Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 29
Filter
1.
Prev Med Rep ; 43: 102756, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38826590

ABSTRACT

Background: Asthma and cardio-cerebrovascular diseases (CVDs) share a common etiology of chronic systemic inflammation. Our manuscript was to investigate the association between childhood asthma and CVDs in middle-aged and elderly. Methods: A total of 12,070 US middle-aged and elder were enrolled in the National Health and Nutrition Examination Survey. Childhood asthma was defined as a previous diagnosis of asthma at <18 years of age. Associations between childhood asthma and overall and cause-specific CVDs were evaluated using multivariable logistic regression models and subgroup analyses, including coronary artery disease (CAD), angina, and stroke. Results: The prevalence of CVDs, including CAD (p = 0.031) and angina (p < 0.001), was significantly higher in patients with asthma (p = 0.008). Asthma was independently associated with a higher risk of CVDs (odds ratio [OR]:1.50, 95 % confidence interval [CI]: 1.22-1.84, p < 0.001), CAD (OR: 1.55, 95 %CI: 1.17-2.02, p = 0.002), and angina (OR: 1.93, 95 %CI: 1.42-2.58, p < 0.001) while not related to stroke (p = 0.233). Subgroup analysis suggested that the association was consistent across sex, race, and the presence of obesity, chronic obstructive pulmonary disease, and diabetes. Conclusions: Childhood asthma was significantly associated with the presence of cardiocerebrovascular diseases, including CAD and angina in middle-aged and elderly. These findings underscore the importance of addressing childhood asthma as a potential risk factor for cardiovascular morbidity in middle-aged and elderly populations.

2.
J Ethnopharmacol ; 332: 118321, 2024 Oct 05.
Article in English | MEDLINE | ID: mdl-38735418

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Cordyceps has a long medicinal history as a nourishing herb in traditional Chinese medicine (TCM). Ischemic cardio-cerebrovascular diseases (CCVDs), including cerebral ischemic/reperfusion injury (CI/RI) and myocardial ischemic/reperfusion injury (MI/RI), are major contributors to mortality and disability in humans. Numerous studies have indicated that Cordyceps or its artificial substitutes have significant bioactivity on ischemic CCVDs, however, there is a lack of relevant reviews. AIM OF THE STUDY: This review was conducted to investigate the chemical elements, pharmacological effects, clinical application and drug safety of Cordycepson ischemic CCVDs. MATERIALS AND METHODS: A comprehensive search was conducted on the Web of Science, PubMed, Chinese National Knowledge Infrastructure (CNKI), and Wanfang databases using the keywords "Cordyceps", "Cerebral ischemic/reperfusion injury", and "Myocardial ischemic/reperfusion injury" or their synonyms. The retrieved literature was then categorized and summarized. RESULTS: The study findings indicated that Cordyceps and its bioactive components, including adenosine, cordycepin, mannitol, polysaccharide, and protein, have the potential to protect against CI/RI and MI/RI by improving blood perfusion, mitigating damage from reactive oxygen species, suppressing inflammation, preventing cellular apoptosis, and promoting tissue regeneration. Individually, Cordyceps could reduce neuronal excitatory toxicity and blood-brain barrier damage caused by cerebral ischemia. It can also significantly improve cardiac energy metabolism disorders and inhibit calcium overload caused by myocardial ischemia. Additionally, Cordyceps exerts a significant preventive or curative influence on the factors responsible for heart/brain ischemia, including hypertension, thrombosis, atherosclerosis, and arrhythmia. CONCLUSION: This study demonstrates Cordyceps' prospective efficacy and safety in the prevention or treatment of CI/RI and MI/RI, providing novel insights for managing ischemic CCVDs.


