high-resolution X-ray structure of DaCGD provides valuable insights into the activation of the catalytic hydroxide ion by Lys261. DaCGO1 is specific for the 6-C-glucosyl flavones isovitexin, isoorientin and the 2-C-glucosyl xanthonoid mangiferin, and the subsequent C-C-bond cleavage by DaCGD generated apigenin, luteolin and norathyriol, respectively. Of the substrates tested, isovitexin was the preferred substrate (DaCGO1, Km 0.047 mM, kcat 51 min-1; DaCGO1/DaCGD, Km 0.083 mM, kcat 0.42 min-1).


Subject(s)
Bacterial Proteins , Deinococcus , Flavonoids , Genes, Bacterial , Multigene Family , Xanthones , Bacterial Proteins/chemistry , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Crystallography, X-Ray , Deinococcus/genetics , Deinococcus/metabolism , Flavonoids/metabolism , Flavonoids/chemistry , Glycosides/metabolism , Glycosides/chemistry , Glycosylation , Models, Molecular , Xanthones/metabolism , Xanthones/chemistry
11.
Front Immunol ; 15: 1354836, 2024.
Article in English | MEDLINE | ID: mdl-38404573

ABSTRACT

Introduction: Loss of NADPH oxidase activity results in proinflammatory macrophages that contribute to hyperinflammation in Chronic Granulomatous Disease (CGD). Previously, it was shown in a zymosan-induced peritonitis model that gp91phox-/- (CGD) monocyte-derived macrophages (MoMacs) fail to phenotypically mature into pro-resolving MoMacs characteristic of wild type (WT) but retain the ability to do so when placed in the WT milieu. Accordingly, it was hypothesized that soluble factor(s) in the CGD milieu thwart appropriate programming. Methods: We sought to identify key constituents using ex vivo culture of peritoneal inflammatory leukocytes and their conditioned media. MoMac phenotyping was performed via flow cytometry, measurement of efferocytic capacity and multiplex analysis of secreted cytokines. Addition of exogenous TNFα, TNFα neutralizing antibody and TNFR1-/- MoMacs were used to study the role of TNFα: TNFR1 signaling in MoMac maturation. Results: More extensive phenotyping defined normal MoMac maturation and demonstrated failure of maturation of CGD MoMacs both ex vivo and in vivo. Protein components, and specifically TNFα, produced and released by CGD neutrophils and MoMacs into conditioned media was identified as critical to preventing maturation. Exogenous addition of TNFα inhibited WT MoMac maturation, and its neutralization allowed maturation of cultured CGD MoMacs. TNFα neutralization also reduced production of IL-1ß, IL-6 and CXCL1 by CGD cells though these cytokines played no role in MoMac programming. MoMacs lacking TNFR1 matured more normally in the CGD milieu both ex vivo and following adoptive transfer in vivo. Discussion: These data lend mechanistic insights into the utility of TNFα blockade in CGD and to other diseases where such therapy has been shown to be beneficial.


Subject(s)
Granulomatous Disease, Chronic , Receptors, Tumor Necrosis Factor, Type I , Tumor Necrosis Factor-alpha , Animals , Mice , Culture Media, Conditioned/metabolism , Cytokines/metabolism , Granulomatous Disease, Chronic/therapy , Macrophages/metabolism , NADPH Oxidases/metabolism , Receptors, Tumor Necrosis Factor, Type I/genetics , Receptors, Tumor Necrosis Factor, Type I/metabolism , Tumor Necrosis Factor-alpha/metabolism
12.
Immunol Lett ; 266: 106839, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38309375

ABSTRACT

The X-linked chronic granulomatous disease (X-CGD), a rare genetic disease characterised by recurrent infections, is caused by mutations of NOX2. Significant proportions of X-CGD patients display signs of immune dysregulation. Regulatory T cells (Tregs) are CD4+T lymphocytes that expand in active inflammation and prevent autoimmune disorders. Here we asked whether X-CGD is associated to Treg dysfunctions in adult patients. To this aim, the frequency of Tregs was analysed through intracellular flow cytometry in a cohort of adult X-CGD patients, carriers and controls. We found that Tregs were significantly expanded and activated in blood of adult X-CGD patients, and this was associated with activation of conventional CD4+T cells (Tconvs). T cell activation was characterised by accumulation of intracellular ROS, not derived from NOX2 but likely produced by cellular metabolism. The higher TNF production by Tconvs in X-CGD patients might contribute to the expansion of Tregs through the TNFR2 receptor. In summary, our data indicate that Tregs expand in adult X-CGD in response to immune activation, and that the increase of NOX2-independent ROS content is a feature of activated T cells.


Subject(s)
Granulomatous Disease, Chronic , Adult , Humans , Granulomatous Disease, Chronic/genetics , Granulomatous Disease, Chronic/metabolism , T-Lymphocytes, Regulatory , NADPH Oxidases/genetics , NADPH Oxidases/metabolism , Reactive Oxygen Species/metabolism , Mutation
13.
Immunol Rev ; 322(1): 157-177, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38233996

ABSTRACT

Inborn errors of immunity (IEI) present a unique paradigm in the realm of gene therapy, emphasizing the need for precision in therapeutic design. As gene therapy transitions from broad-spectrum gene addition to careful modification of specific genes, the enduring safety and effectiveness of these therapies in clinical settings have become crucial. This review discusses the significance of IEIs as foundational models for pioneering and refining precision medicine. We explore the capabilities of gene addition and gene correction platforms in modifying the DNA sequence of primary cells tailored for IEIs. The review uses four specific IEIs to highlight key issues in gene therapy strategies: X-linked agammaglobulinemia (XLA), X-linked chronic granulomatous disease (X-CGD), X-linked hyper IgM syndrome (XHIGM), and immune dysregulation, polyendocrinopathy, enteropathy, X-linked (IPEX). We detail the regulatory intricacies and therapeutic innovations for each disorder, incorporating insights from relevant clinical trials. For most IEIs, regulated expression is a vital aspect of the underlying biology, and we discuss the importance of endogenous regulation in developing gene therapy strategies.


Subject(s)
Agammaglobulinemia , Genetic Diseases, X-Linked , Intestinal Diseases , Humans , Genetic Diseases, X-Linked/genetics , Genetic Diseases, X-Linked/therapy , Intestinal Diseases/genetics , Intestinal Diseases/therapy , Agammaglobulinemia/genetics , Agammaglobulinemia/therapy , Genetic Therapy
14.
Hum Gene Ther ; 35(7-8): 298-312, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38062734

ABSTRACT

Replacing a faulty gene with a correct copy has become a viable therapeutic option as a result of recent progress in gene editing protocols. Targeted integration of therapeutic genes in hematopoietic stem cells has been achieved for multiple genes using Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)/Cas9 system and Adeno-Associated Virus (AAV) to carry a donor template. Although this is a promising strategy to correct genetic blood disorders, it is associated with toxicity and loss of function in CD34+ hematopoietic stem and progenitor cells, which has hampered clinical application. Balancing the maximum achievable correction against deleterious effects on the cells is critical. However, multiple factors are known to contribute, and the optimization process is laborious and not always clearly defined. We have developed a flexible multidimensional Response Surface Methodology approach for optimization of gene correction. Using this approach, we could rapidly investigate and select editing conditions for CD34+ cells with the best possible balance between correction and cell/colony-forming unit (CFU) loss in a parsimonious one-shot experiment. This method revealed that using relatively low doses of AAV2/6 and CRISPR/Cas9 ribonucleoprotein complex, we can preserve the fitness of CD34+ cells and, at the same time, achieve high levels of targeted gene insertion. We then used these optimized editing conditions for the correction of p67phox-deficient chronic granulomatous disease (CGD), an autosomal recessive disorder of blood phagocytic cells resulting in severe recurrent bacterial and fungal infections and achieved rescue of p67phox expression and functional correction of CD34+-derived neutrophils from a CGD patient.


