Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.557
Filter
1.
Front Immunol ; 15: 1392259, 2024.
Article in English | MEDLINE | ID: mdl-39086491

ABSTRACT

The treatment of wound inflammation is intricately linked to the concentration of reactive oxygen species (ROS) in the wound microenvironment. Among these ROS, H2O2 serves as a critical signaling molecule and second messenger, necessitating the urgent need for its rapid real-time quantitative detection, as well as effective clearance, in the pursuit of effective wound inflammation treatment. Here, we exploited a sophisticated 3D Cu2- x Se/GO nanostructure-based nanonzymatic H2O2 electrochemical sensor, which is further decorated with evenly distributed Pt nanoparticles (Pt NPs) through electrodeposition. The obtained Cu2- x Se/GO@Pt/SPCE sensing electrode possesses a remarkable increase in specific surface derived from the three-dimensional surface constructed by GO nanosheets. Moreover, the localized surface plasma effect of the Cu2- x Se nanospheres enhances the separation of photogenerated electron-hole pairs between the interface of the Cu2- x Se NPs and the Pt NPs. This innovation enables near-infrared light-enhanced catalysis, significantly reducing the detection limit of the Cu2- x Se/GO@Pt/SPCE sensing electrode for H2O2 (from 1.45 µM to 0.53µM) under NIR light. Furthermore, this biosensor electrode enables in-situ real-time monitoring of H2O2 released by cells. The NIR-enhanced Cu2- x Se/GO@Pt/SPCE sensing electrode provide a simple-yet-effective method to achieve a detection of ROS (H2O2、-OH) with high sensitivity and efficiency. This innovation promises to revolutionize the field of wound inflammation treatment by providing clinicians with a powerful tool for accurate and rapid assessment of ROS levels, ultimately leading to improved patient outcomes.


Subject(s)
Copper , Hydrogen Peroxide , Inflammation , Metal Nanoparticles , Platinum , Hydrogen Peroxide/metabolism , Platinum/chemistry , Copper/chemistry , Metal Nanoparticles/chemistry , Inflammation/metabolism , Animals , Mice , Nanostructures/chemistry , Biosensing Techniques/methods , Selenium/chemistry , Humans , Infrared Rays , Reactive Oxygen Species/metabolism , RAW 264.7 Cells
2.
Toxicol Res (Camb) ; 13(4): tfae125, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39132193

ABSTRACT

Background: Copper oxide (Cu2O) nanoparticles (CO NPs) are in extensive use during our everyday life as antimicrobial agent, lubricant, in manufacturing electrodes of lithium ion batteries as well as for photo catalytic degradation of organic pollutants. Due to extensive and diverse use Cu2O NPs, they are likely to accumulate in the environment and to affect the live forms. Present investigation was aimed to report the biocompatibility of CO NPs in Wistar rats in sex specific manner. CO NPs, having average diameter of 14.06 nm, were synthesized by co-precipitation method and scanning electron microscopy and X ray diffraction were used for their characterization. Methods: For 14 consecutive days, Wistar rats (6 weeks old) of both sexes were intraperitoneally injected with 10 mg/mL saline/Kg body weight of CO NPs, while the control groups intraperitoneally received saline solution for same duration. Behavioral tests (open field and novel object recognition), complete blood count, selected biomarkers of oxidative stress and Copper concentration in brain and liver were determined in all subjects. Results: High mortality rates [male 40% and female 60%] were observed in rats exposed to CO NPs. A sever decrease in body weight was also observed in both male and female rats exposed to CO NPs. Female rats treated with CO NPs spent significantly more time with novel object as compared to control [P = 0.05] during second trial of novel object test. CO NPs treated female rats had higher mean corpuscular hemoglobin [P < 0.001] levels and Copper concentration in liver [P = 0.04] than control. Male rats exposed to CO NPs had significantly higher mean corpuscular volume [P = 0.02] and superoxide dismutase [SOD] [P = 0.04] in lungs than their control group. All other studied parameters non significantly varied upon comparison between CO NPs treated and untreated rats of both sex. Conclusion: In conclusion, we are reporting that intraperitoneal injections of CO NPs for 14 days can disturb complete blood count and biomarkers of oxidative stress in lungs of Wistar rats.

3.
Spectrochim Acta A Mol Biomol Spectrosc ; 323: 124920, 2024 Jul 31.
Article in English | MEDLINE | ID: mdl-39111030

ABSTRACT

In this work, up- and down-conversion dual-emission CDs without rare-earth (UD D-CDs) were synthesized using RhB and 1,4-Diaminoanthraquinone as precursors. The synthesized UD D-CDs exhibited dual emissions at 496 and 580 nm under 260 and 865 nm excitation, respectively. The fluorescence emission mechanism, including contributions from carbon nuclei, surface states, molecular states, and internal defect states, was discussed through the separation and purification of UD D-CDs. Based on the interaction between UD D-CDs and copper ions (Cu2+), a dual-mode ratio fluorescence probe was developed to detect and quantify Cu2+. The up-conversion ratio fluorescent probe shows a linear range of 0.0500-15.0 µM, with a detection limit as low as 2.76 nM. This method has been successfully applied to detecting Cu2+ in human serum and has potential applications in biochemical analysis and biological imaging. The successful preparation of up-conversion fluorescent carbon dots without rare earth elements and the ability to perform low-damage detection in high-background biological samples provide a new approach to constructing non-rare earth up-conversion probes.

4.
Article in English | MEDLINE | ID: mdl-39107646

ABSTRACT

In this study, we employed the one-dimensional solar cell capacitance simulator (SCAPS-1D) software to optimize the performance of Pb-based and Sn-based (Pb-free) all-inorganic perovskites (AIPs) and organic-inorganic perovskites (OIPs) in perovskite solar cell (PSC) structures. Due to the higher stability of AIPs, the performance of PSCs incorporating Cs-based perovskites was compared with that of FA-based perovskites, which are more stable than their MA-based counterparts. The impact of AIPs such as CsPbCl3, CsPbBr3, CsPbI3, CsSnCl3, CsSnBr3, and CsSnI3, as well as including FAPbCl3, FAPbBr3, FAPbI3, FASnCl3, FASnBr3, and FASnI3, was investigated. SnO2 and Cu2O were selected as an inorganic electron transport layer (ETL) and a hole transport layer (HTL), respectively. CsSnBr3, CsSnI3, FASnCl3, and FASnBr3 exhibited higher efficiency compared to their Pb-based counterparts. Additionally, most Cs-based perovskites, excluding CsPbI3, demonstrated better performance relative to their FA counterparts. CsSnI3 AIP device also shows the highest short circuit current density (JSC) of 32.85 mA/cm2, the best power conversion efficiency (PCE) of 16.00%, and the least recombination at the SnO2/CsSnI3 interface. The thickness, doping, and total defect density of CsSnI3 PSC have been systematically investigated and optimized to obtain the PCE of 17.36%. These findings highlight the potential of CsSnI3 PSCs as efficient and environmentally friendly PSCs.

5.
Article in English | MEDLINE | ID: mdl-39120498

ABSTRACT

Luminescent CuI complexes are an important class of coordination compounds due to their relative abundance, low cost and ability to display excellent luminescence. The title Cu2I2P2S2-type binuclear complex, di-µ-iodido-bis[(thiourea-κS)(triphenylphosphine-κP)copper(I)], [Cu2I2(CH4N2S)2(C18H15P)2], conventionally abbreviated as Cu2I2TPP2TU2, where TPP and TU represent triphenylphosphine and thiourea, respectively, is described. In this complex, each CuI atom adopts a CuI2PS four-coordination mode and pairs of atoms are connected to each other by two µ2-I ligands to form a centrosymmetric binuclear cluster. It was also found that the paper-based film of this complex exhibited obvious luminescence light-up sensing for pyridine and 4-methylpyridine.

