Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
Add more filters








Publication year range
1.
Cardiovasc Toxicol ; 24(8): 800-817, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38951468

ABSTRACT

Radix Paeoniae Rubra. (Chishao, RPR) and Cortex Moutan. (Mudanpi, CM) are a pair of traditional Chinese medicines that play an important role in the treatment of atherosclerosis (AS). The main objective of this study was to identify potential synergetic function and underlying mechanisms of RPR-CM in the treatment of AS. The main active ingredients, targets of RPR-CM and AS-related genes were obtained from public databases. A Venn diagram was utilized to screen the common targets of RPR-CM in treating AS. The protein-protein interaction network was established based on STRING database. Biological functions and pathways of potential targets were analyzed through Gene Ontology and Kyoto Encyclopedia of Genes and Genomes enrichment analyses. Cytoscape was used to construct the drug-compound-target-signal pathway network. Molecular docking was performed to verify the binding ability of the bioactive ingredients and the target proteins. The endothelial inflammation model was constructed with human umbilical vein endothelial cells stimulated with ox-LDL, and the function of RPR-CM in treating AS was verified by CCK-8 assay, enzyme-linked immunosorbent assay, and qPCR. In this study, 12 active components and 401 potential target genes of RPR-CM were identified, among which quercetin, kaempferol and baicalein were considered to be the main active components. A total of 1903 AS-related genes were identified through public databases and four GEO datasets (GSE57691, GSE72633, GSE6088 and GSE199819). There are 113 common target genes of RPR-CM in treating AS. PPI network analysis identified 17 genes in cluster 1 as the core targets. Bioinformatics analysis showed that RPR-CM in AS treatment was associated with multiple downstream biological processes and signal pathways. PTGS2, JUN, CASP3, TNF, IL1B, IL6, FOS, STAT1 were identified as the core targets of RPR-CM, and molecular docking showed that the main bioactive components of RPR-CM had good binding ability with the core targets. RPR-CM extract significantly inhibited the levels of inflammatory factors TNF-α, IL-6, IL-1ß, MCP-1, VCAM-1 and ICAM-1 in HUVECs, and inhibited endothelial inflammation. This study revealed the active ingredients of RPR-CM, and identified the key downstream targets and signaling pathways in the treatment of AS, providing theoretical basis for the application of RPR-CM in prevention and treatment of AS.


Subject(s)
Anti-Inflammatory Agents , Atherosclerosis , Drugs, Chinese Herbal , Human Umbilical Vein Endothelial Cells , Molecular Docking Simulation , Network Pharmacology , Paeonia , Protein Interaction Maps , Signal Transduction , Humans , Human Umbilical Vein Endothelial Cells/metabolism , Human Umbilical Vein Endothelial Cells/drug effects , Drugs, Chinese Herbal/pharmacology , Drugs, Chinese Herbal/chemistry , Paeonia/chemistry , Signal Transduction/drug effects , Atherosclerosis/drug therapy , Atherosclerosis/metabolism , Atherosclerosis/genetics , Atherosclerosis/pathology , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/isolation & purification , Lipoproteins, LDL/metabolism , Gene Expression Regulation/drug effects , Databases, Genetic , Inflammation Mediators/metabolism , Cells, Cultured , Cytokines/metabolism , Cytokines/genetics , Gene Regulatory Networks
2.
J Agric Food Chem ; 72(12): 6265-6275, 2024 Mar 27.
Article in English | MEDLINE | ID: mdl-38487839

ABSTRACT

Paeonia suffruticosa Andr. is a well-known landscape plant worldwide and also holds significant importance in China due to its medicinal and dietary properties. Previous studies have found that Cortex Moutan (CM), the dried root bark of P. suffruticosa, showed antiplatelet and cardioprotective effects, although the underlying mechanism and active compounds remain to be revealed. In this study, protein disulfide isomerase (PDI) inhibitors in CM were identified using a ligand-fishing method combined with the UHPLC-Q-TOF-MS assay. Further, their binding sites and inhibitory activities toward PDI were validated. The antiplatelet aggregation and antithrombotic activity were investigated. The results showed that two structurally similar compounds in CM were identified as the inhibitor for PDI with IC50 at 3.22 µM and 16.73 µM; among them Mudanpioside C (MC) is the most effective PDI inhibitor. Molecular docking, site-directed mutagenesis, and MST assay unequivocally demonstrated the specific binding of MC to the b'-x domain of PDI (Kd = 3.9 µM), acting as a potent PDI inhibitor by interacting with key amino acids K263, D292, and N298 within the b'-x domain. Meanwhile, MC could dose-dependently suppress collagen-induced platelet aggregation and interfere with platelet activation, adhesion, and spreading. Administration of MC can significantly inhibit thrombosis formation without disturbing hemostasis in mice. These findings present a promising perspective on the antithrombotic properties of CM and highlight the potential application of MC as lead compounds for targeting PDI in thrombosis therapy.


Subject(s)
Paeonia , Thrombosis , Animals , Mice , Protein Disulfide-Isomerases/chemistry , Protein Disulfide-Isomerases/metabolism , Fibrinolytic Agents , Molecular Docking Simulation , Thrombosis/metabolism
3.
Int Dent J ; 74(1): 88-94, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37758581

ABSTRACT

INTRODUCTION: The Chinese traditional herbs Cortex Moutan, Poria cocos, and Alisma orientale are considered to have potential to ameliorate periodontitis, although the possible underlying mechanisms remain mostly unknown. Due to the complex formulation of Chinese herbs, it is important to understand the mechanisms of pharmacologic effects of traditional herbs for better application in modern medical treatment. METHODS: Network pharmacology was applied to explore the mechanism of Cortex Moutan, Poria cocos, and Alisma orientale. First we analysed their chemical ingredients using the Traditional Chinese Medicine Systems Pharmacology database and identified 20 active ingredients. Then we analysed the target genes of these 20 active ingredients as well as genes associated with periodontitis and found 74 co-target genes. We further analysed the protein-protein interaction network of these 74 co-target genes using the STRING database and enriched the pathways using Gene Ontology and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis. RESULTS: The top 10 core targets elicited were vascular endothelial growth factor A (VEGFA), interlukin-6 (IL-6), tumour necrosis factor (TNF), matrix metalloproteinase-2 (MMP2), matrix metalloproteinase-9 (MMP9), AKT serine/threonine kinase 1 (AKT1), prostaglandin-endoperoxide synthase 2 (PTGS2), kinase insert domain receptor (KDR), fibroblast growth factor 2 (FGF2), and serpin family E member 1 (SERPINE1). Using these a network of "herbs-ingredients-targetgenes-KEGG pathways." was constructed. CONCLUSIONS: The target and bioprocess network suggested that the pharmacologic effects of Cortex Moutan, Poria cocos, and Alisma orientale may be mainly dependent on their anti-inflammatory potential. Further work is required to eucidate their detailed mechanisms of activity.


Subject(s)
Alisma , Periodontitis , Wolfiporia , Humans , Matrix Metalloproteinase 2 , Alisma/chemistry , Vascular Endothelial Growth Factor A
4.
Zhongguo Zhong Yao Za Zhi ; 47(12): 3215-3223, 2022 Jun.
Article in Chinese | MEDLINE | ID: mdl-35851114