Subject(s)
Cordyceps , Humans , Cordyceps/chemistry , Animals , Medicine, Chinese Traditional/methods , Brain Ischemia/drug therapy
3.
Neurochem Int ; 175: 105724, 2024 May.
Article in English | MEDLINE | ID: mdl-38508416

ABSTRACT

Both Helicobacter pylori (H. pylori) infection and metabolic syndrome (MetS) are highly prevalent worldwide. The emergence of relevant research suggesting a pathogenic linkage between H. pylori infection and MetS-related cardio-cerebrovascular diseases and neurodegenerative disorders, particularly through mechanisms involving brain pericyte deficiency, hyperhomocysteinemia, hyperfibrinogenemia, elevated lipoprotein-a, galectin-3 overexpression, atrial fibrillation, and gut dysbiosis, has raised stimulating questions regarding their pathophysiology and its translational implications for clinicians. An additional stimulating aspect refers to H. pylori and MetS-related activation of innate immune cells, mast cells (MC), which is an important, often early, event in systemic inflammatory pathologies and related brain disorders. Synoptically, MC degranulation may play a role in the pathogenesis of H. pylori and MetS-related obesity, adipokine effects, dyslipidemia, diabetes mellitus, insulin resistance, arterial hypertension, vascular dysfunction and arterial stiffness, an early indicator of atherosclerosis associated with cardio-cerebrovascular and neurodegenerative disorders. Meningeal MC can be activated by triggers including stress and toxins resulting in vascular changes and neurodegeneration. Likewise, H.pylori and MetS-related MC activation is linked with: (a) vasculitis and thromboembolic events that increase the risk of cardio-cerebrovascular and neurodegenerative disorders, and (b) gut dysbiosis-associated neurodegeneration, whereas modulation of gut microbiota and MC activation may promote neuroprotection. This narrative review investigates the intricate relationship between H. pylori infection, MetS, MC activation, and their collective impact on pathophysiological processes linked to neurodegeneration. Through a comprehensive search of current literature, we elucidate the mechanisms through which H. pylori and MetS contribute to MC activation, subsequently triggering cascades of inflammatory responses. This highlights the role of MC as key mediators in the pathogenesis of cardio-cerebrovascular and neurodegenerative disorders, emphasizing their involvement in neuroinflammation, vascular dysfunction and, ultimately, neuronal damage. Although further research is warranted, we provide a novel perspective on the pathophysiology and management of brain disorders by exploring potential therapeutic strategies targeting H. pylori eradication, MetS management, and modulation of MC to mitigate neurodegeneration risk while promoting neuroprotection.


Subject(s)
Brain Diseases , Helicobacter Infections , Helicobacter pylori , Metabolic Syndrome , Neurodegenerative Diseases , Humans , Metabolic Syndrome/complications , Metabolic Syndrome/metabolism , Mast Cells/metabolism , Dysbiosis/complications , Helicobacter Infections/drug therapy , Neurodegenerative Diseases/metabolism
4.
J Pharm Anal ; 13(10): 1089-1101, 2023 Oct.
Article in English | MEDLINE | ID: mdl-38024856

ABSTRACT

Catalpol, an iridoid glucoside isolated from Rehmannia glutinosa, has gained attention due to its potential use in treating cardio-cerebrovascular diseases (CVDs). This extensive review delves into recent studies on catalpol's protective properties in relation to various CVDs, such as atherosclerosis, myocardial ischemia, infarction, cardiac hypertrophy, and heart failure. The review also explores the compound's anti-oxidant, anti-inflammatory, and anti-apoptotic characteristics, emphasizing the role of vital signaling pathways, including PGC-1α/TERT, PI3K/Akt, AMPK, Nrf2/HO-1, estrogen receptor (ER), Nox4/NF-κB, and GRP78/PERK. The article discusses emerging findings on catalpol's ability to alleviate diabetic cardiovascular complications, thrombosis, and other cardiovascular-related conditions. Although clinical studies specifically addressing catalpol's impact on CVDs are scarce, the compound's established safety and well-tolerated nature suggest that it could be a valuable treatment alternative for CVD patients. Further investigation into catalpol and related iridoid derivatives may unveil new opportunities for devising natural and efficacious CVD therapies.

5.
Heliyon ; 9(5): e15625, 2023 May.
Article in English | MEDLINE | ID: mdl-37180910

ABSTRACT

Post-translational modifications regulate numerous biochemical reactions and functions through covalent attachment to proteins. Phosphorylation, acetylation and ubiquitination account for over 90% of all reported post-translational modifications. As one of the tyrosine protein kinases, spleen tyrosine kinase (SYK) plays crucial roles in many pathophysiological processes and affects the pathogenesis and progression of various diseases. SYK is expressed in tissues outside the hematopoietic system, especially the heart, and is involved in the progression of various cardio-cerebrovascular diseases, such as atherosclerosis, heart failure, diabetic cardiomyopathy, stroke and others. Knowledge on the role of SYK in the progress of cardio-cerebrovascular diseases is accumulating, and many related mechanisms have been discovered and validated. This review summarizes the role of SYK in the progression of various cardio-cerebrovascular diseases, and aims to provide a theoretical basis for future experimental and clinical research targeting SYK as a therapeutic option for these diseases.

6.
Environ Sci Pollut Res Int ; 30(30): 75817-75822, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37225953

ABSTRACT

Our study aims to investigate the association of urinary IPM3 and cardio-cerebrovascular diseases (CVD) in general adults. A total of 1775 participants were enrolled from the National Health and Nutrition Examination Surveys. Urinary levels of IPM3 were measured by LC/MS as exposure to isoprene. The associations between isoprene exposure and the risk of CVD were evaluated by restricted cubic splines based on multivariable logistic regression models. The prevalence of CVD was significantly higher across IPM3 quartiles. Comparing with the lowest quartile, the highest quartile was associated with 2.47-fold risk of CVD (odds ratio: 2.47, 95% confidence interval: 1.40-4.39, P = 0.002). Restricted cubic spline confirmed that the levels of urinary IPM3 were linearly associated with cardio-cerebrovascular diseases, angina and heart attack, while nonlinearly related to CHF and CAD. In conclusion, the urinary IPM3, as a long-term isoprene exposure, was associated with the presence of cardio-cerebrovascular diseases, including CHF, CAD, angina, and heart attack.


Subject(s)
Cardiovascular Diseases , Cerebrovascular Disorders , Myocardial Infarction , Adult , Humans , Cross-Sectional Studies , Hemiterpenes , Myocardial Infarction/epidemiology , Nutrition Surveys , Cardiovascular Diseases/epidemiology , Cardiovascular Diseases/urine
7.
Front Pharmacol ; 14: 1038906, 2023.
Article in English | MEDLINE | ID: mdl-36909150

ABSTRACT

Cardio-cerebrovascular diseases are the leading cause of death worldwide and there is currently no optimal treatment plan. Chinese herbal medicine injection (CHI) is obtained by combining traditional Chinese medicine (TCM) theory and modern production technology. It retains some characteristics of TCM while adding injection characteristics. CHI has played an important role in the treatment of critical diseases, especially cardio-cerebrovascular diseases, and has shown unique therapeutic advantages. TCMs that promote blood circulation and remove blood stasis, such as Salvia miltiorrhiza, Carthami flos, Panax notoginseng, and Chuanxiong rhizoma, account for a large proportion of CHIs of cardio-cerebrovascular disease. CHI is used to treat cardio-cerebrovascular diseases and has potential pharmacological activities such as anti-platelet aggregation, anti-inflammatory, anti-fibrosis, and anti-apoptosis. However, CHIs have changed the traditional method of administering TCMs, and the drugs directly enter the bloodstream, which may produce new pharmacological effects or adverse reactions. This article summarizes the clinical application, pharmacological effects, and mechanism of action of different varieties of CHIs commonly used in the treatment of cardio-cerebrovascular diseases, analyzes the causes of adverse reactions, and proposes suggestions for rational drug use and pharmaceutical care methods to provide a reference for the rational application of CHIs for cardio-cerebrovascular diseases.