6.
Talanta ; 280: 126692, 2024 Aug 08.
Article in English | MEDLINE | ID: mdl-39128313

ABSTRACT

In the field of nucleic acid amplification assays, developing enzyme-free, easy-to-use, and highly sensitive amplification approaches remains a challenge. In this work, we synthesized a heterogeneous Cu2O nanocatalyst (hnCu2O) with different particle sizes and shapes, which was used for developing enzyme- and label-free nucleic acid amplification methods based on the nucleic acid-templated azide-alkyne cycloaddition (AAC) reaction catalyzed by hnCu2O. The hnCu2O exhibited size- and shape-dependent catalytic activity, with smaller sizes and spherical-like shapes exhibiting superior activity. Spherical-like hnCu2O (61 ± 8 nm) not only achieved a ligation yield of up to 84.2 ± 3.9 % in 3 min but also exhibited faster kinetics in the nucleic acid-templated hnCu2O-catalyzed AAC reaction, with a high reaction rate of 0.65 min-1 and a half-life of 1.07 ± 0.09 min. Based on this result, we developed nucleic acid-templated click ligation linear amplification reaction (NA-CLLAR) and nucleic acid-templated click ligation exponential amplification reaction (NA-CLEAR) approach. By combining the recognition (complementary to the target sequence) and signal output (split G-quadruplex sequence) elements into a DNA probe, the NA-CLLAR and NA-CLEAR fluorescence assays achieved highly specific detection of target nucleic acids, with a detection limit of 2.8 aM based on G-quadruplex-enhanced fluorescence. This work is a valuable reference and will inspire researchers to design enzyme-free nucleic acid signal amplification strategies by developing different types of Cu(I) catalysts with improved catalytic activity.

7.
Spectrochim Acta A Mol Biomol Spectrosc ; 322: 124706, 2024 Jun 23.
Article in English | MEDLINE | ID: mdl-38972095

ABSTRACT

Two novel fluorescent probes for Cu2+ detection have been developed based on thiazoline-quinoline conjugates bearing a 4-ethynyl-N,N-dimethylaniline unit (QT1 and QT2). QT2 exhibits instantaneous fluorescence quenching of Cu2+ with an emissive change from bright orange to arctic blue under UV light irradiation (365 nm). The plots of I0/I against Cu2+ concentrations show a good linear relationship that ranges from 0 to 50 µM with a coefficient of determination (R2) = 0.9906 and a limit of detection (LOD) of 76 nM, which is considered low (4.84 ppb). A 1:1 complexation between QT2 and Cu2+ was confirmed by UV-Vis titration, ESI-MS, and SC-XRD. The QT2·Cu2+ complex was dissociated by the addition of EDTA. The fluorescence quenching mechanism involves the ligand-to-metal charge transfer (LMCT) of a paramagnetic Cu2+ complex. The QT2 probe on a paper-based strip was used to determine the amount of Cu2+ in water and food samples (shiitake mushrooms and oysters).

8.
Spectrochim Acta A Mol Biomol Spectrosc ; 322: 124766, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38968902

ABSTRACT

In this work, we developed a fast and straightforward colorimetric and photoluminescent chemosensor probe (P1), featuring bis-thiophene-thiosemicarbazide moieties as its signaling and binding unit. This probe exhibited rapid sensitivity to Hg2+ and Cu2+ ions in a semi-aqueous medium, resulting in distinct colorimetric and photoluminescent changes. In the presence of Cu2+, P1 displayed an impressive 50-fold increase in photoluminescence (PL) at 450 nm (with excitation at 365 nm). The probe P1 formed a 1:1 complex with Hg2+ and Cu2+ ions, featuring association constant values of 4.04 × 104 M-1 and 1.25 × 103 M-1, respectively. P1 has demonstrated its efficacy in the analysis of real samples, yielding promising results. Additionally, the probe successfully visualized copper ions on a mouse fibroblast cell line (NIH3T3), highlighting its potential as an intracellular probe for copper ion detection.

9.
Anal Chim Acta ; 1316: 342828, 2024 Aug 08.
Article in English | MEDLINE | ID: mdl-38969425

ABSTRACT

BACKGROUD: The global prevalence of diabetes mellitus, a serious chronic disease with fatal consequences for millions annually, is of utmost concern. The development of efficient and simple devices for monitoring glucose levels is of utmost significance in managing diabetes. The advancement of nanotechnology has resulted in the indispensable utilization of advanced nanomaterials in high-performance glucose sensors. Modulating the morphology and intricate composition of transition metals represents a viable approach to exploit their structure/function correlation, thereby achieving optimal electrocatalytic performance of the synthesized catalysts. RESULTS: Herein, a sensitive and rapid Cu-encapsulated Cu2S@nitrogen-doped carbon (Cu@Cu2S@N-C) hollow nanocubes-functionalized microfluidic paper-based analytical device (µ-PAD) was fabricated. Through a delicate sacrificial template/interface technique and thermal decomposition, inter-connected hollow networks were formed to boost the active sites, and the carbon shell was coated to protect Cu from being oxidation. For application, the constructed µ-PAD is used for glucose sensing utilizing an origami automated sample pretreatment system enabled by a simple application of strong alkaline solution on wax paper. Under optimal circumstances, the Cu@Cu2S@N-C electrochemical biosensor exhibits broad detection range of 2-7500 µM (R2 = 0.996) with low detection limit of 0.16 µM (S/N = 3) and high sensitivity of 1996 µA mM-1 cm-2. Additionally, the constructed µ-PAD also exhibited excellent selectivity, stability, and reproducibility. SIGNIFICANCE: By rationally designing the double-shell hollow nanostructure and introducing Cu-encapsulated inner layer, the synthesized Cu@Cu2S@N-C hollow nanocubes show large specific surface area, short diffusion channels, and high stability. The proposed origami µ-PAD has been successfully applied to serum samples without any additional sample preparation steps for glucose determination, offering a new perspective for early nonenzymatic glucose diagnosis.

10.
Environ Res ; 261: 119682, 2024 Jul 25.
Article in English | MEDLINE | ID: mdl-39067800

ABSTRACT

Sediment-derived dissolved organic matter (SDOM) is instrumental in the cycling of nutrients and heavy metals within lakes, influencing ecological balance and contaminant distribution. Given the influence of photodegradation on the alteration and breakdown of SDOM, further understanding of this process is essential. In this research, the properties of the SDOM photodegradation process and its metal-binding reactions in Nansi Lake were analyzed using the EEM-PARAFAC and 2D-SF/FTIR-COS techniques. Our study identified three sorts of humic-like components and one protein-like component in SDOM, with the humic-like material accounting for 71.3 ± 5.19% of the fluorescence intensity (Fmax). Photodegradation altered the abundance and structure of SDOM, with a 41.6 ± 5.82% decrease in a280 and a 29.1 ± 9.31% reduction in Fmax after 7 days, notably reducing the protein-like component C4 by 54.0 ± 5.17% and the humic-like component C2 by 48.5 ± 2.54%, which led to SDOM being formed with lower molecular weight and aromaticity. After photodegradation, the LogKCu values for humic-like and protein-like substances decreased (humic-like C2: LogKCu: 1.35 ± 0.10-1.11 ± 0.15, protein-like C4: 1.49 ± 0.14-1.29 ± 0.34), yet the preferential binding sequence of protein-like materials and specific functional groups with Cu2+ such as aliphatic C-OH, amide (I) C=O and polysaccharide C-O groups remained unaltered. Our results enhance the knowledge of light-induced SDOM alterations and offer insights into SDOM-metal interactions in aquatic ecosystems.