Subject(s)
Granulomatous Disease, Chronic , Humans , Granulomatous Disease, Chronic/genetics , Granulomatous Disease, Chronic/therapy , Gene Editing , Genetic Therapy/methods , Antigens, CD34/genetics , Hematopoietic Stem Cells/metabolism , CRISPR-Cas Systems
15.
J Allergy Clin Immunol ; 152(6): 1619-1633.e11, 2023 12.
Article in English | MEDLINE | ID: mdl-37659505

ABSTRACT

BACKGROUND: Chronic granulomatous disease (CGD) is caused by defects in any 1 of the 6 subunits forming the nicotinamide adenine dinucleotide phosphate oxidase complex 2 (NOX2), leading to severely reduced or absent phagocyte-derived reactive oxygen species production. Almost 50% of patients with CGD have inflammatory bowel disease (CGD-IBD). While conventional IBD therapies can treat CGD-IBD, their benefits must be weighed against the risk of infection. Understanding the impact of NOX2 defects on the intestinal microbiota may lead to the identification of novel CGD-IBD treatments. OBJECTIVE: We sought to identify microbiome and metabolome signatures that can distinguish individuals with CGD and CGD-IBD. METHODS: We conducted a cross-sectional observational study of 79 patients with CGD, 8 pathogenic variant carriers, and 19 healthy controls followed at the National Institutes of Health Clinical Center. We profiled the intestinal microbiome (amplicon sequencing) and stool metabolome, and validated our findings in a second cohort of 36 patients with CGD recruited through the Primary Immune Deficiency Treatment Consortium. RESULTS: We identified distinct intestinal microbiome and metabolome profiles in patients with CGD compared to healthy individuals. We observed enrichment for Erysipelatoclostridium spp, Sellimonas spp, and Lachnoclostridium spp in CGD stool samples. Despite differences in bacterial alpha and beta diversity between the 2 cohorts, several taxa correlated significantly between both cohorts. We further demonstrated that patients with CGD-IBD have a distinct microbiome and metabolome profile compared to patients without CGD-IBD. CONCLUSION: Intestinal microbiome and metabolome signatures distinguished patients with CGD and CGD-IBD, and identified potential biomarkers and therapeutic targets.


Subject(s)
Gastrointestinal Microbiome , Granulomatous Disease, Chronic , Inflammatory Bowel Diseases , Humans , Granulomatous Disease, Chronic/genetics , NADPH Oxidases , Cross-Sectional Studies
16.
Mol Ther ; 31(12): 3424-3440, 2023 Dec 06.
Article in English | MEDLINE | ID: mdl-37705244

ABSTRACT

Stem cell gene therapy using the MFGS-gp91phox retroviral vector was performed on a 27-year-old patient with X-linked chronic granulomatous disease (X-CGD) in 2014. The patient's refractory infections were resolved, whereas the oxidase-positive neutrophils disappeared within 6 months. Thirty-two months after gene therapy, the patient developed myelodysplastic syndrome (MDS), and vector integration into the MECOM locus was identified in blast cells. The vector integration into MECOM was detectable in most myeloid cells at 12 months after gene therapy. However, the patient exhibited normal hematopoiesis until the onset of MDS, suggesting that MECOM transactivation contributed to clonal hematopoiesis, and the blast transformation likely arose after the acquisition of additional genetic lesions. In whole-genome sequencing, the biallelic loss of the WT1 tumor suppressor gene, which occurred immediately before tumorigenesis, was identified as a potential candidate genetic alteration. The provirus CYBB cDNA in the blasts contained 108 G-to-A mutations exclusively in the coding strand, suggesting the occurrence of APOBEC3-mediated hypermutations during the transduction of CD34-positive cells. A hypermutation-mediated loss of oxidase activity may have facilitated the survival and proliferation of the clone with MECOM transactivation. Our data provide valuable insights into the complex mechanisms underlying the development of leukemia in X-CGD gene therapy.