9.
Front Bioeng Biotechnol ; 10: 981187, 2022.
Article in English | MEDLINE | ID: mdl-36061431

ABSTRACT

According to the classical Windkessel model, the heart is the only power source for blood flow, while the arterial system is assumed to be an elastic chamber that acts as a channel and buffer for blood circulation. In this paper we show that in addition to the power provided by the heart for blood circulation, strain energy stored in deformed arterial vessels in vivo can be transformed into mechanical work to propel blood flow. A quantitative relationship between the strain energy increment and functional (systolic, diastolic, mean and pulse blood pressure) and structural (stiffness, diameter and wall thickness) parameters of the aorta is described. In addition, details of blood flow across the aorta remain unclear due to changes in functional and other physiological parameters. Based on the arterial strain energy and fluid-structure interaction theory, the relationship between physiological parameters and blood supply to organs was studied, and a corresponding mathematical model was developed. The findings provided a new understanding about blood-flow circulation, that is, cardiac output allows blood to enter the aorta at an initial rate, and then strain energy stored in the elastic arteries pushes blood toward distal organs and tissues. Organ blood supply is a key factor in cardio-cerebrovascular diseases (CCVD), which are caused by changes in blood supply in combination with multiple physiological parameters. Also, some physiological parameters are affected by changes in blood supply, and vice versa. The model can explain the pathophysiological mechanisms of chronic diseases such as CCVD and hypertension among others, and the results are in good agreement with epidemiological studies of CCVD.

10.
J Ethnopharmacol ; 297: 115421, 2022 Oct 28.
Article in English | MEDLINE | ID: mdl-35659628

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Essential oils (EO) are volatile compounds obtained from different parts of natural plants, and have been used in national, traditional and folk medicine to treat various health problems all over the world. Records indicate that in history, herbal medicines rich in EO have been widely used for the treatment of CVDs in many countries, such as China. AIM OF THE STUDY: This review focused on the traditional application and modern pharmacological mechanisms of herbal medicine EO against CVDs in preclinical and clinical trials through multi-targets synergy. Besides, the EO and anti-CVDs drugs were compared, and the broad application of EO was explained from the properties of drugs and aromatic administration routes. MATERIALS AND METHODS: Information about EO and CVDs was collected from electronic databases such as Web of Science, ScienceDirect, PubMed, and China National Knowledge Infrastructure (CNKI). The obtained data sets were sequentially arranged for better understanding of EO' potential. RESULTS: The study showed that EO had significant application in CVDs at different countries or regions since ancient times. Aiming at the complex pathological mechanisms of CVDs, including intracellular calcium overload, oxidative stress, inflammation, vascular endothelial cell injury and dysfunction and dyslipidemia, we summarized the roles of EO on CVDs in preclinical and clinical through multi-targets intervention. Besides, EO had the dual properties of drug and excipients. And aromatherapy was one of the complementary therapies to improve CVDs. CONCLUSIONS: This paper reviewed the EO on traditional treatment, preclinical mechanism and clinical application of CVDs. As important sources of traditional medicines, EO' remarkable efficacy had been confirmed in comprehensive literature reports, which showed that EO had great medicinal potential.


Subject(s)
Cerebrovascular Disorders , Oils, Volatile , Plants, Medicinal , Ethnopharmacology , Humans , Medicine, Traditional , Oils, Volatile/pharmacology , Oils, Volatile/therapeutic use , Plants, Medicinal/chemistry
11.
Aging Dis ; 13(2): 373-378, 2022 Apr.
Article in English | MEDLINE | ID: mdl-35371599

ABSTRACT

Atherosclerosis (AS) is a potential inducer of numerous cardio-cerebrovascular diseases. However, little research has investigated the expression of TPM2 in human atherosclerosis samples. A total of 34 clinical samples were obtained, including 17 atherosclerosis and 17 normal artery samples, between January 2018 and April 2021. Bioinformatics analysis was applied to explore the potential role of TPM2 in atherosclerosis. Immunohistochemistry, immunofluorescence, and western blotting assays were used to detect the expression of TPM2 and α-SMA proteins. The mRNA expression levels of TPM2 and α-SMA were detected using RT-qPCR. A neural network and intima-media thickness model were constructed. A strong relationship existed between the intima-media thickness and relative protein expression of TPM2 (P<0.001, R=-0.579). The expression of TPM2 was lower in atherosclerosis than normal artery (P<0.05). Univariate logistic regression showed that TPM2 (OR=0.150, 95% CI: 0.026-0.868, P=0.034) had clear correlations with atherosclerosis. A neural network model was successfully constructed with a relativity of 0.94434. TPM2 might be an independent protective factor for arteries, and one novel biomarker of atherosclerosis.

12.
J Pharm Pharmacol ; 74(6): 843-860, 2022 Jun 09.
Article in English | MEDLINE | ID: mdl-35385110

ABSTRACT

OBJECTIVES: The role and mechanism of tetramethylpyrazine (TMP) in cardio-cerebrovascular diseases (CCVDs), as well as the research of its new formulations are reviewed, which provides a new strategy for the clinical application of TMP. METHODS: We searched the databases including PubMed, Web of Science, Google Scholar and CNKI for relevant literature from 1991 to 2021 by searching for the keywords "TMP", "ligustrazine", "cardiovascular disease" and "nanoformulation". The inclusion criteria are as follows: (1) the literature is an experimental article, (2) the article studies cardiovascular and cerebrovascular-related diseases and (3) the article also includes the pharmacy research of TMP. A total of 160 articles were screened. KEY FINDINGS: TMP has various pharmacological effects in the treatment of many CCVDs, such as atherosclerosis, myocardium, cerebral ischemia, reperfusion injury and hypertension. Its protective effects are mainly related to its anti-platelet activity, protection of endothelial cells, and anti-inflammation, anti-oxidant and anti-apoptotic effects. In addition to pharmacological activity studies, the information of the new formulations is also significant for the further development and utilization of TMP. CONCLUSIONS: Above all, TMP can protect cardio-cerebro vessels, and preparing new formulations can improve its bioavailability, indicating that TMP has broad prospects in the treatment of CCVDs.


Subject(s)
Brain Ischemia , Pharmacy , Brain Ischemia/drug therapy , Endothelial Cells , Humans , Pyrazines/pharmacology , Pyrazines/therapeutic use
13.
Eur J Med Chem ; 228: 114035, 2022 Jan 15.
Article in English | MEDLINE | ID: mdl-34902735

ABSTRACT

Many populations suffer from thrombotic disorders such as stroke, myocardial infarction, unstable angina and thromboembolic disease. Thrombus is one of the major threatening factors to human health and the prevalence of cardio-cerebrovascular diseases induced by thrombus is growing worldwide, even some persons got rare and severe blood clots after receiving the AstraZeneca COVID vaccine unexpectedly. In terms of mechanism of thrombosis, antithrombotic drugs have been divided into three categories including anticoagulants, platelet inhibitors and fibrinolytics. Nowadays, a large number of new compounds possessing antithrombotic activities are emerging in an effort to remove the inevitable drawbacks of previously approved drugs such as the high risk of bleeding, a slow onset of action and a narrow therapeutic window. In this review, we describe the causes and mechanisms of thrombus formation firstly, and then summarize these reported active compounds as potential antithrombotic candidates based on their respective mechanism, hoping to promote the development of more effective bioactive molecules for treating thrombotic disorders.


Subject(s)
Fibrinolytic Agents/therapeutic use , Thrombosis/drug therapy , Fibrinolytic Agents/chemistry , Humans , Molecular Structure
14.
Front Pharmacol ; 12: 785598, 2021.
Article in English | MEDLINE | ID: mdl-34916951

ABSTRACT

In recent years, the incidence and mortality of cardio-cerebrovascular diseases have been increasing year by year, which has become global burden and challenge. Based on the holistic thinking of "brain disease affects the heart" and "heart disease affects the brain," as well as the characteristics of multi-target and multi-path effects of Chinese medicine, Chinese medicine is more advantageous in the treatment of cardio-cerebrovascular diseases. As a botanical medicine, storax is known for its resuscitation, filth avoidance and pain-relieving effects in the treatment of cardio-cerebrovascular diseases. By reviewing and collating the relevant domestic and international literature in the past 10 years, we have sorted out an overview of the medicinal parts, traditional uses and chemical composition of storax. For the first time, based on the idea of "cerebral and cardiac simultaneous treatment," the pharmacological activities and mechanisms of heart and brain protection of storax for treating cardio-cerebrovascular diseases were summarized and analyzed, showing that storax has the pharmacological effects of anti-cerebral ischemia, regulation of blood-brain barrier, bidirectional regulation of the central nervous system, anti-myocardial ischemia, anti-arrhythmia, anti-thrombosis and anti-platelet aggregation. It mainly exerts its protective effects on the brain and heart through mechanisms such as inhibition of inflammatory immune factors, anti-oxidative stress, anti-apoptosis, pro-neovascularization and regulation of NO release. On the basis of the current findings and limitations, the future research strategies and perspectives of storax are proposed, with a view to providing a reference for further application and development of this medicine, as well as contributing new thoughts and visions for the clinical application of "treating brain-heart synchronously".

15.
J Clin Med ; 10(23)2021 Dec 06.
Article in English | MEDLINE | ID: mdl-34884412

ABSTRACT

The future of healthcare is an organic blend of technology, innovation, and human connection. As artificial intelligence (AI) is gradually becoming a go-to technology in healthcare to improve efficiency and outcomes, we must understand our limitations. We should realize that our goal is not only to provide faster and more efficient care, but also to deliver an integrated solution to ensure that the care is fair and not biased to a group of sub-population. In this context, the field of cardio-cerebrovascular diseases, which encompasses a wide range of conditions-from heart failure to stroke-has made some advances to provide assistive tools to care providers. This article aimed to provide an overall thematic review of recent development focusing on various AI applications in cardio-cerebrovascular diseases to identify gaps and potential areas of improvement. If well designed, technological engines have the potential to improve healthcare access and equitability while reducing overall costs, diagnostic errors, and disparity in a system that affects patients and providers and strives for efficiency.

16.
Front Cardiovasc Med ; 8: 749113, 2021.
Article in English | MEDLINE | ID: mdl-34660748

ABSTRACT

Cardio-cerebrovascular diseases, as a major cause of health loss all over the world, contribute to an important part of the global burden of disease. A large number of traditional Chinese medicines have been proved effective both clinically and in pharmacological investigations, with the acceleration of the modernization of Chinese medicine. Sinomenine is the main active constituent of sinomenium acutum and has been generally used in therapies of rheumatoid arthritis and neuralgia. Varieties of pharmacological effects of sinomenine in cardio-cerebrovascular system have been discovered recently, suggesting an inspiring application prospect of sinomenine in cardio-cerebrovascular diseases. Sinomenine may retard the progression of atherosclerosis by attenuating endothelial inflammation, regulating immune cells function, and inhibiting the proliferation of vascular smooth muscle cells. Sinomenine also alleviates chronic cardiac allograft rejection relying on its anti-inflammatory and anti-hyperplastic activities and suppresses autoimmune myocarditis by immunosuppression. Prevention of myocardial or cerebral ischemia-reperfusion injury by sinomenine is associated with its modulation of cardiomyocyte death, inflammation, calcium overload, and oxidative stress. The regulatory effects on vasodilation and electrophysiology make sinomenine a promising drug to treat hypertension and arrhythmia. Here, in this review, we will illustrate the pharmacological activities of sinomenine in cardio-cerebrovascular system and elaborate the underlying mechanisms, as well as give an overview of the potential therapeutic roles of sinomenine in cardio-cerebrovascular diseases, trying to provide clues and bases for its clinical usage.

17.
Pharmacol Res ; 169: 105627, 2021 07.
Article in English | MEDLINE | ID: mdl-33892091

ABSTRACT

With the coming acceleration of global population aging, the incidence rate of cardio-cerebrovascular diseases (CVDs) is increasing. It has become the leading cause of human mortality. As a natural drug, borneol (BO) not only has anti-inflammatory, anti-oxidant, anti-apoptotic, anti-coagulant activities and improves energy metabolism but can also promote drugs to enter the target organs or tissues through various physiological barriers, such as the blood-brain barrier (BBB), mucous membrane, skin. Thus, it has a significant therapeutic effect on various CVDs, which has been confirmed in a large number of studies. However, the pharmacological actions and mechanisms of BO on CVDs have not been fully investigated. Hence, this review summarizes the pharmacological actions and possible mechanisms of BO, which provides novel ideas for the treatment of CVDs.


Subject(s)
Camphanes/therapeutic use , Cardiotonic Agents/therapeutic use , Cardiovascular Diseases/drug therapy , Animals , Brain/drug effects , Camphanes/pharmacology , Cardiotonic Agents/pharmacology , Heart/drug effects , Humans
18.
Biomed Pharmacother ; 133: 111066, 2021 Jan.
Article in English | MEDLINE | ID: mdl-33378967

ABSTRACT

Galectin-3 (gal-3), a member of the galectin family, is a glycoprotein with high affinity for ß-galactoside. Gal-3 is a cytoplasmically synthesized protein that can shuttle between the cytoplasm and nucleus and can even be transported to the membrane and secreted into the extracellular environment. Cardio/cerebrovascular diseases generally refer to ischemic or hemorrhagic diseases occurring in the heart, brain and systemic tissues, which are characterized by high morbidity, high disability rates and high mortality rates. To date, considerable research has demonstrated that gal-3 expression is aberrantly increased and plays important roles in cardio/cerebrovascular diseases, such as acute ischemic stroke (AIS), myocardial fibrosis, acute coronary syndrome (ACS), and heart failure (HF). Hence, understanding the biological roles of gal-3 in these diseases may be essential for cardio/cerebrovascular disease treatment and diagnosis to improve patient quality of life. In this review, we summarize current research on the roles of gal-3 in human cardiovascular diseases and potential inhibitors of gal-3, which may provide new strategies for disease therapies.


Subject(s)
Blood Proteins/metabolism , Cardiovascular Diseases/metabolism , Cerebrovascular Disorders/metabolism , Galectins/metabolism , Signal Transduction , Animals , Blood Proteins/antagonists & inhibitors , Blood Proteins/genetics , Cardiovascular Agents/therapeutic use , Cardiovascular Diseases/drug therapy , Cardiovascular Diseases/genetics , Cerebrovascular Disorders/drug therapy , Cerebrovascular Disorders/genetics , Galectins/antagonists & inhibitors , Galectins/genetics , Humans , Molecular Targeted Therapy , Signal Transduction/drug effects , Up-Regulation
19.
Front Pharmacol ; 12: 832673, 2021.
Article in English | MEDLINE | ID: mdl-35173614

ABSTRACT

Cardio-cerebrovascular diseases (CVDs) are a serious threat to human health and account for 31% of global mortality. Ligusticum chuanxiong Hort. (CX) is derived from umbellifer plants. Its rhizome, leaves, and fibrous roots are similar in composition but have different contents. It has been used in Japanese, Korean, and other traditional medicine for over 2000 years. Currently, it is mostly cultivated and has high safety and low side effects. Due to the lack of a systematic summary of the efficacy of CX in the treatment of CVDs, this article describes the material basis, molecular mechanism, and clinical efficacy of CX, as well as its combined application in the treatment of CVDs, and has been summarized from the perspective of safety. In particular, the pharmacological effect of CX in the treatment of CVDs is highlighted from the point of view of its mechanism, and the complex mechanism network has been determined to improve the understanding of CX's multi-link and multi-target therapeutic effects, including anti-inflammatory, antioxidant, and endothelial cells. This article offers a new and modern perspective on the impact of CX on CVDs.

20.
Front Pharmacol ; 11: 01265, 2020.
Article in English | MEDLINE | ID: mdl-33117148

ABSTRACT

The incidence rate of cardio-cerebrovascular diseases (CCVDs) is increasing worldwide, causing an increasingly serious public health burden. The pursuit of new promising treatment options is thus becoming a pressing issue. Hydroxysafflor yellow A (HSYA) is one of the main active quinochalcone C-glycosides in the florets of Carthamus tinctorius L., a medical and edible dual-purpose plant. HSYA has attracted much interest for its pharmacological actions in treating and/or managing CCVDs, such as myocardial and cerebral ischemia, hypertension, atherosclerosis, vascular dementia, and traumatic brain injury, in massive preclinical studies. In this review, we briefly summarized the mode and mechanism of action of HSYA on CCVDs based on these preclinical studies. The therapeutic effects of HSYA against CCVDs were presumed to reside mostly in its antioxidant, anti-inflammatory, and neuroprotective roles by acting on complex signaling pathways.

SELECTION OF CITATIONS
SEARCH DETAIL