ABSTRACT

Advanced glycation end products(AGEs) can lead to many diseases such as diabetes and its complications. In this study, an in vitro non-enzymatic glycosylation reaction model-bovine serum albumin/methylglyoxal(BSA/MGO) reaction system was constructed and incubated with Cortex Moutan extract. High performance liquid chromatography(HPLC) and ultra-high performance liquid chromatography with quadrupole time-of-flight mass spectrometry(UPLC-Q-TOF-MS/MS) were used to detect and identify the active components that inhibited the formation of AGEs in the co-incubation solution of Cortex Moutan extract and MGO, and differential components such as salvianan, paeoniside, benzoylpaeoniflorin, mudanpioside J, galloyloxypaeoniflorin, benzoyloxy-paeoniflorin, 5-hydroxy-3 s-hydroxymethyl-6-methyl-2,3-dihydro benzofuran, and galloylpaeoniflorin were screened out, which were inferred to be the potential active components of Cortex Moutan extract to capture MGO. In addition, BSA-glucose reaction system was performed to investigate the influence of different concentrations of Cortex Moutan extract(decoction concentrations: 40, 80, 120, 160, and 200 mg·mL~(-1)) on inhibiting the production of AGEs in vitro. The inhibitory effects of Cortex Moutan extract and the differential components galloylpaeoniflorin and benzoyl paeoniflorin on the production of AGEs in human umbilical vein endothelial cells(HUVECs) induced by high glucose was further evaluated. Cell apoptosis was observed by acridine orange and ethidium bromide(AO/EB) double fluorescence staining. The results showed that Cortex Moutan Cortex extract and its differential components had certain inhibitory effects on the formation of AGEs, and could reduce cell apoptosis. This study provided reference for the treatment of diabetic vascular complications by Cortex Moutan inhibiting the toxic AGEs.


Subject(s)
Drugs, Chinese Herbal , Tandem Mass Spectrometry , Drugs, Chinese Herbal/chemistry , Drugs, Chinese Herbal/pharmacology , Glucose , Glycation End Products, Advanced , Human Umbilical Vein Endothelial Cells , Humans , Magnesium Oxide
5.
Molecules ; 26(20)2021 Oct 10.
Article in English | MEDLINE | ID: mdl-34684685

ABSTRACT

Chemical compositions, antioxidants, and anti-aging activities of Cortex Moutan (CM), from different collection periods and different producing areas, were measured and compared in order to obtain excellent CM extracts. The bioactivities of CM extracts were examined by an in vitro antioxidant method and a UVB irradiated human dermal fibroblast (HDF) model. Phytochemical properties were obtained from ultra-fast liquid chromatography quadrupole time-of-flight mass spectrometry (UFLC-Q-TOF-MS) prior to the multivariate statistical analysis. As for the results, the extracts of Heze CM (HZCM) and Luoyang CM (LYCM) collected in June had better in vitro antioxidant activities, significantly increased the activities of superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px), and reduced the content of malondialdehyde (MDA), compared to other CM extracts. HZCM and LYCM extracts could upregulate the relative expression of SOD and GSH-Px mRNA. The extract of HZCM collected in June could significantly repress the production of matrix metalloproteinase 1 (MMP-1) and improve the production of procollagen type I (PCOL)-I in UVB irradiated HDF. In total, 50 compounds, including 17 monoterpenoids, 19 flavonoids, 13 phenols, and 1 amino acid were identified or tentatively identified in the CM extracts. Gallic acid, p-hydroxybenzoic acid, oxypaeoniflorin, paeoniflorin, 1,2,3,4,6-O-pentagalloyl glucose, and paeonol were predominant compounds in the CM extracts. Taken together, CM collected from April to September had better antioxidant and anti-aging effects for external usage.


Subject(s)
Antioxidants/pharmacology , Paeonia/chemistry , Phytochemicals/pharmacology , Cell Line , Chromatography, High Pressure Liquid/methods , Glutathione Peroxidase/metabolism , Humans , Malondialdehyde/metabolism , Mass Spectrometry/methods , Paeonia/metabolism , Phenols/chemistry , Phytochemicals/chemistry , Plant Bark/chemistry , Plant Extracts/chemistry , Plant Extracts/pharmacology , Seasons , Superoxide Dismutase/metabolism
6.
Int J Biol Macromol ; 168: 163-174, 2021 Jan 31.
Article in English | MEDLINE | ID: mdl-33309656

ABSTRACT

The polysaccharide-based pH-responsive compounds, namely, N,N,N-trimethyl chitosan (TMC), polyethylene glycolated hyaluronic acid (PEG-HA), and polysaccharide-based nano-conjugate of hyaluronic acid, chitosan oligosaccharide and alanine [HA-Ala-Chito(oligo)] were chemically synthesized using biopolymers chitosan and hyaluronic acid, and applied here to observe the changes in morphology, pH-stability, mechanical and drug-release behavior, and cytotoxicity of thermo-responsive polymer: Poloxamer 407 (PF127)-based drug delivery systems for traditional Chinese medicine Cortex Moutan (CM). The thermo-responsive hydrogel of PF127 loaded with CM (GelC) was used as control. The dual-responsive (pH/temperature) hydrogels: PF127/TMC/PEG-HA (Gel1) and PF127/HA-Ala-Chito(oligo) (Gel2) showed improved mechanical behavior as obtained by rheology and mechanical agitation study, and pH-stability under various external pH conditions, and those improvements occurred due to the addition of polysaccharide-based pH-responsive compounds in the systems. Both, Gel1 and Gel2 showed better morphology than GelC as obtained by SEM or TEM suggesting that interaction of polysaccharide-based pH-responsive compounds with PF127 in either gel or sol state gave better porous network structure in the hydrogels or more dispersed micellar arrangements in sol-state, respectively. Gel1 showed the highest cumulative drug release (86.5%) after 5 days under mild acidic condition (pH 6.4) suggesting that release behavior of a hydrogel drug carrier was dependent on morphology, mechanical behavior, and pH-stability. The transdermal release (ex-vivo) results indicated that gallic acid, the active marker of CM passed through porcine ear skin and all the formulations showed more or less similar transdermal release properties. The hydrogels loaded with CM showed no cytotoxicity (cell viability >90.0%) on human HaCaT keratinocytes within concentration range of 0.0-20.0 µg/ml as obtained by MTT assay, and cell viability was more than 100% at a concentration of 20.0 µg/ml for Gel2. The formulations without loaded drug namely, Gel1-CM and Gel2-CM exhibited strong anti-bacterial action against gram positive bacteria Staphylococcus aureus.


Subject(s)
Chitosan/chemistry , Drug Delivery Systems/methods , Hyaluronic Acid/chemistry , Administration, Cutaneous , Animals , Cell Line , Cell Survival , Drug Carriers/chemistry , Drug Compounding , Drug Liberation , Drugs, Chinese Herbal/administration & dosage , Drugs, Chinese Herbal/pharmacology , Humans , Hydrogels/chemical synthesis , Hydrogels/chemistry , Hydrogen-Ion Concentration/drug effects , Paeonia , Plant Extracts/administration & dosage , Plant Extracts/pharmacology , Poloxamer/chemistry , Swine , Temperature
7.
Braz J Microbiol ; 49 Suppl 1: 47-58, 2018 Nov.
Article in English | MEDLINE | ID: mdl-30166266

ABSTRACT

To know more about the potential roles of endophytic fungi in the formation mechanism of Daodi medicinal material, diversity and communities of culturable endophytic fungi in three types of tree peonies were investigated. Endophytic fungi of three types of tree peonies were isolated and identified. The diversity was analyzed. Bayesian trees constructed by MrBayes 3.2.6 after phylogenetic analysis of the ITS sequences. The endophytic fungi potential for synthesis of natural products was assessed by means of detecting NRPS and PKS gene sequences. In total, 364 endophytic fungi isolates representing 26 genera were recovered from Paeonia ostii 'Feng Dan', Paeonia ostii 'Luoyang Feng Dan', and Paeonia suffruticosa 'Luoyang Hong'. More culturable endophytic fungi appeared in P. suffruticosa 'Luoyang Hong' (206) compared with P. ostii 'Feng Dan' (60) and P. ostii 'Luoyang Feng Dan' (98). The fungal community of P. ostii 'Feng Dan' had the highest richness and diversity. PKSs and NRPS detection rates of endophytic fungi from P. ostii 'Feng Dan' are both the highest among the three types of tree peonies. Results indicate that endophytic fungus is an important factor of Daodi Cortex Moutan forming, and endophytic fungi in peony are related to genuineness of Cortex Moutan.