11.
Front Pharmacol ; 15: 1388038, 2024.
Article in English | MEDLINE | ID: mdl-39076585

ABSTRACT

Metastatic hepatocellular carcinoma (HC) is a serious health concern. The stemness of cancer stem cells (CSCs) is a key driver for HC tumorigenesis, apoptotic resistance, and metastasis, and functional mitochondria are critical for its maintenance. Cuproptosis is Cu-dependent non-apoptotic pathway (mitochondrial dysfunction) via inactivating mitochondrial enzymes (pyruvate dehydrogenase "PDH" and succinate dehydrogenase "SDH"). To effectively treat metastatic HC, it is necessary to induce selective cuproptosis (for halting cancer stemness genes) with selective oxidative imbalance (for increasing cell susceptibility to cuproptosis and inducing non-CSCs death). Herein, two types of Cu oxide nanoparticles (Cu4O3 "C(I + II)" NPs and Cu2O "C(I)" NPs) were used in combination with diethyldithiocarbamate (DD, an aldehyde dehydrogenase "ALDH" inhibitor) for comparative anti-HC investigation. DC(I + II) NPs exhibited higher cytotoxicity, mitochondrial membrane potential, and anti-migration impact than DC(I) NPs in the treated human HC cells (HepG2 and/or Huh7). Moreover, DC(I + II) NPs were more effective than DC(I) NPs in the treatment of HC mouse groups. This was mediated via higher selective accumulation of DC(I + II) NPs in only tumor tissues and oxidant activity, causing stronger selective inhibition of mitochondrial enzymes (PDH, SDH, and ALDH2) than DC(I)NPs. This effect resulted in more suppression of tumor and metastasis markers as well as stemness gene expressions in DC(I + II) NPs-treated HC mice. In addition, both nanocomplexes normalized liver function and hematological parameters. The computational analysis found that DC(I + II) showed higher binding affinity to most of the tested enzymes. Accordingly, DC(I + II) NPs represent a highly effective therapeutic formulation compared to DC(I) NPs for metastatic HC.

12.
ACS Appl Mater Interfaces ; 16(30): 40170-40179, 2024 Jul 31.
Article in English | MEDLINE | ID: mdl-39031061

ABSTRACT

Beta-gallium oxide (ß-Ga2O3) is emerging as a promising ultrawide band gap (UWBG) semiconductor, which is vital for high-power, high-frequency electronics and deep-UV optoelectronics. It is especially significant for flexible wearable electronics, enabling the fabrication of high-performance Ga2O3-based devices at low temperatures. However, the limited crystallinity and pronounced structural defects arising from the low-temperature deposition of Ga2O3 films significantly restrict the heterojunction interface quality and the relevant electrical performance of Ga2O3-based devices. In this work, cuprous oxide (Cu2O)/Zr-doped ß-Ga2O3 heterojunction diodes are fabricated by magnetron sputtering without intentional substrate heating, followed by an investigation into their microstructure and electrical behaviors. Zr doping can markedly enhance the Ga2O3 crystallinity at low substrate temperatures, transforming the amorphous structure of pristine Ga2O3 films into the crystallized ß phase. Moreover, crystalline ß-Ga2O3 facilitates the epitaxial growth of the Cu2O phase, suppressing the formation of detrimental secondary phase CuO at the heterojunction interface. Benefiting from the high-quality heterojunction interface, the Cu2O/Zr-doped ß-Ga2O3 heterojunction diode exhibits a near-ideal electrical behavior with a low ideality factor of 1.6. The consistent electrical parameters extracted from current-voltage (J-V) and capacitance-voltage (C-V) measurements also confirm the high quality of ß-Ga2O3. This work highlights the potential for the low-temperature production of high-quality ß-Ga2O3-based heterojunction devices through Zr doping.

13.
Spectrochim Acta A Mol Biomol Spectrosc ; 322: 124827, 2024 Jul 14.
Article in English | MEDLINE | ID: mdl-39029205

ABSTRACT

Two helical Schiff base compounds (H4TPA and H4TPE) containing a triphenylamine (TPA) or tetraphenylethylene (TPE) scaffold were successfully synthesized and characterized. Both H4TPA and H4TPE exhibited typical aggregation-induced emission characteristics in the mixed solvent of THF/H2O. The two compounds also showed high selectivity and sensitivity for the recognition of Cu2+ over other ions in THF/HEPES (1:4, V/V, pH = 7.4, 2.0 × 10-5 M), and could be used as turn-off fluorescent probes for Cu2+. The stoichiometric ratios and association constants were estimated via Job's plots and UV-vis spectra titration, and the detection limits of H4TPA and H4TPE toward Cu2+ were calculated to be 2.41 × 10-7 M and 1.38 × 10-7 M, respectively. Besides, the crystal structure of the complex obtained from the interaction of H4TPA with Cu2+ well illustrated the binding modes, which helped us understand the Cu2+ recognition mechanism of H4TPA and H4TPE. Moreover, the detection of Cu2+ and spiked recovery experiments were carried out, which indicated that the two probes can be applied to Cu2+ detection in real samples with satisfactory recoveries.

14.
Molecules ; 29(14)2024 Jul 22.
Article in English | MEDLINE | ID: mdl-39065015

ABSTRACT

Seven new lanthanide coordination polymers, namely [Ln(cpt)3H2O)]n(Ln = La (1), Pr (2), Sm (3), Eu (4), Gd (5), Dy (6), and Er (7)), which were synthesized under hydrothermal conditions using 4'-(4-(4-carboxyphenyloxy)phenyl)-4,2':6',4'-tripyridine (Hcpt) as the ligand. The crystal structures of these seven complexes were determined using single-crystal X-ray diffraction, and they were found to be isostructural, crystallizing in the triclinic P1- space group. The Ln(III) ions were nine-coordinated with tricapped trigonal prism coordination geometry. The Ln(III) cations were coordinated by carboxylic and pyridine groups from (cpt)- ligands, forming one-dimensional ring-chain structures. Furthermore, the luminescent properties of complexes 1-7 were investigated using fluorescent spectra in the solid state. The fluorescence sensing experiments demonstrated that complex 4 exhibits high selectivity and sensitivity for detecting Co2+, Cu2+ ions, and nitrobenzene. Moreover, complex 3 shows good capability for detecting Cu2+ ions and nitrobenzene. Additionally, the sensing mechanism was also thoroughly examined through theoretical calculations.

15.
Int J Biol Macromol ; 276(Pt 1): 133915, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-39019374

ABSTRACT

The low solubility of chitosan (CS) imposes adverse effects on its application. In this work, one of the aims is to improve the water solubility of CS. By introducing water-soluble side chains to CS, this aim was achieved. Besides, fluorescent moieties were incorporated into the side chains, the fluorescent copolymers were endowed with Cr3+ and Cu2+ ions recognition ability. Firstly, a reversible addition-fragmentation chain transfer polymerization (RAFT) reagent with naphthalimide units and CC groups was prepared. Water-soluble monomer methyl acrylic acid (MAA) was employed in the RAFT polymerization. Thus, water-soluble polymer with fluorescent unit and -C ≡ C on both ends of the polymer was obtained. They were introduced into CS, and the CS-based fluorescent copolymers were obtained eventually. The amount of MAA introduced could be tuned to obtain three side chains of different lengths. It was found that the more MAA was introduced, the better the solubility of CS-TP was. The detection limits (LOD) of Cr3+ and Cu2+ were 44.6 nM and 54.5 nM, respectively. The detection of Cr3+ and Cu2+ ions is further combined with a mobile APP to realize real-time, portable, and visual detection. And the application in the logic gate, a new detection platform, is prepared.

16.
Pharmaceuticals (Basel) ; 17(7)2024 Jun 21.
Article in English | MEDLINE | ID: mdl-39065671

ABSTRACT

Copper (Cu) is a critical element for cancer cell proliferation and considerably accumulates in the nucleus. 64Cu2+ is an anticancer radiopharmaceutical that targets the copper requirement of cancer cells. However, intravenously injected 64Cu2+ ions primarily accumulate in the liver. Ligand complexation of 64Cu2+ may be a promising method for increasing tumor delivery by reducing liver uptake. In this study, we used three tripodal amine ligands [tris(2-aminoethyl)amine (Tren), diethylenetriamine (Dien), and tris(2-pyridylmethyl)amine (TPMA)] to enclose 64Cu2+ ions and compared their in vivo tumor and liver uptakes using a tumor-bearing xenograft mouse model of the extrahepatic bile duct carcinoma cell line TFK-1. We examined intracellular Cu distribution using microparticle-induced X-ray emission (micro-PIXE) analysis of these compounds. 64Cu2+-Tren and 64Cu2+-Dien showed higher tumor uptake than 64Cu2+-TPMA and 64Cu2+ ions in TFK-1 tumors. Among the three 64Cu2+ complexes and 64Cu2+ ions, liver uptake was inversely correlated with tumor uptake. Micro-PIXE analysis showed that in vitro cellular uptake was similar to in vivo tumor uptake, and nuclear delivery was the highest for 64Cu2+-Tren. Conclusively, an inverse correlation between tumor and liver uptake was observed using three 64Cu2+ complexes of tripodal amine ligands and 64Cu2+ ions. These results provide useful information for the future development of anticancer 64Cu radiopharmaceuticals.

17.
Ecotoxicol Environ Saf ; 282: 116749, 2024 Jul 17.
Article in English | MEDLINE | ID: mdl-39024942

ABSTRACT

Excessive nanoplastics not only pose a direct threat to the environment but also have the propensity to adsorb and interact with other pollutants, exacerbating their impact. The coexistence of nanoplastics and heavy metals in soils is a prevalent phenomenon. However, limited research existed about the joint effects of the two contaminants on soil organisms. In this paper, we ascertained the combined toxicity of polystyrene nanoplastics (PS-NPs) and copper (Cu2+) on soil organisms (Caenorhabditis elegans) at quantities that were present in the environment, further exploring whether the two toxicants were synergistic or antagonistic. The outcomes manifested that single exposure to low-dose PS-NPs (1 µg/L) would not cause significant damage to nematodes. After treatment with PS-NPs and Cu2+, the locomotion ability of nematode was impaired, accompanied by an elevation in reactive oxygen species (ROS) level and a biphasic response in antioxidant enzyme activity. Moreover, combined exposure to PS-NPs and Cu2+ induced the mRNA up-regulation of vit-6, cyp-35a2, hsp-16.2, age-1, and cep-1, both of which were stress-related genes. The comparative analysis between groups (with or without PS-NPs) revealed that the combined exposure group resulted in significantly greater toxic effects on nematodes compared with Cu2+ exposure alone. Furthermore, the addition of PS-NPs influenced the metabolic profiles of Caenorhabditis elegans under Cu2+ stress, with numerous differential metabolites associated with oxidative damage or defense mechanism. Overall, these findings manifested that PS-NPs at the expected environmental concentration elevated Cu2+ toxicity on nematodes.

18.
J Colloid Interface Sci ; 676: 331-342, 2024 Jul 17.
Article in English | MEDLINE | ID: mdl-39042960

ABSTRACT

The selection of highly efficient materials and the construction of advantageous structures are essential for realizing high-performance electrode materials. In this paper, electrode material Cu2S/C@NiMnCe-LDH/CF with excellent morphology and high performance has been successfully designed and prepared by simple hydrothermal and calcination techniques. First, ZIF-67 is loaded on the outer layer of Cu2S rods to obtain core-shell structured Cu2S@ZIF-67 rods, whose ZIF-67 MOF shell is carbonized to obtain Cu2S@C rods. Then, NiMnCe-LDH are epitaxially loaded on the outer layer of Cu2S@C to obtain Cu2S/C@NiMnCe-LDH rods. At a current density of 2 mA cm-2, Cu2S/C@NiMnCe-LDH/CF exhibits an area capacitance of 5176.4 mF cm-2. The mass capacitance and the energy density of the Cu2S/C@NiMnCe-LDH/CF//AC asymmetric supercapacitor (ASC) reach 150.82F g-1 at a sweep rate of 0.8 A/g and 53.62 Wh kg-1 at a power density of 639.99 W kg-1, respectively. Meanwhile, after 8000 electrochemical cycles, the specific capacitance of Cu2S/C@NiMnCe-LDH/CF//AC still has a retention rate of 86.32 %, which proves its excellent cycling stability. These results demonstrate a new strategy for the preparation of novel core-shell structured Cu2S/C@NiMnCe-LDH/CF nanocomposite material for electrode materials of energy storage devices with superb performance.

19.
Materials (Basel) ; 17(13)2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38998321

ABSTRACT

Structural-colored fabrics have been attracting much attention due to their eco-friendliness, dyelessness, and anti-fading properties. Monodisperse microspheres of metal, metal oxide, and semiconductors are promising materials for creating photonic crystals and structural colors owing to their high refractive indices. Herein, Cu2O microspheres were prepared by a two-step reduction method at room temperature; the size of Cu2O microspheres was controlled by changing the molar ratio of citrate to Cu2+; and the size of Cu2O microspheres was tuned from 275 nm to 190 nm. The Cu2O microsphere dispersions were prepared with the monodispersity of Cu2O microspheres. Furthermore, the effect of the concentration of Cu2O microsphere and poly(butyl acrylate) on the structural color was also evaluated. Finally, the stability of the structural color against friction and bending was also tested. The results demonstrated that the different structural colors of fabrics were achieved by adjusting the size of the Cu2O microsphere, and the color fastness of the structural color was improved by using poly(butyl acrylate) as the adhesive.

20.
Nanomaterials (Basel) ; 14(13)2024 Jun 24.
Article in English | MEDLINE | ID: mdl-38998684

ABSTRACT

Cu2ZnSnSe4 (CZTSe) nanoparticles (NPs) were successfully synthesized via a solvothermal method. Their structural, compositional, morphological, optoelectronic, and electrochemical properties have been characterized by X-ray diffraction (XRD), Raman spectroscopy, X-ray photoelectron spectroscopy (XPS), Field-emission scanning electron microscopy (FE-SEM), transmission electron microscope (TEM), UV-vis absorption spectroscopy, and electrochemical impedance spectroscopy (EIS) techniques. Porosimetry and specific surface area in terms of the Brunauer-Emmett-Teller (BET) technique have also been studied. XRD indicates the formation of a polycrystalline kesterite CZTSe phase. Raman peaks at 173 and 190 cm-1 confirm the formation of a pure phase. TEM micrographs revealed the presence of nanoparticles with average sizes of ~90 nm. A BET surface area of 7 m2/g was determined. The CZTSe NPs showed a bandgap of 1.0 eV and a p-type semiconducting behavior. As a proof of concept, for the first time, the CZTSe NPs have been used as a visible-light-driven photocatalyst to Congo red (CR) azo dye degradation. The nanophotocatalyst material under simulated sunlight results in almost complete degradation (96%) of CR dye after 70 min, following a pseudo-second-order kinetic model (rate constant of 0.334 min-1). The prepared CZTSe was reusable and can be repeatedly used to remove CR dye from aqueous solutions.

SELECTION OF CITATIONS
SEARCH DETAIL