Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 2.998
Filter
1.
Int J Biol Macromol ; 279(Pt 3): 135289, 2024 Sep 03.
Article in English | MEDLINE | ID: mdl-39236958

ABSTRACT

With increasing environmental awareness and the pursuit of sustainable development goals, environmentally friendly sustainable thermoplastic elastomers (TPEs) derived from natural resources are highly desired to replace traditional TPEs. However, preparing sustainable TPEs with high mechanical properties and multifunctionality from biobased feedstocks remains a significant challenge. In this work, a series of chitin-graft-poly(acrylamide-co-2-ethylhexyl acrylate) (Chitin-g-P(AM-co-EHA)) copolymers were synthesized through reversible addition-fragmentation chain transfer (RAFT) polymerization. The tensile strength of Chitin-g-P(AM-co-EHA) copolymers can be tuned over a wide range from 1.0 to 7.3 MPa by adjusting the chitin and PAM contents. Benefiting from the brush-like architecture, Chitin-g-P(AM-co-EHA) copolymer exhibits improved mechanical properties over its linear counterparts. Moreover, these Chitin-g-P(AM-co-EHA) copolymers show good adhesion performance on different substrates. The shear strength can achieve 7.5 MPa for Chitin0.8-PAM50, which is high enough for commercial applications. The combination of chitin and grafting strategy can promote the development of strong chitin-based sustainable elastomers. This approach can be further utilized to design novel high-performance biobased elastomers and adhesives derived from natural resources.

2.
Plant J ; 2024 Sep 22.
Article in English | MEDLINE | ID: mdl-39306860

ABSTRACT

Wheat (Triticum aestivum L.) is a globally staple crop vulnerable to various fungal diseases, significantly impacting its yield. Plant cell surface receptors play a crucial role in recognizing pathogen-associated molecular patterns (PAMPs) and activating PAMP-triggered immunity, boosting resistance against a wide range of plant diseases. Although the role of plant chitin receptor CERK1 in immune recognition and defense has been established in Arabidopsis and rice, its function and potential agricultural applications in enhancing resistance to crop diseases remain largely unexplored. Here, we identify and characterize TaCERK1 in Triticeae crop wheat, uncovering its involvement in chitin recognition, immune regulation, and resistance to fungal diseases. By a comparative analysis of CERK1 homologs in Arabidopsis and monocot crops, we demonstrate that AtCERK1 in Arabidopsis elicits the most robust immune response. Moreover, we show that overexpressing TaCERK1 and AtCERK1 in wheat confers resistance to multiple fungal diseases, including Fusarium head blight, stripe rust, and powdery mildew. Notably, transgenic wheat lines with moderately expressed AtCERK1 display superior disease resistance and heightened immune responses without adversely affecting growth and yield, compared to TaCERK1 overexpression transgenics. Our findings highlight the significance of plant chitin receptors across diverse plant species and suggest potential strategies for bolstering crop resistance against broad-spectrum diseases in agricultural production through the utilization of plant immune receptors.

3.
J Agric Food Chem ; 72(38): 20905-20917, 2024 Sep 25.
Article in English | MEDLINE | ID: mdl-39258562

ABSTRACT

The r-strategy pests are very challenging to effectively control because of their rapid population growth and strong resurgence potential and are more prone to developing pesticide resistance. As a typical r-strategy pest, the cosmopolitan cotton aphid, Aphis gossypii Glover, seriously impacts the growth and production of cucurbits and cotton. The present study developed a SPc/double-stranded RNA (dsRNA)/botanical strategy to enhance the control efficacy of A. gossypii. The results demonstrated that the expression of two chitin pathway genes AgCHS2 and AgHK2 notably changed in A. gossypii after treated by three botanical pesticides, 1% azadirachtin, 1% matrine, and 5% eucalyptol. SPc nanocarrier could significantly enhance the environmental stability, cuticle penetration, and interference efficiency of dsRNA products. The SPc/dsRNA/botanical complex could obviously increase the mortality of A. gossypii in both laboratory and greenhouse conditions. This study provides an eco-friendly control technique for enhanced mortality of A. gossypii and lower application of chemical pesticides. Given the conservative feature of chitin pathway genes, this strategy would also shed light on the promotion of management strategies against other r-strategy pests using dsRNA/botanical complex nanopesticides.