Subject(s)
Biodiversity , Biological Products/metabolism , Endophytes/isolation & purification , Fungi/isolation & purification , Paeonia/microbiology , Drugs, Chinese Herbal/metabolism , Endophytes/classification , Endophytes/genetics , Endophytes/growth & development , Fungi/classification , Fungi/genetics , Fungi/growth & development , Paeonia/classification , Paeonia/growth & development , Paeonia/metabolism , Phylogeny
8.
Braz. j. microbiol ; 49(supl.1): 47-58, 2018. tab, graf
Article in English | LILACS | ID: biblio-974328

ABSTRACT

Abstract To know more about the potential roles of endophytic fungi in the formation mechanism of Daodi medicinal material, diversity and communities of culturable endophytic fungi in three types of tree peonies were investigated. Endophytic fungi of three types of tree peonies were isolated and identified. The diversity was analyzed. Bayesian trees constructed by MrBayes 3.2.6 after phylogenetic analysis of the ITS sequences. The endophytic fungi potential for synthesis of natural products was assessed by means of detecting NRPS and PKS gene sequences. In total, 364 endophytic fungi isolates representing 26 genera were recovered from Paeonia ostii 'Feng Dan', Paeonia ostii 'Luoyang Feng Dan', and Paeonia suffruticosa 'Luoyang Hong'. More culturable endophytic fungi appeared in P. suffruticosa 'Luoyang Hong' (206) compared with P. ostii 'Feng Dan' (60) and P. ostii 'Luoyang Feng Dan' (98). The fungal community of P. ostii 'Feng Dan' had the highest richness and diversity. PKSs and NRPS detection rates of endophytic fungi from P. ostii 'Feng Dan' are both the highest among the three types of tree peonies. Results indicate that endophytic fungus is an important factor of Daodi Cortex Moutan forming, and endophytic fungi in peony are related to genuineness of Cortex Moutan.


Subject(s)
Biological Products/metabolism , Paeonia/microbiology , Biodiversity , Endophytes/isolation & purification , Fungi/isolation & purification , Phylogeny , Drugs, Chinese Herbal/metabolism , Paeonia/classification , Paeonia/growth & development , Paeonia/metabolism , Endophytes/classification , Endophytes/growth & development , Endophytes/genetics , Fungi/classification , Fungi/growth & development , Fungi/genetics
9.
Article in English | LILACS-Express | LILACS, VETINDEX | ID: biblio-1469640

ABSTRACT

Abstract To know more about the potential roles of endophytic fungi in the formation mechanism of Daodi medicinal material, diversity and communities of culturable endophytic fungi in three types of tree peonies were investigated. Endophytic fungi of three types of tree peonies were isolated and identified. The diversity was analyzed. Bayesian trees constructed by MrBayes 3.2.6 after phylogenetic analysis of the ITS sequences. The endophytic fungi potential for synthesis of natural products was assessed by means of detecting NRPS and PKS gene sequences. In total, 364 endophytic fungi isolates representing 26 genera were recovered from Paeonia ostii Feng Dan, Paeonia ostii Luoyang Feng Dan, and Paeonia suffruticosa Luoyang Hong. More culturable endophytic fungi appeared in P. suffruticosa Luoyang Hong (206) compared with P. ostii Feng Dan (60) and P. ostii Luoyang Feng Dan (98). The fungal community of P. ostii Feng Dan had the highest richness and diversity. PKSs and NRPS detection rates of endophytic fungi from P. ostii Feng Dan are both the highest among the three types of tree peonies. Results indicate that endophytic fungus is an important factor of Daodi Cortex Moutan forming, and endophytic fungi in peony are related to genuineness of Cortex Moutan.

10.
Antiviral Res ; 147: 19-28, 2017 11.
Article in English | MEDLINE | ID: mdl-28923507

ABSTRACT

Approximately 142 million people worldwide are infected with hepatitis C virus (HCV). Although potent direct acting antivirals are available, high costs limit access to treatment. Chronic hepatitis C virus infection remains a major cause of orthotopic liver transplantation. Moreover, re-infection of the graft occurs regularly. Antivirals derived from natural sources might be an alternative and cost-effective option to complement therapy regimens for global control of hepatitis C virus infection. We tested the antiviral properties of a mixture of different Chinese herbs/roots named Zhi Bai Di Huang Wan (ZBDHW) and its individual components on HCV. One of the ZBDHW components, Penta-O-Galloyl-Glucose (PGG), was further analyzed for its mode of action in vitro, its antiviral activity in primary human hepatocytes as well as for its bioavailability and hepatotoxicity in mice. ZBDHW, its component Cortex Moutan and the compound PGG efficiently block entry of HCV of all major genotypes and also of the related flavivirus Zika virus. PGG does not disrupt HCV virion integrity and acts primarily during virus attachment. PGG shows an additive effect when combined with the well characterized HCV inhibitor Daclatasvir. Analysis of bioavailability in mice revealed plasma levels above tissue culture IC50 after a single intraperitoneal injection. In conclusion, PGG is a pangenotypic HCV entry inhibitor with high bioavailability. The low cost and wide availability of this compound make it a promising candidate for HCV combination therapies, and also emerging human pathogenic flaviviruses like ZIKV.


Subject(s)
Antiviral Agents/pharmacology , Drugs, Chinese Herbal/chemistry , Hepacivirus/drug effects , Hydrolyzable Tannins/pharmacology , Paeonia/chemistry , Virus Attachment/drug effects , Animals , Antiviral Agents/administration & dosage , Antiviral Agents/pharmacokinetics , Biological Availability , Carbamates , Cell Line, Tumor , Cells, Cultured , Drug Synergism , Drugs, Chinese Herbal/pharmacology , Hepacivirus/genetics , Hepacivirus/physiology , Hepatitis C/drug therapy , Hepatitis C, Chronic/drug therapy , Hepatocytes/drug effects , Humans , Hydrolyzable Tannins/administration & dosage , Hydrolyzable Tannins/pharmacokinetics , Imidazoles/pharmacology , Mice , Mice, SCID , Plant Extracts/chemistry , Plant Extracts/pharmacology , Pyrrolidines , Valine/analogs & derivatives , Virion/drug effects , Virus Replication/drug effects
11.
Molecules ; 22(6)2017 Jun 07.
Article in English | MEDLINE | ID: mdl-28590441

ABSTRACT

Cortex Moutan (CM), a well-known traditional Chinese medicine, is commonly used for treating various diseases in China and other eastern Asian countries. Recorded in Pharmacopeias of several countries, CM is now drawing increasing attention and under extensive studies in various fields. Phytochemical studies indicate that CM contains many valuable secondary metabolites, such as monoterpene glycosides and phenols. Ample evidence from pharmacological researches suggest that CM has a wide spectrum of activities, such as anti-inflammatory, anti-oxidant, anti-tumor, anti-diabetic, cardiovascular protective, neuroprotective, hepatoprotective effects. Moreover, various analytical methods were established for the quality evaluation and safety control of CM. This review synopsizes updated information concerning the origins, phytochemistry, pharmacology, analytical method and safety of CM, aiming to provide favorable references for modern CM research and application. In conclusion, continuing pharmacological investigations concerning CM should be conducted to unravel its pharmacological mechanisms. Further researches are necessary to obtain comprehensive and applicable analytical approach for quality evaluation and establish harmonized criteria of CM.


Subject(s)
Drugs, Chinese Herbal/chemistry , Drugs, Chinese Herbal/pharmacology , Paeonia/chemistry , Chromatography, Liquid , Drugs, Chinese Herbal/analysis , Ethnopharmacology , Humans , Mass Spectrometry , Phytochemicals/analysis , Phytochemicals/chemistry , Phytochemicals/pharmacology
12.
Can J Physiol Pharmacol ; 94(3): 245-50, 2016 Mar.
Article in English | MEDLINE | ID: mdl-26610043

ABSTRACT

Moutan cortex (MC) is a traditional Chinese medicine with diverse biological effects. The present study was performed to investigate the effects of MC on myocardial ischemia/reperfusion (I/R) in rats and to explore its possible mechanisms. Sprague-Dawley rats were administered MC extract (1.98 g/kg, i.g.) for 14 days and underwent a subsequent open-chest procedure involving 30 min of myocardial ischemia and 60 min of reperfusion. The cardioprotective effect of MC was demonstrated by reduced infarct size and marked improvement in the histopathological examination. The increase in the activity of superoxide dismutase (SOD) and glutathione (GSH) as well as the reduction of malondialdehyde (MDA) indicated that MC effectively promoted the anti-oxidative defense system. Increased anti-oxidative defense was accompanied by decreased release of lactate dehydrogenase (LDH) and creatine kinase (CK). The reduction in TUNEL-positive myocytes demonstrated that MC decreased myocardial apoptosis. The mRNA expression of B cell leukemia-2 (Bcl-2) was upregulated by MC and the ratio of Bcl-2/Bcl-2-associated X protein (Bax) mRNA expression was increased. MC pretreatment decreased the mRNA expression of inducible nitric oxide synthase (iNOS). The data from this study suggest that MC exerted protective effects on acute myocardial I/R injury via anti-oxidative and anti-apoptotic activities.


Subject(s)
Drugs, Chinese Herbal/pharmacology , Myocardial Ischemia/drug therapy , Myocardial Reperfusion Injury/drug therapy , Plant Extracts/pharmacology , Protective Agents/pharmacology , Animals , Antioxidants/pharmacology , Apoptosis/drug effects , Creatine Kinase/metabolism , Disease Models, Animal , Glutathione/metabolism , L-Lactate Dehydrogenase/metabolism , Male , Malondialdehyde/metabolism , Myocardial Ischemia/metabolism , Myocardial Reperfusion Injury/metabolism , Myocardium/metabolism , Myocytes, Cardiac/drug effects , Myocytes, Cardiac/metabolism , Nitric Oxide Synthase Type II/metabolism , Paeonia , RNA, Messenger/metabolism , Rats , Rats, Wistar , Superoxide Dismutase/metabolism , bcl-2-Associated X Protein/metabolism
13.
Molecules ; 20(9): 16388-403, 2015 Sep 10.
Article in English | MEDLINE | ID: mdl-26378505

ABSTRACT

Atopic dermatitis (AD) is a widely prevalent and chronically relapsing inflammatory skin disease. Penta Herbs Formula (PHF) is efficacious in improving the quality of life and reducing topical corticosteroid used in children with AD and one of the active herbs it contains is Cortex Moutan. Recent studies showed that altered functions of dendritic cells (DC) were observed in atopic individuals, suggesting that DC might play a major role in the generation and maintenance of inflammation by their production of pro-inflammatory cytokines. Hence, the aims of the present study were to identify the major active component(s) of Cortex Moutan, which might inhibit DC functions and to investigate their possible interactions with conventional corticosteroid on inhibiting the development of DC from monocytes. Monocyte-derived dendritic cells (moDC) culture model coupled with the high-speed counter-current chromatography (HSCCC), high pressure liquid chromatography (HPLC) and Liquid Chromatography-Mass Spectrometry (LCMS) analyses were used. Gallic acid was the major active component from Cortex Moutan which could dose dependently inhibit interleukin (IL)-12 p40 and the functional cluster of differentiation (CD) surface markers CD40, CD80, CD83 and CD86 expression from cytokine cocktail-activated moDC. Gallic acid could also lower the concentration of hydrocortisone required to inhibit the activation of DC.


Subject(s)
Dendritic Cells/drug effects , Drugs, Chinese Herbal/chemistry , Drugs, Chinese Herbal/pharmacology , Gallic Acid/chemistry , Gallic Acid/pharmacology , Monocytes/cytology , Paeonia/chemistry , Cell Differentiation/drug effects , Cells, Cultured , Humans
14.
Phytochem Anal ; 26(1): 86-93, 2015.
Article in English | MEDLINE | ID: mdl-25230378

ABSTRACT

INTRODUCTION: The distribution of metabolites in the different root parts of Cortex Moutan (the root bark of Paeonia suffruticosa Andrews) is not well understood, therefore, scientific evidence is not available for quality assessment of Cortex Moutan. OBJECTIVE: To reveal metabolomic variations in Cortex Moutan in order to gain deeper insights to enable quality control. METHODS: Metabolomic variations in the different root parts of Cortex Moutan were characterised using high-performance liquid chromatography combined with mass spectrometry (HPLC-MS) and multivariate data analysis. The discriminating metabolites in different root parts were evaluated by the one-way analysis of variance and a fold change parameter. RESULTS: The metabolite profiles of Cortex Moutan were largely dominated by five primary and 41 secondary metabolites . Higher levels of malic acid, gallic acid and mudanoside-B were mainly observed in the second lateral roots, whereas dihydroxyacetophenone, benzoyloxypaeoniflorin, suffruticoside-A, kaempferol dihexoside, mudanpioside E and mudanpioside J accumulated in the first lateral and axial roots. The highest contents of paeonol, galloyloxypaeoniflorin and procyanidin B were detected in the axial roots. Accordingly, metabolite compositions of Cortex Moutan were found to vary among different root parts. CONCLUSION: The axial roots have higher quality than the lateral roots in Cortex Moutan due to the accumulation of bioactive secondary metabolites associated with plant physiology. These findings provided important scientific evidence for grading Cortex Moutan on the general market.


Subject(s)
Drugs, Chinese Herbal/chemistry , Metabolome , Metabolomics/methods , Paeonia/chemistry , Plant Extracts/analysis , Plant Roots/chemistry , Chromatography, High Pressure Liquid , Mass Spectrometry , Molecular Structure , Organ Specificity , Plant Extracts/chemistry , Plant Extracts/isolation & purification
15.
Pharmacogn Mag ; 8(31): 237-43, 2012 Jul.
Article in English | MEDLINE | ID: mdl-23060699

ABSTRACT

BACKGROUND: Radix Paeoniae Alba, Radix Paeoniae Rubra, and Cortex Moutan are important Chinese herbs. Their bioactivities and efficacies are similar. However, they have different superior benefits clinically; so, a comprehensive investigation of the chemical difference is necessary and is of great importance for more reasonable quality assessment and proper clinical application of these three herbal medicines. OBJECTIVE: To establish a high-performance liquid chromatography (HPLC) fingerprint method for the quality control of Radix Paeonia Alba, Radix Paeonia Rubra, and Cortex Moutan, and to compare their main constituents. MATERIALS AND METHODS: The separations of Radix Paeoniae Alba, Radix Paeoniae Rubra, and Cortex Moutan was carried out, respectively, through a gradient elution using a monolithic column and a mobile phase consisting of water (containing 0.1% formic acid) and acetonitrile (containing 0.1% formic acid) at a flow rate of 5.0 ml/min. The detection wavelength was set at 230 nm. The data calculation was performed with CHROMAP v1.51 and Statistical Package for the Social Sciences (SPSS) 18.0 software for principal component analysis. RESULTS: A rapid separation method based on high-performance liquid chromatography with diode-array detection (HPLC-DAD) with monolithic columns and a fingerprint analysis method was established. Fifteen Radix Paeonia Alba, 45 Radix Paeonia Rubra, and 21 Cortex Moutan samples were analyzed and 11 chromatographic peaks were identified. Differences of chromatographic peaks among these three herbal medicines in chemical compositions were revealed. CONCLUSION: The separation and analysis method are fast and simple, which can be used for chemical fingerprint comparison of Radix Paeonia Alba, Radix Paeonia Rubra, and Cortex Moutan. The results for the evaluation of the three medicines could provide experimental evidence for chemical affinity.

SELECTION OF CITATIONS
SEARCH DETAIL