Subject(s)
Granulomatous Disease, Chronic , Myelodysplastic Syndromes , Humans , Adult , Granulomatous Disease, Chronic/genetics , Granulomatous Disease, Chronic/therapy , NADPH Oxidases/genetics , Clonal Hematopoiesis , Genetic Therapy , Retroviridae/genetics , Myelodysplastic Syndromes/genetics , Myelodysplastic Syndromes/therapy , NADPH Oxidase 2/genetics
17.
J Clin Immunol ; 43(8): 1799-1811, 2023 11.
Article in English | MEDLINE | ID: mdl-37433991

ABSTRACT

PURPOSE: Chronic granulomatous disease (CGD) is an inherited primary immunodeficiency disorder of phagocytes, characterized by recurrent fungal and bacterial infections. Our aim is to describe the different clinical presentations, non-infectious auto-inflammatory features, types and sites of infections, and to estimate the mortality among our large cohort. METHODS: This is a retrospective study conducted at the Pediatric Department of Cairo University Children's Hospital in Egypt, including cases with a confirmed CGD diagnosis. RESULTS: One hundred seventy-three confirmed CGD patients were included. AR-CGD was diagnosed in 132 patients (76.3%) including 83 patients (48%) with p47phox defect, 44 patients (25.4%) with p22phox defect, and 5 patients (2.9%) with p67phox defect. XL-CGD was diagnosed in 25 patients (14.4%). The most common recorded clinical manifestations were deep-seated abscesses and pneumonia. Gram-negative bacteria and Aspergillus were the most frequently isolated species. Regarding the outcome, 36 patients (20.8%) were lost from follow-up. Among patients with known outcome, 94/137 patients (68.6%) are living, while 43/137 patients (31.4%) died. CONCLUSION: AR-CGD is predominant in Egypt; CGD must always be ruled out in any patient presenting with typical or atypical mycobacterial or BCG-disease.


Subject(s)
Granulomatous Disease, Chronic , Primary Immunodeficiency Diseases , Child , Humans , Granulomatous Disease, Chronic/diagnosis , Granulomatous Disease, Chronic/epidemiology , Granulomatous Disease, Chronic/genetics , Egypt/epidemiology , Retrospective Studies , Nontuberculous Mycobacteria , Patients
18.
bioRxiv ; 2023 Jun 28.
Article in English | MEDLINE | ID: mdl-37425711

ABSTRACT

Neutrophils exhibit self-amplified swarming to sites of injury and infection. How swarming is controlled to ensure the proper level of neutrophil recruitment is unknown. Using an ex vivo model of infection, we find that human neutrophils use active relay to generate multiple pulsatile waves of swarming signals. Unlike classic active relay systems such as action potentials, neutrophil swarming relay waves are self-extinguishing, limiting the spatial range of cell recruitment. We identify an NADPH-oxidase-based negative feedback loop that is needed for this self-extinguishing behavior. Through this circuit, neutrophils adjust the number and size of swarming waves for homeostatic levels of cell recruitment over a wide range of initial cell densities. We link a broken homeostat to neutrophil over-recruitment in the context of human chronic granulomatous disease.

19.
J Clin Immunol ; 43(7): 1603-1610, 2023 10.
Article in English | MEDLINE | ID: mdl-37310531

ABSTRACT

Hematopoietic stem-cell transplantation (HSCT) is the only curative treatment for chronic granulomatous disease (CGD) and leukocyte-adhesion deficiency (LAD), but both diseases have high rates of graft failure in transplant and patients with these diseases are often referred to HSCT with significant comorbidity. The intensity of the conditioning regimen should be balanced between the need to ensure durable engraftment and to minimize toxicity when transplanting young children with infections and organ damage. We report on 26 children transplanted at our institution with CGD and LAD over 24 years. We found a higher incidence of graft failure in patients receiving treosulfan based conditioning for their first transplant. There was no effect of conditioning regimen on overall survival, as all 8 patients that proceeded to a second busulfan-based HSCT were salvaged. We recommend giving patients with CGD and LAD fully myeloablative conditioning with either a busulfan-based regimen or the combination of treosulfan, fludarabine, and thiotepa.


Subject(s)
Graft vs Host Disease , Granulomatous Disease, Chronic , Hematopoietic Stem Cell Transplantation , Child , Humans , Child, Preschool , Busulfan/therapeutic use , Neutrophils , Graft vs Host Disease/etiology , Transplantation Conditioning/adverse effects , Hematopoietic Stem Cell Transplantation/adverse effects , Granulomatous Disease, Chronic/therapy , Granulomatous Disease, Chronic/complications
20.
Metabolism ; 145: 155610, 2023 08.
Article in English | MEDLINE | ID: mdl-37277061

ABSTRACT

OBJECTIVE: Cholesterol gallstone disease (CGD) is closely related to cholesterol metabolic disorder. Glutaredoxin-1 (Glrx1) and Glrx1-related protein S-glutathionylation are increasingly being observed to drive various physiological and pathological processes, especially in metabolic diseases such as diabetes, obesity and fatty liver. However, Glrx1 has been minimally explored in cholesterol metabolism and gallstone disease. METHODS: We first investigated whether Glrx1 plays a role in gallstone formation in lithogenic diet-fed mice using immunoblotting and quantitative real-time PCR. Then a whole-body Glrx1-deficient (Glrx1-/-) mice and hepatic-specific Glrx1-overexpressing (AAV8-TBG-Glrx1) mice were generated, in which we analyzed the effects of Glrx1 on lipid metabolism upon LGD feeding. Quantitative proteomic analysis and immunoprecipitation (IP) of glutathionylated proteins were performed. RESULTS: We found that protein S-glutathionylation was markedly decreased and the deglutathionylating enzyme Glrx1 was greatly increased in the liver of lithogenic diet-fed mice. Glrx1-/- mice were protected from gallstone disease induced by a lithogenic diet because their biliary cholesterol and cholesterol saturation index (CSI) were reduced. Conversely, AAV8-TBG-Glrx1 mice showed greater gallstone progression with increased cholesterol secretion and CSI. Further studies showed that Glrx1-overexpressing greatly altered bile acid levels and/or composition to increase intestinal cholesterol absorption by upregulating Cyp8b1. In addition, liquid chromatography-mass spectrometry and IP analysis revealed that Glrx1 also affected the function of asialoglycoprotein receptor 1 (ASGR1) by mediating its deglutathionylation, thereby altering the expression of LXRα and controlling cholesterol secretion. CONCLUSION: Our findings present novel roles of Glrx1 and Glrx1-regulated protein S-glutathionylation in gallstone formation through the targeting of cholesterol metabolism. Our data advises Glrx1 significantly increased gallstone formation by simultaneously increase bile-acid-dependent cholesterol absorption and ASGR1- LXRα-dependent cholesterol efflux. Our work suggests the potential effects of inhibiting Glrx1 activity to treat cholelithiasis.


Subject(s)
Gallstones , Animals , Mice , Bile Acids and Salts/metabolism , Cholesterol/metabolism , Gallstones/metabolism , Glutaredoxins/genetics , Glutaredoxins/metabolism , Glutaredoxins/pharmacology , Lipid Metabolism/genetics , Liver/metabolism , Mice, Inbred C57BL , Protein S/metabolism , Protein S/pharmacology , Proteomics
SELECTION OF CITATIONS
SEARCH DETAIL