Subject(s)
Aphids , Chitin , Insecticides , Nanostructures , RNA, Double-Stranded , Animals , Aphids/drug effects , Chitin/chemistry , Chitin/metabolism , RNA, Double-Stranded/genetics , RNA, Double-Stranded/metabolism , Insecticides/chemistry , Insecticides/pharmacology , Nanostructures/chemistry , Gossypium/chemistry , Gossypium/parasitology , Gossypium/metabolism , Gossypium/genetics , Insect Proteins/genetics , Insect Proteins/metabolism , Insect Control/methods , Plant Diseases/parasitology , Plant Diseases/prevention & control , Limonins
4.
Int J Biol Macromol ; : 135937, 2024 Sep 21.
Article in English | MEDLINE | ID: mdl-39313045

ABSTRACT

Future agricultural practices necessitate green alternatives to replace hazardous insecticides while distinguishing between pests and beneficial insects. Chitosan, as a biological macromolecule derived from chitin, is biodegradable and exhibits low toxicity to non-target organisms, making it a sustainable alternative to synthetic pesticides. This review identifies chitosan-derivatives for insecticidal activity and highlights its efficacy including genotoxicity, defense mechanism, and disruption of insect's exoskeleton at different concentrations against several insect pests. Similarly, synergistic effects of chitosan in combination with natural extracts, essential oils, and plant-derived compounds, enhances insecticidal action against various pests was evaluated. The chitosan-based insecticide formulations (CHIF) in the form of emulsions, microcapsules, and nanoparticles showed efficient insecticide action on the targeted pests with less environmental impact. The current challenges associated with the field-trial application were also recognized, by optimizing potent CHIF-formulation parameters, scaling-up process, and regulatory hurdles addressed alongside potential solutions. These findings will provide insight into achieving the EU mission of reducing chemical pesticides by 50 %.

5.
Chem Asian J ; : e202401024, 2024 Sep 23.
Article in English | MEDLINE | ID: mdl-39313868

ABSTRACT

In this study, we have developed a Chitin(Ch)-Poly(dioxanone)(PDO) gel system, which can be potentially used for tissue engineering. Hydrogel has been widely used in biomedical applications for its tuneable properties and biocompatibility. Chitin (Ch) is a natural biopolymer used for its ability to mimic the natural extracellular matrix due to N-acetyl glucosamine structural units. Poly (dioxanone) (PDO) is an FDA-approved synthetic biopolymer known for its mechanical properties, good biocompatibility, and poor inflammatory response. Based on this, we have developed Ch-PDO composite gel using simple regeneration chemistry and characterized it using FT-IR and SEM. The developed composite gel showed improved gel strength, good swelling ability,and controlled degradation behaviour. It also showed good injectability with shear thinning properties and hemocompatibility. Further, the biocompatibility and cell adhesion studies of the prepared gels were studied using dental follicle stem cells (DFSCs). The prepared Ch-PDO gel was biocompatible and showed DFSCs cell attachment. Osteogenic mineralization and RUNX2 expression of the prepared Ch and Ch-PDO gel was studied and Ch-PDO gel showed an enhanced mineralization and RUNX2 expression. Therefore, the developed chitin-PDO gel could be potentially used for bone tissue engineering.

6.
Bioresour Technol ; 412: 131401, 2024 Nov.
Article in English | MEDLINE | ID: mdl-39218366

ABSTRACT

N-acetyl-D-glucosamine and its dimer are degradation products of chitin waste with great potential in therapeutic and agricultural applications. However, the hydrolysis of insoluble chitin by chitinases remains a major bottleneck. This study investigated the biochemical properties and catalytic mechanisms of PoChi chitinase obtained from Penicillium oxalicum with a focus on enhancing its efficiency during the degradation of insoluble chitin. Recombinant plasmids were engineered to incorporate chitin-binding (ChBD) and/or fibronectin III (FnIII) domains. Notably, PoChi-FnIII-ChBD exhibited the highest substrate affinity (Km = 2.7 mg/mL) and a specific activity of 15.4 U/mg, which surpasses those of previously reported chitinases. These findings highlight the potential of engineered chitinases in advancing industrial biotechnology applications and offer a promising approach to more sustainable chitin waste management.


Subject(s)
Chitin , Chitinases , Penicillium , Chitinases/metabolism , Chitinases/genetics , Chitin/metabolism , Penicillium/enzymology , Recombinant Fusion Proteins/metabolism , Recombinant Fusion Proteins/genetics , Hydrolysis , Protein Engineering/methods , Solubility , Kinetics
7.
Article in English | MEDLINE | ID: mdl-39265036

ABSTRACT

Diabetic wounds are prone to recurrent infections, often leading to delayed healing. To address this challenge, we developed a chitin-copper sulfide (CuS@CH) composite sponge, which combines bacterial trapping with near-infrared (NIR) activated phototherapy for treating infected diabetic wounds. CuS nanoparticles were synthesized and incorporated in situ within the sponge using a chitin assisted biomineralization strategy. The positively charged chitin surface effectively adhered bacteria, while NIR irradiation of CuS generated reactive oxygen species (ROS) heat and Cu2+ to rapidly damage the trapped bacteria. This synergistic effect resulted in an exceptional antibacterial performance against E. coli (∼99.9%) and S. aureus (∼99.3%). The bactericidal mechanism involved NIR-induced glutathione oxidation, membrane lipid peroxidation, and increased membrane permeability. In diabetic mouse models, the CuS@CH sponge accelerated the wound healing of S. aureus infected wounds by facilitating collagen deposition and reducing inflammation. Furthermore, the sponge demonstrated good biocompatibility. This dual-functional platform integrating bacterial capture and NIR-triggered phototherapy shows promise as an antibacterial wound dressing to promote healing of infected diabetic wound.

8.
Mol Phylogenet Evol ; 201: 108192, 2024 Sep 08.
Article in English | MEDLINE | ID: mdl-39255869

ABSTRACT

Chitin-synthase (CHS) is found in most eukaryotes and has a complex evolutionary history. Research into CHS has mainly been in the context of biomineralization of mollusc shells an area of high interest due to the consequences of ocean acidification. Exploration of CHS at the genomic level in molluscs, the evolution of isoforms, their tissue distribution, and response to environmental challenges are largely unknown. Exploiting the extensive molecular resources for mollusc species it is revealed that bivalves possess the largest number of CHS genes (12-22) reported to date in eukaryotes. The evolutionary tree constructed at the class level of molluscs indicates four CHS Type II isoforms (A-D) probably existed in the most recent common ancestor, and Type II-A (Type II-A-1/Type II-A-2) and Type II-C (Type II-C-1/Type II-C-2) underwent further differentiation. Non-specific loss of CHS isoforms occurred at the class level, and in some Type II (B-D groups) isoforms the myosin head domain, which is associated with shell formation, was not preserved and highly species-specific tissue expression of CHS isoforms occurred. These observations strongly support the idea of CHS functional diversification with shell biomineralization being one of several important functions. Analysis of transcriptome data uncovered the species-specific potential of CHS isoforms in shell formation and a species-specific response to ocean acidification (OA). The impact of OA was not CHS isoform-dependent although in Mytilus, Type I-B and Type II-D gene expression was down-regulated in both M. galloprovincialis and M. coruscus. In summary, during CHS evolution the gene family expanded in bivalves generating a large diversity of isoforms with different structures and with a ubiquitous tissue distribution suggesting that chitin is involved in many biological functions. These findings provide insight into CHS evolution in molluscs and lay the foundation for research into their function and response to environmental changes.

9.
Rev Argent Microbiol ; 2024 Sep 20.
Article in English | MEDLINE | ID: mdl-39306524

ABSTRACT

The aim of this study was to determine the impact of Kluyveromyces marxianus VM004 culture conditions on the cell wall (CW) structure and its influence on aflatoxin B1 binding. The yeast was inoculated into two types of culture media: yeast extract-peptone-dextrose (YPD) broth and dried distiller's grains with solubles (DDG). The CW was extracted from the biomass produced in these media. AFB1 (150ng/ml) adsorption tests using the biomass (1×107cells/ml) and the CW (0.001g) were performed at pH 2 and pH 8. Transmission electron microscopy (TEM) evaluated the CW thickness, and infrared spectroscopy (IR) determined the CW composition. Biomass production in YPD was higher than that in DDG. Cell diameter (µm) and CW thickness (µm) increased in the DDG medium. The CW percentage obtained in DDG was higher than that in YPD. The absorbance of carbohydrates by IR was higher in YPD. pH influenced AFB1 adsorption, which was lower at pH 8. The proportion of ß-glucan and chitin present in CW was higher in the YPD medium. The IR method allowed to study the CW carbohydrate variation under the influence of these carbon sources. In conclusion, the culture media composition influenced the ß-glucan and chitin composition and consequently, AFB1 adsorption.

