Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters








Database
Language
Publication year range
1.
J Exerc Sci Fit ; 20(1): 32-39, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34987588

ABSTRACT

OBJECTIVES: This study examined the influences of the volume of all-out sprint-interval exercise (SIE) on acute post-exercise heart rate variability (HRV) recovery. METHODS: HRV recovery following a session of (i) 2 × 30-s SIE (SIE2), (ii) 4 × 30-s SIE (SIE4), and (iii) non-exercising control (CON) were compared in 15 untrained young males. Time domain [standard deviation of normal-to-normal intervals, root mean square of successive R-R differences] and frequency domain [low frequency (0.04-0.14 Hz), high frequency (0.15-0.40 Hz)] measures of HRV were assessed every 20 min for 140 min after the exercise, and every hour during the first 4 h of actual sleep time at immediate night. All trials were scheduled at 19:00. RESULTS: In comparison to CON, both SIE2 and SIE4 attenuated the HRV markedly (p < 0.05), while the declined HRV restored progressively during recovery. Although the sprint repetitions of SIE4 was twice as that of SIE2, the declined HRV indices at corresponding time points during recovery were not different between the two trials (p > 0.05). Nevertheless, the post-exercise HRV restoration in SIE2 appeared to be faster than that in SIE4. Regardless, nocturnal HRV measured within 10 h following the exercise was not different among the SIE and CON trials (p > 0.05). CONCLUSION: Such findings suggest that the exercise volume of the SIE protocol may be a factor affecting the rate of removal of the cardiac autonomic disturbance following the exercise. In addition, rest for ∼10 h following either session of the SIE protocol appears to be appropriate for the cardiovascular system to recover.

2.
Temperature (Austin) ; 5(2): 184-196, 2018.
Article in English | MEDLINE | ID: mdl-30377635

ABSTRACT

The aim of this study was to examine the effect of natural ageing on heart rate variability during and following exercise-induced heat stress in females. Eleven young (∼24 years) and 13 older (∼51 years), habitually active females completed an experimental session consisting of baseline rest, moderate intensity intermittent exercise (four 15-min bouts separated by 15-min recovery) and 1-hour of final recovery in a hot and dry (35°C, 20% relative humidity) environment. Respiratory and heart rate recordings were continuously logged with 10-min periods analysed at the end of: baseline rest; each of the exercise and recovery bouts; and during the 1-hour final recovery period. Comparisons over time during exercise and recovery, and between groups were conducted via two-way repeated-measures ANCOVAs with rest values as the covariate. During baseline rest, older females exhibited lower heart rate variability compared to young females with similar levels of respiration and most (∼71-79%) heart rate variability measures during repeated exercise and recovery. However, older females exhibited heart rate variability metrics suggestive of greater parasympathetic modulation (greater long axis of Poincare plot, cardiac vagal index; lower low-high frequency ratio) during repeated exercise with lower indices during the latter stage of prolonged recovery (less very low frequency component, Largest Lyapunov Exponent; greater cardiac sympathetic index). The current study documented several unique, age-dependent differences in heart rate variability, independent of respiration, during and following exercise-induced heat stress for females that may assist in the detection of normal heat-induced adaptations as well as individuals vulnerable to heat stress.

3.
Appl Physiol Nutr Metab ; 43(7): 704-710, 2018 Jul.
Article in English | MEDLINE | ID: mdl-29444412

ABSTRACT

Short- to medium-term (i.e., 4-14 days) heating protocols induce physiological adaptations including improved cardiac autonomic modulations, as assessed using heart rate variability, which may contribute to greater exercise performance. Whether similar cardiac autonomic changes occur during an intense heating protocol (sauna) reported to increase plasma volume in athletes remains to be confirmed. This study examined changes in heart rate and its variability during a single extreme heat (sauna) exposure and repeated exposures in athletes. Six well-trained male cyclists undertook sauna bathing (30 min, 87 °C, 11% relative humidity) immediately after normal training over 10 consecutive days. Heart rate recordings were obtained during each sauna bout. Heart rate and its variability (natural logarithm of root mean square of successive differences, lnRMSSD) were analysed during 10-min periods within the first bout, and changes in heart rate and lnRMSSD were analysed during each bout via magnitude-based inferences. During the first sauna bout, heart rate was almost certainly increased (∼32%, effect size 1.68) and lnRMSSD was almost certainly reduced (∼62%, effect size -5.21) from the first to the last 10-min period, indicating reduced parasympathetic and (or) enhanced sympathetic modulations. Acute exposure to extreme heat stress via sauna produced alterations in heart rate and cardiac autonomic modulations with successive postexercise heat exposures producing unclear changes over a 10-day period. The physiological benefits of intense heating via sauna on cardiac control in athletes remain to be elucidated.


Subject(s)
Bicycling , Exercise , Heart Rate/physiology , Steam Bath , Adaptation, Physiological , Humans , Male , Plasma Volume , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL