Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 38
Filter
1.
Curr Opin Plant Biol ; 77: 102485, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38043138

ABSTRACT

Calcium (Ca2+) signaling consists of three steps: (1) initiation of a change in cellular Ca2+ concentration in response to a stimulus, (2) recognition of the change through direct binding of Ca2+ by its sensors, (3) transduction of the signal to elicit downstream responses. Recent studies have uncovered a central role for Ca2+ signaling in both layers of immune responses initiated by plasma membrane (PM) and intracellular receptors, respectively. These advances in our understanding are attributed to several lines of research, including invention of genetically-encoded Ca2+ reporters for the recording of intracellular Ca2+ signals, identification of Ca2+ channels and their gating mechanisms, and functional analysis of Ca2+ binding proteins (Ca2+ sensors). This review analyzes the recent literature that illustrates the importance of Ca2+ homeostasis and signaling in plant innate immunity, featuring intricate Ca2+dependent positive and negative regulations.


Subject(s)
Calcium , Plant Immunity , Calcium/metabolism , Plant Immunity/physiology , Signal Transduction/physiology , Homeostasis , Calcium Signaling/physiology
2.
Int J Oncol ; 63(5)2023 11.
Article in English | MEDLINE | ID: mdl-37711071

ABSTRACT

Ovarian cancer (OC) is a deadly disease. The poor prognosis and high lethality of OC are attributed to its high degrees of aggressiveness, resistance to chemotherapy and recurrence rates. Calcium ion (Ca2+) signaling has received attention in recent years, as it appears to form an essential part of various aspects of cancer pathophysiology and is a potential therapeutic target for OC treatment. Disruption of normal Ca2+ signaling pathways can induce changes in cell cycle progression, apoptosis, proliferation and migration and invasion, leading to the development of the malignant phenotype of tumors. In the present review, the main roles of ion channel/receptor/pump­triggered Ca2+ signaling pathways located at the plasma membrane and organelle Ca2+ transport in OC are summarized. In addition, the potential of Ca2+ signaling as a novel target for the development of effective treatment strategies for OC was discussed. Furthering the understanding into the role of Ca2+ signaling in OC is expected to facilitated the identification of novel therapeutic targets and improved clinical outcomes for patients.


Subject(s)
Calcium , Ovarian Neoplasms , Humans , Female , Ovarian Neoplasms/drug therapy , Signal Transduction , Aggression , Apoptosis
3.
Glia ; 71(12): 2770-2781, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37564028

ABSTRACT

Astrocytes are intricately involved in the activity of neural circuits; however, their basic physiology of interacting with nearby neurons is not well established. Using two-photon imaging of neurons and astrocytes during higher frequency stimulation of hippocampal CA3-CA1 Schaffer collateral (Scc) excitatory synapses, we could show that increasing levels of released glutamate accelerated local astrocytic Ca2+ elevation. However, blockage of glutamate transporters did not abolish this astrocytic Ca2+ response, suggesting that astrocytic Ca2+ elevation is indirectly associated with an uptake of extracellular glutamate. However, during the astrocytic glutamate uptake, the Na+ /Ca2+ exchanger (NCX) reverse mode was activated, and mediated extracellular Ca2+ entry, thereby triggering the internal release of Ca2+ . In addition, extracellular Ca2+ entry via membrane P2X receptors further facilitated astrocytic Ca2+ elevation via ATP binding. These findings suggest a novel mechanism of activity induced Ca2+ permeability increases of astrocytic membranes, which drives astrocytic responses during neuronal stimulation of CA3-CA1 Scc excitatory synapses.


Subject(s)
Astrocytes , Neurons , Astrocytes/metabolism , Neurons/metabolism , Hippocampus/metabolism , Synapses/metabolism , Glutamic Acid/metabolism , Permeability , Calcium/metabolism
4.
Trends Biochem Sci ; 48(9): 776-787, 2023 09.
Article in English | MEDLINE | ID: mdl-37394345

ABSTRACT

Nucleotide binding and leucine-rich repeat-containing receptors (NLRs) have a critical role in plant immunity through direct or indirect recognition of pathogen effectors. Recent studies have demonstrated that such recognition induces formation of large protein complexes called resistosomes to mediate NLR immune signaling. Some NLR resistosomes activate Ca2+ influx by acting as Ca2+-permeable channels, whereas others function as active NADases to catalyze the production of nucleotide-derived second messengers. In this review we summarize these studies on pathogen effector-induced assembly of NLR resistosomes and resistosome-mediated production of the second messengers of Ca2+ and nucleotide derivatives. We also discuss downstream events and regulation of resistosome signaling.


Subject(s)
NLR Proteins , Plants , NLR Proteins/chemistry , NLR Proteins/metabolism , Signal Transduction , Second Messenger Systems , Nucleotides/metabolism
5.
Glia ; 71(11): 2559-2572, 2023 11.
Article in English | MEDLINE | ID: mdl-37439315

ABSTRACT

Brain edema is a feared complication to disorders and insults affecting the brain. It can be fatal if the increase in intracranial pressure is sufficiently large to cause brain herniation. Moreover, accruing evidence suggests that even slight elevations of intracranial pressure have adverse effects, for instance on brain perfusion. The water channel aquaporin-4 (AQP4), densely expressed in perivascular astrocytic endfeet, plays a key role in brain edema formation. Using two-photon microscopy, we have studied AQP4-mediated swelling of astrocytes affects capillary blood flow and intracranial pressure (ICP) in unanesthetized mice using a mild brain edema model. We found improved regulation of capillary blood flow in mice devoid of AQP4, independently of the severity of ICP increase. Furthermore, we found brisk AQP4-dependent astrocytic Ca2+ signals in perivascular endfeet during edema that may play a role in the perturbed capillary blood flow dynamics. The study suggests that astrocytic endfoot swelling and pathological signaling disrupts microvascular flow regulation during brain edema formation.


Subject(s)
Brain Edema , Animals , Mice , Aquaporin 4/metabolism , Astrocytes/metabolism , Brain/metabolism , Brain Edema/etiology , Brain Edema/pathology , Edema
6.
Biology (Basel) ; 12(7)2023 Jul 07.
Article in English | MEDLINE | ID: mdl-37508398

ABSTRACT

The systemic effects of physical activity are mediated by the release of IL-6 and other myokines from contracting muscle. Although the release of IL-6 from muscle has been extensively studied, the information on the cellular mechanisms is fragmentary and scarce, especially regarding the role of Ca2+ signals. The aim of this study was to characterize the role of the main components of Ca2+ signals in human skeletal muscle cells during IL-6 secretion stimulated by the Ca2+ mobilizing agonist ATP. Primary cultures were prepared from surgical samples, fluorescence microscopy was used to evaluate the Ca2+ signals and the stimulated release of IL-6 into the medium was determined using ELISA. Intracellular calcium chelator Bapta, low extracellular calcium and the Ca2+ channels blocker La3+ reduced the ATP-stimulated, but not the basal secretion. Secretion was inhibited by blockers of L-type (nifedipine, verapamil), T-type (NNC55-0396) and Orai1 (Synta66) Ca2+ channels and by silencing Orai1 expression. The same effect was achieved with inhibitors of ryanodine receptors (ryanodine, dantrolene) and IP3 receptors (xestospongin C, 2-APB, caffeine). Inhibitors of calmodulin (calmidazolium) and calcineurin (FK506) also decreased secretion. IL-6 transcription in response to ATP was not affected by Bapta or by the T channel blocker. Our results prove that ATP-stimulated IL-6 secretion is mediated at the post-transcriptional level by Ca2+ signals, including the mobilization of calcium stores, the activation of store-operated Ca2+ entry, and the subsequent activation of voltage-operated Ca2+ channels and calmodulin/calcineurin pathways.

7.
J Physiol ; 601(14): 2935-2958, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37278367

ABSTRACT

The acrosome is a lysosome-related vesicular organelle located in the sperm head. The acrosomal reaction (AR) is an exocytic process mediated by Ca2+ and essential for mammalian fertilization. Recent findings support the importance of acrosomal alkalinization for the AR. Mibefradil (Mib) and NNC 55-0396 (NNC) are two amphipathic weak bases that block the sperm-specific Ca2+ channel (CatSper) and induce acrosomal pH (pHa ) increase by accumulating in the acrosomal lumen of mammalian sperm. This accumulation and pHa elevation increase the intracellular Ca2+ concentration ([Ca2+ ]i ) and trigger the AR by unknown mechanisms of Ca2+ transport. Here, we investigated the pathways associated with the pHa increase-induced Ca2+ signals using mouse sperm as a model. To address these questions, we used single-cell Ca2+ imaging, the lysosomotropic agent Gly-Phe-ß-naphthylamide (GPN) and pharmacological tools. Our findings show that Mib and NNC increase pHa and release acrosomal Ca2+ without compromising acrosomal membrane integrity. Our GPN results indicate that the osmotic component does not significantly contribute to acrosomal Ca2+ release caused by pHa rise. Inhibition of two-pore channel 1 (TPC1) channels reduced the [Ca2+ ]i increase stimulated by acrosomal alkalinization. In addition, blockage of Ca2+ release-activated Ca2+ (CRAC) channels diminished Ca2+ uptake triggered by pHa alkalinization. Finally, our findings contribute to understanding how pHa controls acrosomal Ca2+ efflux and extracellular Ca2+ entry during AR in mouse sperm. KEY POINTS: The acrosomal vesicle is a lysosome-related organelle located in the sperm head. The acrosome reaction (AR) is a highly regulated exocytic process mediated by Ca2+ , which is essential for fertilization. However, the molecular identity of Ca2+ transporters involved in the AR and their mechanisms to regulate Ca2+ fluxes are not fully understood. In mammalian sperm, acrosomal alkalinization induces intracellular Ca2+ concentration ([Ca2+ ]i ) increase and triggers the AR by unknown molecular mechanisms of Ca2+ transport. In this study, we explored the molecular mechanisms underlying Ca2+ signals caused by acrosomal alkalinization using mouse sperm as a model. TPC1 and CRAC channels contribute to [Ca2+ ]i elevation during acrosomal alkalinization. Our findings expand our understanding of how the acrosomal pH participates in the physiological induction of the AR.


Subject(s)
Calcium , Semen , Male , Animals , Mice , Calcium/metabolism , Semen/metabolism , Spermatozoa/metabolism , Acrosome/metabolism , Mibefradil/metabolism , Mibefradil/pharmacology , Hydrogen-Ion Concentration , Mammals/metabolism
8.
Cell Calcium ; 113: 102761, 2023 07.
Article in English | MEDLINE | ID: mdl-37271052

ABSTRACT

Inositol 1,4,5-trisphosphate receptors (IP3Rs) are large tetrameric channels which sit mostly in the membrane of the endoplasmic reticulum (ER) and mediate Ca2+ release from intracellular stores in response to extracellular stimuli in almost all cells. Dual regulation of IP3Rs by IP3 and Ca2+ itself, upstream "licensing", and the arrangement of IP3Rs into small clusters in the ER membrane, allow IP3Rs to generate spatially and temporally diverse Ca2+ signals. The characteristic biphasic regulation of IP3Rs by cytosolic Ca2+ concentration underpins regenerative Ca2+ signals by Ca2+-induced Ca2+-release, while also preventing uncontrolled explosive Ca2+ release. In this way, cells can harness a simple ion such as Ca2+ as a near-universal intracellular messenger to regulate diverse cellular functions, including those with conflicting outcomes such as cell survival and cell death. High-resolution structures of the IP3R bound to IP3 and Ca2+ in different combinations have together started to unravel the workings of this giant channel. Here we discuss, in the context of recently published structures, how the tight regulation of IP3Rs and their cellular geography lead to generation of "elementary" local Ca2+ signals known as Ca2+ "puffs", which form the fundamental bottleneck through which all IP3-mediated cytosolic Ca2+ signals must first pass.


Subject(s)
Calcium Signaling , Calcium , Calcium Signaling/physiology , Inositol 1,4,5-Trisphosphate Receptors/metabolism , Calcium/metabolism , Endoplasmic Reticulum/metabolism , Cytosol/metabolism , Inositol 1,4,5-Trisphosphate/metabolism
9.
Acta Pharmacol Sin ; 44(4): 811-821, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36151392

ABSTRACT

Herpes simplex virus (HSV) infection induces a rapid and transient increase in intracellular calcium concentration ([Ca2+]i), which plays a critical role in facilitating viral entry. T-type calcium channel blockers and EGTA, a chelate of extracellular Ca2+, suppress HSV-2 infection. But the cellular mechanisms mediating HSV infection-activated Ca2+ signaling have not been completely defined. In this study we investigated whether the TRPV4 channel was involved in HSV-2 infection in human vaginal epithelial cells. We showed that the TRPV4 channel was expressed in human vaginal epithelial cells (VK2/E6E7). Using distinct pharmacological tools, we demonstrated that activation of the TRPV4 channel induced Ca2+ influx, and the TRPV4 channel worked as a Ca2+-permeable channel in VK2/E6E7 cells. We detected a direct interaction between the TRPV4 channel protein and HSV-2 glycoprotein D in the plasma membrane of VK2/E6E7 cells and the vaginal tissues of HSV-2-infected mice as well as in phallic biopsies from genital herpes patients. Pretreatment with specific TRPV4 channel inhibitors, GSK2193874 (1-4 µM) and HC067047 (100 nM), or gene silence of the TRPV4 channel not only suppressed HSV-2 infectivity but also reduced HSV-2-induced cytokine and chemokine generation in VK2/E6E7 cells by blocking Ca2+ influx through TRPV4 channel. These results reveal that the TRPV4 channel works as a Ca2+-permeable channel to facilitate HSV-2 infection in host epithelial cells and suggest that the design and development of novel TRPV4 channel inhibitors may help to treat HSV-2 infections.


Subject(s)
Herpesviridae Infections , Herpesvirus 2, Human , TRPV Cation Channels , Animals , Female , Humans , Mice , Calcium Signaling/genetics , Calcium Signaling/physiology , Epithelial Cells/metabolism , Herpesviridae Infections/genetics , Herpesviridae Infections/metabolism , Herpesvirus 2, Human/genetics , Herpesvirus 2, Human/metabolism , Signal Transduction/physiology , TRPV Cation Channels/genetics , TRPV Cation Channels/physiology
10.
Cells ; 11(19)2022 09 26.
Article in English | MEDLINE | ID: mdl-36230965

ABSTRACT

Intracellular calcium (Ca2+) concentration ([Ca2+]i) is implicated in proliferation, invasion, and metastasis in cancerous tissues. A variety of oncologic therapies and some candidate drugs induce their antitumor effects (in part or in whole) through the modulation of [Ca2+]i. Cervical cancer is one of most common cancers among women worldwide. Recently, major research advances relating to the Ca2+ signals in cervical cancer are emerging. In this review, we comprehensively describe the current progress concerning the roles of Ca2+ signals in the occurrence, development, and prognosis of cervical cancer. It will enhance our understanding of the causative mechanism of Ca2+ signals in cervical cancer and thus provide new sights for identifying potential therapeutic targets for drug discovery.


Subject(s)
Calcium , Uterine Cervical Neoplasms , Calcium/metabolism , Calcium Channels/metabolism , Calcium Signaling , Female , Humans , Uterine Cervical Neoplasms/drug therapy , Uterine Cervical Neoplasms/pathology
11.
Int J Mol Sci ; 22(17)2021 Aug 31.
Article in English | MEDLINE | ID: mdl-34502402

ABSTRACT

Microglial functioning depends on Ca2+ signaling. By using Ca2+ sensitive fluorescence dye, we studied how inhibition of mitochondrial respiration changed spontaneous Ca2+ signals in soma of microglial cells from 5-7-day-old rats grown under normoxic and mild-hypoxic conditions. In microglia under normoxic conditions, metformin or rotenone elevated the rate and the amplitude of Ca2+ signals 10-15 min after drug application. Addition of cyclosporin A, a blocker of mitochondrial permeability transition pore (mPTP), antioxidant trolox, or inositol 1,4,5-trisphosphate receptor (IP3R) blocker caffeine in the presence of rotenone reduced the elevated rate and the amplitude of the signals implying sensitivity to reactive oxygen species (ROS), and involvement of mitochondrial mPTP together with IP3R. Microglial cells exposed to mild hypoxic conditions for 24 h showed elevated rate and increased amplitude of Ca2+ signals. Application of metformin or rotenone but not phenformin before mild hypoxia reduced this elevated rate. Thus, metformin and rotenone had the opposing fast action in normoxia after 10-15 min and the slow action during 24 h mild-hypoxia implying activation of different signaling pathways. The slow action of metformin through inhibition of complex I could stabilize Ca2+ homeostasis after mild hypoxia and could be important for reduction of ischemia-induced microglial activation.


Subject(s)
Calcium Signaling/drug effects , Metformin/pharmacology , Animals , Caffeine/pharmacology , Calcium Signaling/physiology , Chromans/pharmacology , Cyclosporine/pharmacology , Electron Transport Complex I/metabolism , Female , Hypoxia/genetics , Hypoxia/metabolism , Male , Metformin/metabolism , Microglia/drug effects , Microglia/metabolism , Mitochondria/metabolism , Mitochondrial Membrane Transport Proteins/metabolism , Neurons/metabolism , Primary Cell Culture , Rats , Reactive Oxygen Species/metabolism , Rotenone/pharmacology
12.
J Bioenerg Biomembr ; 53(6): 633-641, 2021 12.
Article in English | MEDLINE | ID: mdl-34537954

ABSTRACT

Calcium plays a key role in signal transduction in eukaryotic cells. Besides controlling local functions of cells calcium ions are responsible for the generation of global signals such as waves and spikes. Pulsatile increases of calcium concentrations are generally considered to have a much higher fidelity of information transfer than simple tonic changes, since they are much less prone to noisy fluctuations. In that respect, it was clearly revealed that Ca2+ has very crucial involvement in many signaling pathways in cilia and flagella. We earlier established a model in which axonemal microtubules exhibit the features of nonlinear polyelectrolitic electric transmissions lines for efficient transport of cations, primarily Ca2+. These microtubules guide accumulated "ionic clods" which serve as the pulsatile signals aimed to regulate pertaining motor proteins, dyneins and kinesis. We here consider such Ca2+ signals in axoneme in the context of Shannon's and Fisher's information theories. It appears that the fast drift of these "ionic clouds" represents the optimized calcium signaling for control of "flagellary beats" as well as intraflagellary transport of proteins essential for the construction, elongation and maintenance of eukaryotic cilia and flagella themselves.


Subject(s)
Axoneme , Cilia , Axoneme/metabolism , Calcium/metabolism , Cilia/metabolism , Flagella/metabolism , Microtubules/metabolism
13.
J Dermatol Sci ; 103(2): 101-108, 2021 Aug.
Article in English | MEDLINE | ID: mdl-34315630

ABSTRACT

BACKGROUND: Systemic sclerosis (SSc) causes progressive fibrosis of multiple organs with the low efficacy of immunosuppressive therapies. Our previous study indicated the SSc pathological pathways are closely correlated with Ca2+ signals, and blockage of the intracellular Ca2+ elevation facilitates inhibition of SSc pathogenesis. OBJECTIVE: Transforming growth factor ß (TGF-ß)-modulated SMAD signaling is crucial in regulating SSc pathogenesis. Whether Ca2+ signals are involved in TGF-ß1/SMAD signaling-induced fibrotic process has been further investigated. METHODS: We utilized TGF-ß1-induced myofibroblasts as a model to detect how Ca2+ signals affected SSc pathogenesis, and investigated the combination of treatment with store-operated Ca2+ entry (SOCE) associated inhibitors, 2-aminoethyl diphenylborinate (2-APB) and SKF96365 to restrain the increased Ca2+ signaling in myofibroblasts. In addition, the SSc bleomycin mouse model was used to detect the effect of 2-APB on SSc pathogenesis in vivo. RESULTS: Our findings revealed increased levels of TGF-ß1 production in SSc was associated with intracellular Ca2+ activity, and inhibition of intracellular Ca2+ regulation by 2-APB resulted in the dedifferentiation of TGF-ß1-induced myofibroblasts. This was due to the fact that 2-APB restrained the expression fibrotic markers, α-SMA, fibronectin and vimentin through inhibiting TGF-ß1/SMAD3 signaling. Thus, subcutaneous injection of 2-APB improved bleomycin-induced skin and pulmonary fibrosis. CONCLUSION: 2-APB is a potential candidate for treating fibrosis, by disrupting intracellular Ca2+ regulation in SSc to induce the dedifferentiation of myofibroblasts and meliorates fibrosis pathogenesis via inhibiting TGF-ß1/SMAD3 signaling.


Subject(s)
Boron Compounds/therapeutic use , Calcium Signaling/drug effects , Cell Dedifferentiation/drug effects , Pulmonary Fibrosis/prevention & control , Scleroderma, Systemic/prevention & control , Adult , Aged , Animals , Bleomycin , Boron Compounds/pharmacology , Case-Control Studies , Disease Models, Animal , Drug Evaluation, Preclinical , Female , Humans , Male , Mice, Inbred C57BL , Middle Aged , Pulmonary Fibrosis/metabolism , Scleroderma, Systemic/metabolism , Young Adult
14.
Front Immunol ; 12: 656965, 2021.
Article in English | MEDLINE | ID: mdl-33986747

ABSTRACT

The role of endolysosomal Ca2+ signalling in immunity has been a subject of increasing interest in recent years. Here, we discuss evolving knowledge relating to the contribution of endolysosomal Ca2+ channels that include TPCs, TRPMLs, and P2X4R in physiological processes related to innate and adaptive immunity-including phagocytosis, inflammation, cytokine/chemokine release, dendritic, natural killer, and T cell activation and migration-and we underscore the paucity of clinical studies in this field. Emerging biomedical and translational data have led to important new insights into the critical roles of these channels in immune cell function and the regulation of innate and adaptive immune responses. The evolving immunological significance of endolysosomal Ca2+ signalling warrants further investigations to better characterize the roles of these channels in immunity in order to expand our knowledge about the pathology of inflammatory and autoimmune diseases and develop endolysosomal Ca2+ channels as viable biomarkers and therapeutic and preventive targets for remodelling the immune response.


Subject(s)
Calcium Channels/metabolism , Calcium/metabolism , Endosomes/metabolism , Immunity , Lysosomes/metabolism , Adaptive Immunity , Animals , Antigen Presentation/immunology , Calcium Signaling , Cytokines/metabolism , Host-Pathogen Interactions/immunology , Humans , Immunity, Innate , Lymphocyte Activation , Phagocytosis/immunology
15.
Skelet Muscle ; 11(1): 12, 2021 05 05.
Article in English | MEDLINE | ID: mdl-33952323

ABSTRACT

BACKGROUND: In vitro maturation of human primary myoblasts using 2D culture remains a challenging process and leads to immature fibers with poor internal organization and function. This would however represent a valuable system to study muscle physiology or pathophysiology from patient myoblasts, at a single-cell level. METHODS: Human primary myoblasts were cultured on 800-nm wide striated surface between two layers of Matrigel, and in a media supplemented with an inhibitor of TGFß receptor. Gene expression, immunofluorescence, and Ca2+ measurements upon electrical stimulations were performed at various time points during maturation to assess the organization and function of the myotubes. RESULTS: We show that after 10 days in culture, myotubes display numerous functional acetylcholine receptor clusters and express the adult isoforms of myosin heavy chain and dihydropyridine receptor. In addition, the myotubes are internally well organized with striations of α-actinin and STIM1, and occasionally ryanodine receptor 1. We also demonstrate that the myotubes present robust Ca2+ responses to repetitive electrical stimulations. CONCLUSION: The present method describes a fast and efficient system to obtain well matured and functional myotubes in 2D culture allowing thorough analysis of single-cell Ca2+ signals.


Subject(s)
Muscle Fibers, Skeletal , Myoblasts , Actinin , Cell Differentiation , Cells, Cultured , Humans , Myosin Heavy Chains/genetics
16.
Cancers (Basel) ; 13(2)2021 Jan 07.
Article in English | MEDLINE | ID: mdl-33430230

ABSTRACT

Metastatic cancer is one of the major causes of cancer-related mortalities. Metastasis is a complex, multi-process phenomenon, and a hallmark of cancer. Calcium (Ca2+) is a ubiquitous secondary messenger, and it has become evident that Ca2+ signalling plays a vital role in cancer. Ca2+ homeostasis is dysregulated in physiological processes related to tumour metastasis and progression-including cellular adhesion, epithelial-mesenchymal transition, cell migration, motility, and invasion. In this review, we looked at the role of intracellular and extracellular Ca2+ signalling pathways in processes that contribute to metastasis at the local level and also their effects on cancer metastasis globally, as well as at underlying molecular mechanisms and clinical applications. Spatiotemporal Ca2+ homeostasis, in terms of oscillations or waves, is crucial for hindering tumour progression and metastasis. They are a limited number of clinical trials investigating treating patients with advanced stages of various cancer types. Ca2+ signalling may serve as a novel hallmark of cancer due to the versatility of Ca2+ signals in cells, which suggests that the modulation of specific upstream/downstream targets may be a therapeutic approach to treat cancer, particularly in patients with metastatic cancers.

17.
Int J Mol Sci ; 23(1)2021 Dec 23.
Article in English | MEDLINE | ID: mdl-35008573

ABSTRACT

In pathological brain conditions, glial cells become reactive and show a variety of responses. We examined Ca2+ signals in pathological brains and found that reactive astrocytes share abnormal Ca2+ signals, even in different types of diseases. In a neuropathic pain model, astrocytes in the primary sensory cortex became reactive and showed frequent Ca2+ signals, resulting in the production of synaptogenic molecules, which led to misconnections of tactile and pain networks in the sensory cortex, thus causing neuropathic pain. In an epileptogenic model, hippocampal astrocytes also became reactive and showed frequent Ca2+ signals. In an Alexander disease (AxD) model, hGFAP-R239H knock-in mice showed accumulation of Rosenthal fibers, a typical pathological marker of AxD, and excessively large Ca2+ signals. Because the abnormal astrocytic Ca2+ signals observed in the above three disease models are dependent on type II inositol 1,4,5-trisphosphate receptors (IP3RII), we reanalyzed these pathological events using IP3RII-deficient mice and found that all abnormal Ca2+ signals and pathologies were markedly reduced. These findings indicate that abnormal Ca2+ signaling is not only a consequence but may also be greatly involved in the cause of these diseases. Abnormal Ca2+ signals in reactive astrocytes may represent an underlying pathology common to multiple diseases.


Subject(s)
Alexander Disease , Astrocytes , Calcium Signaling , Calcium , Animals , Alexander Disease/metabolism , Astrocytes/metabolism , Calcium/metabolism , Calcium Signaling/physiology , Mice
18.
J Neurochem ; 157(6): 1789-1808, 2021 06.
Article in English | MEDLINE | ID: mdl-32931038

ABSTRACT

Pannexin-1 (Panx1) forms plasma membrane channels that allow the exchange of small molecules between the intracellular and extracellular compartments, and are involved in diverse physiological and pathological responses in the nervous system. However, the signaling mechanisms that induce their opening still remain elusive. Here, we propose a new mechanism for Panx1 channel activation through a functional crosstalk with the highly Ca2+ permeable α7 nicotinic acetylcholine receptor (nAChR). Consistent with this hypothesis, we found that activation of α7 nAChRs induces Panx1-mediated dye uptake and ATP release in the neuroblastoma cell line SH-SY5Y-α7. Using membrane permeant Ca2+ chelators, total internal reflection fluorescence microscopy in SH-SY5Y-α7 cells expressing a membrane-tethered GCAMP3, and Src kinase inhibitors, we further demonstrated that Panx1 channel opening depends on Ca2+ signals localized in submembrane areas, as well as on Src kinases. In turn, Panx1 channels amplify cytosolic Ca2+ signals induced by the activation of α7 nAChRs, by a mechanism that seems to involve ATP release and P2X7 receptor activation, as hydrolysis of extracellular ATP with apyrase or blockage of P2X7 receptors with oxidized ATP significantly reduces the α7 nAChR-Ca2+ signal. The physiological relevance of this crosstalk was also demonstrated in neuroendocrine chromaffin cells, wherein Panx1 channels and P2X7 receptors contribute to the exocytotic release of catecholamines triggered by α7 nAChRs, as measured by amperometry. Together these findings point to a functional coupling between α7 nAChRs, Panx1 channels and P2X7 receptors with physiological relevance in neurosecretion.


Subject(s)
Chromaffin Cells/metabolism , Connexins/metabolism , Exocytosis/physiology , Nerve Tissue Proteins/metabolism , Receptor Cross-Talk/physiology , Receptors, Purinergic P2X7/metabolism , alpha7 Nicotinic Acetylcholine Receptor/metabolism , Animals , Calcium Chelating Agents/pharmacology , Calcium Signaling/drug effects , Calcium Signaling/physiology , Cattle , Cell Line, Tumor , Chromaffin Cells/drug effects , Exocytosis/drug effects , Humans , Mice , Receptor Cross-Talk/drug effects
19.
Neuron ; 109(2): 314-330.e4, 2021 01 20.
Article in English | MEDLINE | ID: mdl-33188733

ABSTRACT

Interactions between the thalamus and prefrontal cortex (PFC) play a critical role in cognitive function and arousal. Here, we use anatomical tracing, electrophysiology, optogenetics, and 2-photon Ca2+ imaging to determine how ventromedial (VM) and mediodorsal (MD) thalamus target specific cell types and subcellular compartments in layer 1 (L1) of mouse PFC. We find thalamic inputs make distinct connections in L1, where VM engages neuron-derived neurotrophic factor (NDNF+) cells in L1a and MD drives vasoactive intestinal peptide (VIP+) cells in L1b. These separate populations of L1 interneurons participate in different inhibitory networks in superficial layers by targeting either parvalbumin (PV+) or somatostatin (SOM+) interneurons. NDNF+ cells also inhibit the apical dendrites of L5 pyramidal tract (PT) cells to suppress action potential (AP)-evoked Ca2+ signals. Lastly, NDNF+ cells mediate a unique form of thalamus-evoked inhibition at PT cells, selectively blocking VM-evoked dendritic Ca2+ spikes. Together, our findings reveal how two thalamic nuclei differentially communicate with the PFC through distinct L1 micro-circuits.


Subject(s)
Mediodorsal Thalamic Nucleus/physiology , Nerve Net/physiology , Prefrontal Cortex/physiology , Animals , Female , Inhibitory Postsynaptic Potentials/physiology , Male , Mediodorsal Thalamic Nucleus/chemistry , Mediodorsal Thalamic Nucleus/cytology , Mice , Mice, Inbred C57BL , Nerve Net/chemistry , Nerve Net/cytology , Optogenetics/methods , Prefrontal Cortex/chemistry , Prefrontal Cortex/cytology
20.
Front Behav Neurosci ; 14: 589176, 2020.
Article in English | MEDLINE | ID: mdl-33328920

ABSTRACT

Isoflurane contributes to cognitive deficits when used as a general anesthetic, and so does sleep deprivation (SD). Patients usually suffer from insomnia before an operation due to anxiety, fear, and other factors. It remains unclear whether preoperative SD exacerbates cognitive impairment induced by isoflurane. In this study, we observed the effects of pretreated 24-h SD in adult isoflurane-exposed mice on the cognitive behaviors, the Ca2+ signals of dorsal hippocampal CA1 (dCA1) neurons in vivo with fiber photometry, and the density of dendritic spines in hippocampal neurons. Our results showed that in cognitive behavior tasks, short-term memory damages were more severe with SD followed by isoflurane exposure than that with SD or isoflurane exposure separately, and interestingly, severe long-term memory deficits were induced only by SD followed by isoflurane exposure. Only the treatment of SD followed by isoflurane exposure could reversibly decrease the amplitude of Ca2+ signals when mice were freely moving and increase the duration of Ca2+ signals during the long-term memory behavior test. The density of dendritic spines with both SD and isoflurane exposure was lower than that with SD alone. This study suggests that SD should be avoided preoperatively in patients undergoing elective surgery under isoflurane anesthesia.

SELECTION OF CITATIONS
SEARCH DETAIL