10.
Genome Biol Evol ; 16(9)2024 Sep 03.
Article in English | MEDLINE | ID: mdl-39240721

ABSTRACT

Zoantharia is an order among the Hexacorallia (Anthozoa: Cnidaria), and includes at least 300 species. Previously reported genomes from scleractinian corals and actiniarian sea anemones have illuminated part of the hexacorallian diversification. However, little is known about zoantharian genomes and the early evolution of hexacorals. To explore genome evolution in this group of hexacorals, here, we report de novo genome assemblies of the zoantharians Palythoa mizigama (Pmiz) and Palythoa umbrosa (Pumb), both of which are members of the family Sphenopidae, and uniquely live in comparatively dark coral reef caves without symbiotic Symbiodiniaceae dinoflagellates. Draft genomes generated from ultra-low input PacBio sequencing totaled 373 and 319 Mbp for Pmiz and Pumb, respectively. Protein-coding genes were predicted in each genome, totaling 30,394 in Pmiz and 24,800 in Pumb, with each set having ∼93% BUSCO completeness. Comparative genomic analyses identified 3,036 conserved gene families, which were found in all analyzed hexacoral genomes. Some of the genes related to toxins, chitin degradation, and prostaglandin biosynthesis were expanded in these two Palythoa genomes and many of which aligned tandemly. Extensive gene family loss was not detected in the Palythoa lineage and five of ten putatively lost gene families likely had neuronal function, suggesting biased gene loss in Palythoa. In conclusion, our comparative analyses demonstrate evolutionary conservation of gene families in the Palythoa lineage from the common ancestor of hexacorals. Restricted loss of gene families may imply that lost neuronal functions were effective for environmental adaptation in these two Palythoa species.


Subject(s)
Anthozoa , Multigene Family , Animals , Anthozoa/genetics , Genome , Phylogeny , Evolution, Molecular , Neurons/metabolism
11.
Polymers (Basel) ; 16(17)2024 Sep 03.
Article in English | MEDLINE | ID: mdl-39274141

ABSTRACT

This work focuses on the first use of ultrasonic phenol-ene coupling as a polymer analogous transformation. The ultrasonic reaction was introduced into chitin chemistry, resulting in the fast and convenient preparation of new water-soluble cationic chitin derivatives. Since water-soluble derivatives of fully deacetylated chitin are poorly described in the literature, the synthesis of each new type of these derivatives is a significant event in polysaccharide chemistry. Polycations, or cationic polymers, are of particular interest as antibacterial agents. Consequently, the resulting polymers were tested for their antibacterial activity and toxicity. We found that the highly substituted polymer of medium molecular weight exhibited the most pronounced in vitro antibacterial effect. We prepared nanoparticles using the ionic gelation technique. The most effective in vitro antibacterial chitin-based systems were tested in vivo in rats. These tests demonstrated outstanding antibacterial effects combined with an absence of toxicity. Additionally, we found that the resulting polymers, unlike their nanoparticle counterparts, also exhibited strong antioxidant effects. In summary, we demonstrated the effectiveness of ultrasound in polymer chemistry and highlighted the importance of the sonochemical approach in the chemical modification of polysaccharides. This approach enables the synthesis of derivatives with improved physicochemical and biological properties.

12.
FEMS Yeast Res ; 242024 Jan 09.
Article in English | MEDLINE | ID: mdl-39270658

ABSTRACT

Yeast cell wall chitin has been shown to bind grape pathogenesis-related chitinases that are the primary cause of protein haze in wines, suggesting that yeast cell walls may be applied for haze protection. Here, we present a high-throughput screen to identify yeast strains with high cell wall chitin using a reiterative enrichment strategy and fluorescence-activated cell sorting of cells labelled with either GFP-tagged chitinase or Calcofluor white. To assess the validity of the strategy, we first used a pooled deletion strain library of Saccharomyces cerevisiae. The strategy enriched for deletion mutants with genes that had previously been described as having an impact on chitin levels. Genes that had not previously been linked to chitin biosynthesis or deposition were also identified. These genes are involved in cell wall maintenance and/or membrane trafficking functions. The strategy was then applied to a mutagenized population of a commercial wine yeast strain, S. cerevisiae EC1118. Enriched mutant strains showed significantly higher cell wall chitin than the wild type and significantly reduced the activity of chitinases in synthetic model wine, suggesting that these strains may be able to reduce haze formation in wine.


Subject(s)
Cell Wall , Chitin , Chitinases , Flow Cytometry , Saccharomyces cerevisiae , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Cell Wall/metabolism , Chitin/metabolism , Chitinases/genetics , Chitinases/metabolism , Gene Deletion , Wine/microbiology , High-Throughput Screening Assays , Benzenesulfonates
13.
Plant Physiol ; 2024 Sep 25.
Article in English | MEDLINE | ID: mdl-39321183

ABSTRACT

Plants must tactically balance immunity and growth when combating lethal pathogens like fungi. CHITIN ELICITOR RECEPTOR KINASE 1 (CERK1), a conserved cell-surface co-receptor for the fungal elicitor chitin, enables plants to induce chitin-triggered immunity to counteract fungal invasion. Previously, we reported that bacterial infection can prime CERK1 through juxtamembrane (JM) phosphorylation to enhance fungal resistance, which only occurs in Arabidopsis (Arabidopsis thaliana) and its close relatives in Brassicaceae. Here, we aim to transfer the priming mechanism of Arabidopsis CERK1 (AtCERK1) to crop CERK1 via JM substitution. We revealed in protoplasts that the entire AtCERK1 JM variable region (AtJM) is essential for imparting the bacterial elicitor flg22-induced primed state to the Nicotiana benthamiana CERK1 (NbCERK1). The NbCERK1 chimera containing AtJM (NbCERK1AtJM) and similarly constructed rice (Oryza sativa) OsCERK1AtJM could undergo flg22-induced JM phosphorylation and confer enhanced antifungal immunity upon bacterial co-infection. Moreover, the NbCERK1AtJM+3D derivative with AtJM phosphomimetic mutations to mimic a constant primed state and similarly constructed OsCERK1AtJM+3D were sufficient to mediate strengthened chitin responses and fungal resistance in transgenic plants independent of bacterial infection. Importantly, no growth and reproduction defects were observed in these plants. Taken together, this study demonstrates that manipulating the primed state of a cell-surface immune receptor offers an effective approach to improve disease resistance in crops without compromising growth and yield and showcases how fundamental insights in plant biology can be translated into crop breeding applications.

14.
Int J Biol Macromol ; : 135980, 2024 Sep 23.
Article in English | MEDLINE | ID: mdl-39322169

ABSTRACT

Silk-producing animals use spigots to generate natural silk fibers for various purposes. These natural looms must be able to withstand prolonged silk extrusion. To gain insight into the functional basis of spigots, we report on the structural design of the spigot of the silkworm Bombyx mori. The B. mori spigot exhibits a unique triple-ridged strip surface structure, consisting of cuticle proteins, resilin, chitin, and metal ions (such as K and Ca). This multi-microstructure endows the spigot with superior hierarchical mechanical properties, enabling it to function as a spinning tool for silk formation, thereby influencing the structure and performance of the silk. These findings demonstrate new pathways for achieving specialized functions in confined spaces, providing theoretical support for understanding the natural spinning mechanism and inspiring new directions for developing innovative biomimetic materials.

15.
Article in English | MEDLINE | ID: mdl-39292812

ABSTRACT

Enhancing the antimicrobial activity of high-efficiency particulate air (HEPA) filters while maintaining filtration efficiency and pressure drop is currently an urgent issue for preventing the spread of pathogenic microorganisms. Herein, inspired by vines which can enwind fences to fix as well as decorate them, a flexible antimicrobial chitin nanofiber (ChNF@CuOx) was fabricated and loaded onto the rigid glass fiber (GF) skeleton of a HEPA filter. Through the physical interaction, ChNF@CuOx was spontaneously enwound on GF, and ChNF@CuOx itself interweaved to form a new nanonetwork between the GF skeleton. The obtained antimicrobial air filter (ChNF@CuOx/GF) with a unique nanonetwork increased the filtration efficiency of the HEPA filter. Meanwhile, it possessed excellent inactivation ability against Staphylococcus aureus, Escherichia coli, and Candida albicans due to the urchin-like in situ grown CuOx on the ChNF. In particular, the oxygen vacancies generated unexpectedly in CuOx enabled it to produce reactive oxygen species. After eight cycles of antimicrobial assays, the antimicrobial rates of bacteria were higher than 99.5%, and those of fungi were greater than 98.3%. The successful synthesis of antimicrobial fibers and the construction of multidimensional nanoscale structures through a simple postprocessing method provide a new design mentality for antimicrobial functionalization for HEPA filters.

16.
J Biomed Mater Res B Appl Biomater ; 112(9): e35461, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39225464

ABSTRACT

In laboratory conditions, composite sutures based on polylactide (PLA) containing chitin nanofibrils modified with polyethylene glycol (CN-PEG) and poviargol (silver nanoparticles stabilized with poly(N-vinylpyrrolidone)) were obtained, studied, and used as a prototype. Surgical sutures threads with the addition of CN-PEG have stable mechanical properties both in air and in a buffer simulating the environment of a living organism. The yield strength of oriented threads decreased by an average of 15%, whereas for non-oriented threads the decrease was 3-4 times. The strength values in simple units of unfilled PLA, PLA containing 5 wt % CN-PEG, and PLA with 1 wt % Poviargol were on average 50% higher than the national standard 31620-2012. The results of in vivo experiments on albino rats (cross-linking skin and muscle tissue in the linea alba area) showed that composite sutures are best for suturing muscle tissue, whereas unfilled PLA sutures are more suitable for suturing skin. When suturing muscle tissue, suturing with composite sutures increased the number of collagen fibers of different diameters.


Subject(s)
Polyesters , Sutures , Wound Healing , Animals , Polyesters/chemistry , Rats , Wound Healing/drug effects , Materials Testing , Polyethylene Glycols/chemistry , Polyethylene Glycols/pharmacology , Surgical Wound/pathology , Surgical Wound/therapy , Male , Silver/chemistry , Silver/pharmacology , Chitin/chemistry , Chitin/pharmacology
17.
Carbohydr Polym ; 344: 122545, 2024 Nov 15.
Article in English | MEDLINE | ID: mdl-39218561

ABSTRACT

The industry of insect-based proteins as feed and food products has been encountering a huge development since the last decade, and industrial-scale factories are now arising worldwide. Among all the species studied, Black Soldier Fly is one of the most promising and farmed. This rearing activity generates several by-products in the form of chitin-rich biomass that can be valorised to keep a virtuous production cycle embedded in the scope of the bioeconomy. Herein, we report the isolation of chitin and, for the first time, chitin nanocrystals (ChNCs) from all the BSF rearing by-products, i.e., moults (larval exuviae, puparium) and dead adults. Extraction yields, were dependent on the type of by-products and ranged from 5.8 % to 20.0 %, and the chemical structure of the extracts exhibited typical features of α-chitin, confirmed by FTIR, NMR, XRD and TGA analysis. Both STEM in SEM and AFM analysis confirmed the isolation of chitin nanocrystals presenting a rod-like morphology. The average nanocrystal height estimated by AFM ranged from 13 to 27 nm depending on the by-product sample. The following results highlighted the potential of BSF rearing by-products, promoting an approach to valorise those industrial waste and paving the way towards insect-based biorefinery.


Subject(s)
Chitin , Nanoparticles , Chitin/chemistry , Chitin/isolation & purification , Animals , Nanoparticles/chemistry , Larva/chemistry , Simuliidae/chemistry , Pupa/chemistry
18.
Iran J Biotechnol ; 22(2): e3728, 2024 Apr.
Article in English | MEDLINE | ID: mdl-39220337

ABSTRACT

Background: The main problem in the recombinant protein expression in E. coli strains, especially for high-yield production, is the accumulation in un-folded and inactive inclusion bodies. A suitable solution is the direction into the soluble cytoplasmic products by solubilizing tags. The use of inteins with self-cleaving ability, in addition to increase the chance of soluble protein expression, facilitates their purification process. Evidence Acquisition: In this review article, papers related to the use of intein tags for soluble expression or protein purification were collected regardless the time limit. Available databases including Pubmed, google scholar, ScienceDirect, Web of Science, Scopus, and Embase was searched. The best condition for soluble expression or purification was focused in all articles. Results: There are various intein tags commercially available in expression vectors that results in gaining our goal in facilitating the recombinant protein solubilization as well as its simple purification. It is enough to induce the self-cleavage property of the intein, which varies according to the type of intein used. In this way, the target protein is easily separated from the purification tag without the need to add protease enzymes such as enterokinase or treatment with various chemicals. The most common affinity tag in intein-based systems is Chitin Binding Domain attached to the chitin resin. Conclusions: In this review article, we introduced proteins or peptides which produced in fusion to intein tags and discussed about their expression condition and purification process in order to enhance the chance of soluble expression and intein cleavage in a single stage, respectively.

19.
MethodsX ; 13: 102892, 2024 Dec.
Article in English | MEDLINE | ID: mdl-39221014

ABSTRACT

Waste from the fishing industry is disposed of in soils and oceans, causing environmental damage. However, it is also a source of valuable compounds such as chitin. Although chitin is the second most abundant polymer in nature, its use in industry is limited due to the lack of standardized and scalable extraction methods and its poor solubility. The deacetylation process increases its potential applications by enabling the recovery of chitosan, which is soluble in dilute acidic solutions. Chitosan is a polymer of great importance due to its biocompatible and bioactive properties, which include antimicrobial and antioxidant capabilities. Chitin extraction and its deacetylation to obtain chitosan are typically performed using chemical processes that involve large amounts of strongly acidic and alkaline solutions. To reduce the environmental impact of this process, extraction methods based on biotechnological tools, such as fermentation and chitin deacetylase, as well as emerging technologies, have been proposed. These extraction methods have demonstrated the potential to reduce or even avoid using strong solvents and shorten extraction time, thereby reducing costs. Nevertheless, it is important to address existing gaps in this area, such as the requirements for large-scale implementation and the determination of the stoichiometric ratios for each process. This review highlights the use of biotechnological tools and emerging technologies for chitin extraction and chitosan production. These approaches truly minimize environmental impact, reduce the use of strong solvents, and shorten extraction time. They are a reliable alternative to fishery waste valorization, lowering costs; however, addressing the critical gaps for their large-scale implementation remains challenging.

20.
Compr Rev Food Sci Food Saf ; 23(5): e70008, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39223761

ABSTRACT

Shrimp consumption is in great demand among the seafood used globally. However, this expansion has resulted in the substantial generation and disposal of shrimp shell waste. Through literature search, it has been observed that since 2020, global scholars have shown unprecedented interest in shrimp shell waste and its chitin/chitosan. However, these new insights lack corresponding and comprehensive summarization and analysis. Therefore, this article provides a detailed review of the extraction methods, applications, and the latest research developments on chitin/chitosan from shrimp shells, including micro-nano derivatives, from 2020 to the present. The results indicate that chemical extraction remains the primary technique for the extraction and preparation of chitin/chitosan from shrimp shells. With further refinement and development, adjusting parameters in the chemical extraction process or employing auxiliary techniques such as microwave and radiation enable the customization of target products with different characteristics (e.g., deacetylation degree, molecular weight, and degree of acetylation) according to specific needs. Additionally, in pursuit of environmentally friendly, efficient, and gentle extraction processes, recent research has shifted toward microbial fermentation and green solvent methods for chitin/chitosan extraction. Beyond the traditional antibacterial, film-forming, and encapsulation functionalities, research into the applications of chitosan in biomedical, food processing, new materials, water treatment, and adsorption fields is gradually deepening. Chitin/chitosan derivatives and their modified products have also been a focal point of research in recent years. However, with the rapid expansion, the future development of chitin/chitosan and its derivatives still faces challenges related to the unclear mechanism of action and the complexities associated with industrial scale-up.


Subject(s)
Animal Shells , Chitin , Chitosan , Chitin/chemistry , Chitosan/chemistry , Animals , Animal Shells/chemistry , Waste Products/analysis , Penaeidae/chemistry , Crustacea/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL