Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 103
Filter
1.
Mol Metab ; : 102006, 2024 Aug 09.
Article in English | MEDLINE | ID: mdl-39128651

ABSTRACT

OBJECTIVE: Obesity represents a global health crisis with significant patient burdens and healthcare costs. Despite the advances with glucagon-like peptide-1- (GLP-1) receptor agonists in treating obesity, unmet needs remain. This study characterizes a novel glucose-dependent insulinotropic polypeptide receptor (GIPR) peptide antagonist, AT-7687, evaluating its potential to enhance obesity treatment. METHODS: We assessed the in vitro potency and pharmacokinetics of AT-7687, alongside its therapeutic effects when administered subcutaneously (SC) alone and in combination with liraglutide to high-fat-diet-fed obese non-human primates (NHP). The study spanned a 42-day treatment period and a 15-day washout period. RESULTS: AT-7687 demonstrated a subnanomolar cAMP antagonistic potency (pKB of 9.5) in HEK-293 cells and a 27.4 hour half-life in NHPs. It effectively maintained weight stability in obese monkeys, whereas placebo recipients had an 8.6% weight increase by day 42 (P = 0.01). Monotherapy with liraglutide resulted in a 12.4% weight reduction from placebo (P = 0.03) and combining AT-7687 with liraglutide led to a 16.3% weight reduction (P = 0.0002). The combination therapy significantly improved metabolic markers, reducing insulin levels by 52% (P = 0.008), glucose by 30% (P = 0.02), triglycerides by 39% (P = 0.05), total cholesterol by 29% (P = 0.03), and LDL cholesterol by 48% (P = 0.003) from placebo. AT-7687 treatment was well tolerated and not associated with any side effects. CONCLUSIONS: This study underscores the potential of AT-7687 as a promising addition to current obesity treatments.

2.
Int J Nanomedicine ; 19: 4923-4939, 2024.
Article in English | MEDLINE | ID: mdl-38828201

ABSTRACT

Purpose: In recent years, exosomes have been proved to be used to treat many diseases. However, due to the lack of uniform quality control standards for exosomes, the safety of exosomes is still a problem to be solved, especially now more and more exosomes are used in clinical trials, and its non-clinical safety evaluation is particularly important. However, there is no safety evaluation standard for exosomes at present. Therefore, this study will refer to the evaluation criteria of therapeutic biological products, adopt non-human primates to evaluate the non-clinical safety of human umbilical cord mesenchymal stem cell exosomes from the general pharmacology and immunotoxicity, aiming at establishing a safety evaluation system of exosomes and providing reference for the clinical application of exosomes in the future. Methods: 3.85 × 1012 exosomes derived from human umbilical cord mesenchymal stem cells were injected into cynomolgus monkeys intravenously. The changes of general clinical conditions, hematology, immunoglobulin, Th1/Th2 cytokines, T lymphocytes and B lymphocytes, and immune organs were observed before and within 14 days after injection. Results: The results showed that exosomes did not have obvious pathological effects on the general clinical conditions, blood, coagulation function, organ coefficient, immunoglobulin, Th1/Th2 cytokines, lymphocytes, major organs, and major immune organs (spleen, thymus, bone marrow) of cynomolgus monkeys. However, the number of granulocyte-macrophage colonies in exosomes group was significantly higher than that in control group. Conclusion: To sum up, the general pharmacological results and immunotoxicity results showed that the injection of 3.85 × 1012 exosomes may have no obvious adverse reactions to cynomolgus monkeys. This dose of exosomes is relatively safe for treatment, which provides basis research for non-clinical safety evaluation of exosomes and provides reliable research basis for future clinical application of exosomes.


Subject(s)
Exosomes , Macaca fascicularis , Mesenchymal Stem Cells , Umbilical Cord , Animals , Exosomes/chemistry , Mesenchymal Stem Cells/cytology , Humans , Umbilical Cord/cytology , Male , Female , Cytokines/metabolism
3.
Exp Anim ; 2024 May 30.
Article in English | MEDLINE | ID: mdl-38811232

ABSTRACT

The study aimed to evaluate the periodontal disease status in different age groups and clarify the relationship between aging and the severity of periodontal disease. The test animals were cynomolgus monkeys that were born and raised at the Tsukuba Primate Research Center of the National Institutes of Biomedical Innovation, Health, and Nutrition. The participants were divided into three groups: young (5-10 years old), middle (10-19 years old), and old (≥20 years old). The plaque Index (PLI), Gingival Index (GI), probing pocket depth (PPD), and Bleeding on probing (BOP) were used for the periodontal examination. Representative teeth were also examined. Polymerase chain reaction (PCR) was used to identify Porphyromonas macacae in dental plaque. Multiple comparisons and regression analyses were used to analyze the relationship between each age group and each oral examination index. Statistically significant differences were found between the age groups and periodontal examination index. Multiple regression analysis revealed that age was strongly correlated with each oral examination index. Based on these results, oral examinations of cynomolgus monkeys kept in the same environment confirmed an association between aging and periodontal disease severity. Monkeys at this facility are expected to serve as new experimental models for elucidating the mechanisms underlying the progression of age-related periodontal disease.

4.
Curr Pharm Des ; 30(16): 1240-1246, 2024.
Article in English | MEDLINE | ID: mdl-38623974

ABSTRACT

INTRODUCTION: RC98 is the monoclonal antibody against Programmed Cell Death Ligand 1 (PD-L1). Relevant reports have confirmed that the influence of PD-L1 expressed by tumor cells on antitumor CD8+ T cell responses is well characterized, but the impact of PD-L1 expressed by immune cells has not been well defined. OBJECTIVE: This study aimed to design a Pharmacokinetics/Pharmacology (PK/PD) study of RC98 in normal cynomolgus monkeys to research the effect on the immune system. METHODS: RC98 and vehicle were administered to cynomolgus monkeys at 15 mg/kg via intravenous infusion once a week for 4 weeks to evaluate the relationship between PK and PD. The pharmacodynamic activity was measured by the PD-L1 receptor occupancy (RO) in CD3+ T cells, A T-cell-dependent antibody response (TDAR), and the concentration of soluble PD-L1. RESULTS: The pharmacokinetic result showed that the exposure from the last administration was lower than that of the first administration, probably due to immunogenicity production. There was a strong correlation between systemic exposure and RO in CD3+ T cells but decreased RO levels after the last dose, which indirectly reflected the activation of T cells. The keyhole limpet hemocyanin (KLH)-induced TDAR in the RC98 group was higher than in the vehicle group. The concentration of soluble PD-L1 had increased feedback with RC98, and the concentration of soluble PD-L1 was maintained at a higher level after multiple doses than before dosing. CONCLUSION: These data indicate that the immune system was clearly activated. In addition, the non-clinical data could provide a basis for its efficacy evaluation in clinical trials.


Subject(s)
Antibodies, Monoclonal , B7-H1 Antigen , Macaca fascicularis , Animals , B7-H1 Antigen/antagonists & inhibitors , B7-H1 Antigen/immunology , B7-H1 Antigen/metabolism , Antibodies, Monoclonal/pharmacokinetics , Antibodies, Monoclonal/pharmacology , Antibodies, Monoclonal/administration & dosage , Antibodies, Monoclonal/immunology , Male , Female , T-Lymphocytes/immunology , T-Lymphocytes/drug effects , T-Lymphocytes/metabolism
5.
Vaccine ; 42(15): 3514-3521, 2024 May 31.
Article in English | MEDLINE | ID: mdl-38670845

ABSTRACT

Group A rotavirus (RVA) is the primary etiological agent of acute gastroenteritis (AGE) in children under 5 years of age. Despite the global implementation of vaccines, rotavirus infections continue to cause over 120,000 deaths annually, with a majority occurring in developing nations. Among infants, the P[8] rotavirus strain is the most prevalent and can be categorized into four distinct lineages. In this investigation, we expressed five VP4(aa26-476) proteins from different P[8] lineages of human rotavirus in E. coli and assessed their immunogenicity in rabbits. Among the different P[8] strains, the Wa-VP4 protein, derived from the MT025868.1 strain of the P[8]-1 lineage, exhibited successful purification in a highly homogeneous form and significantly elicited higher levels of neutralizing antibodies (nAbs) against both homologous and heterologous rotaviruses compared to other VP4 proteins derived from different P[8] lineages in rabbits. Furthermore, we assessed the immunogenicity of the Wa-VP4 protein in mice, pigs, and cynomolgus monkeys, observing that it induced robust production of nAbs in all animals. Interestingly, there was no significant difference between in nAb titers against homologous and heterologous rotaviruses in pigs and mankeys. Collectively, these findings suggest that the Wa-VP4* protein may serve as a potential candidate for a rotavirus vaccine.


Subject(s)
Antibodies, Neutralizing , Antibodies, Viral , Capsid Proteins , Macaca fascicularis , Rotavirus Infections , Rotavirus Vaccines , Rotavirus , Animals , Antibodies, Neutralizing/immunology , Antibodies, Neutralizing/blood , Rotavirus Vaccines/immunology , Rotavirus Vaccines/administration & dosage , Antibodies, Viral/immunology , Antibodies, Viral/blood , Swine , Rabbits , Mice , Rotavirus/immunology , Rotavirus/genetics , Capsid Proteins/immunology , Capsid Proteins/genetics , Rotavirus Infections/prevention & control , Rotavirus Infections/immunology , Female , Mice, Inbred BALB C , Humans , Immunogenicity, Vaccine , Viral Nonstructural Proteins/immunology , Viral Nonstructural Proteins/genetics
6.
Alzheimers Res Ther ; 16(1): 52, 2024 03 08.
Article in English | MEDLINE | ID: mdl-38459540

ABSTRACT

BACKGROUND: The key to the prevention and treatment of Alzheimer's disease (AD) is to be able to predict and diagnose AD at the preclinical or early stage, but the lack of a preclinical model of AD is the critical factor that causes this problem to remain unresolved. METHODS: We assessed 18 monkeys in vivo evaluation of pro-inflammatory cytokines and AD pathological biomarkers (n = 9 / type 2 diabetic mellitus (T2DM) group, age 20, fasting plasma glucose (FPG) ≥ 100 mg/dL, and n = 9 / negative control (NC) group, age 17, FPG < 100 mg/dL). Levels of pro-inflammatory cytokines and AD pathological biomarkers was measured by ELISA and Simoa Technology, respectively. 9 monkeys evaluated ex vivo for AD-like pathology (n = 6 / T2DM group, age 22.17, FPG ≥ 126 mg/dL, and n = 3 / NC group, age 14.67, FPG < 100 mg/dL). To evaluate the pathological features of AD in the brains of T2DM monkeys, we assessed the levels of Aß, phospho-tau, and neuroinflammation using immunohistochemistry, which further confirmed the deposition of Aß plaques by Bielschowsky's silver, Congo red, and Thioflavin S staining. Synaptic damage and neurodegeneration were assessed by immunofluorescence. RESULTS: We found not only increased levels of pro-inflammatory cytokines such as tumor necrosis factor-α (TNF-α) in peripheral blood (PB) and brain of T2DM monkeys but also changes in PB of AD pathological biomarkers such as decreased ß-amyloid (Aß) 42 and Aß40 levels. Most notably, we observed AD-like pathological features in the brain of T2DM monkeys, including Aß plaque deposition, p-tau from neuropil thread to pre-neurofibrillary tangles (NFTs), and even the appearance of extracellular NFT. Microglia were activated from a resting state to an amoeboid. Astrocytes showed marked hypertrophy and an increased number of cell bodies and protrusions. Finally, we observed impairment of the postsynaptic membrane but no neurodegeneration or neuronal death. CONCLUSIONS: Overall, T2DM monkeys showed elevated levels of peripheral and intracerebral inflammation, positive AD biomarkers in body fluids, and developing AD-like pathology in the brain, including Aß and tau pathology, glial cell activation, and partial synaptic damage, but no neuronal degeneration or death as compared to the healthy normal group. Hereby, we consider the T2DM monkeys with elevation of the peripheral pro-inflammatory factors and positive AD biomarkers can be potentially regarded as a preclinical AD model.


Subject(s)
Alzheimer Disease , Diabetes Mellitus, Type 2 , Animals , Alzheimer Disease/pathology , Macaca fascicularis/metabolism , Amyloid beta-Peptides/metabolism , Inflammation/pathology , Brain/metabolism , Biomarkers , Diabetes Mellitus, Type 2/complications , Cytokines/metabolism , tau Proteins/metabolism
7.
Neurochem Int ; 175: 105700, 2024 May.
Article in English | MEDLINE | ID: mdl-38417589

ABSTRACT

Currently, there is no effective treatment for Parkinson's disease (PD), and the regenerative treatment of neural stem cells (NSCs) is considered the most promising method. This study aimed to investigate the protective effect and mechanism of NSCs on neurons in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) induced cynomolgus monkey (Macaca fascicularis) model of PD. We first found that injecting NSCs into the subarachnoid space relieved motor dysfunction in PD cynomolgus monkeys, as well as reduced dopaminergic neuron loss and neuronal damage in the substantia nigra (SN) and striatum. Besides, NSCs decreased 17-estradiol (E2) level, an estrogen, in the cerebrospinal fluid (CSF) of PD cynomolgus monkeys, which shows NSCs may provide neuro-protection by controlling estrogen levels in the CSF. Furthermore, NSCs elevated proliferator-activated receptor gamma coactivator-1 alpha (PGC-1a), mitofusin 2 (MFN2), and optic atrophy 1 (OPA1) expression, three genes mediating mitochondrial biogenesis, in the SN and striatum of PD monkeys. In addition, NSCs suppress reactive oxygen species (ROS) production caused by MPTP, as well as mitochondrial autophagy, therefore preserving dopaminergic neurons. In summary, our findings show that NSCs may preserve dopaminergic and neuronal cells in an MPTP-induced PD cynomolgus monkey model. These protective benefits might be attributed to NSCs' ability of modulating estrogen balance, increasing mitochondrial biogenesis, and limiting oxidative stress and mitochondrial autophagy. These findings add to our understanding of the mechanism of NSC treatment and shed light on further clinical treatment options.


Subject(s)
MPTP Poisoning , Neural Stem Cells , Parkinson Disease , Animals , Humans , Macaca fascicularis/metabolism , MPTP Poisoning/therapy , MPTP Poisoning/metabolism , Neural Stem Cells/metabolism , Parkinson Disease/metabolism , Dopaminergic Neurons , Dopamine/metabolism , Estrogens/pharmacology
8.
Cell ; 187(3): 764-781.e14, 2024 Feb 01.
Article in English | MEDLINE | ID: mdl-38306985

ABSTRACT

Pregnancy induces dramatic metabolic changes in females; yet, the intricacies of this metabolic reprogramming remain poorly understood, especially in primates. Using cynomolgus monkeys, we constructed a comprehensive multi-tissue metabolome atlas, analyzing 273 samples from 23 maternal tissues during pregnancy. We discovered a decline in metabolic coupling between tissues as pregnancy progressed. Core metabolic pathways that were rewired during primate pregnancy included steroidogenesis, fatty acid metabolism, and arachidonic acid metabolism. Our atlas revealed 91 pregnancy-adaptive metabolites changing consistently across 23 tissues, whose roles we verified in human cell models and patient samples. Corticosterone and palmitoyl-carnitine regulated placental maturation and maternal tissue progenitors, respectively, with implications for maternal preeclampsia, diabetes, cardiac hypertrophy, and muscle and liver regeneration. Moreover, we found that corticosterone deficiency induced preeclampsia-like inflammation, indicating the atlas's potential clinical value. Overall, our multi-tissue metabolome atlas serves as a framework for elucidating the role of metabolic regulation in female health during pregnancy.


Subject(s)
Metabolomics , Pregnancy , Animals , Female , Humans , Pregnancy/metabolism , Corticosterone/metabolism , Metabolome/physiology , Placenta/metabolism , Pre-Eclampsia , Primates/metabolism
9.
J Med Primatol ; 53(1): e12690, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38345331

ABSTRACT

BACKGROUND: Cervical cancer is an abnormal growth of cervical tissue epithelial cells due to persistent human papilloma virus (HPV) infection. Cynomolgus monkeys (Macaca fascicularis) can be naturally and spontaneously infected with M. fascicularis Papillomavirus Type 3 (MfPV3), a virus that is phylogenetically closely related to human oncogenic HPV (HPV-16 and HPV-34), and therefore a potentially beneficial for modeling HPV disease. This study aims to evaluate the expression of the integrin alpha 6 (ITGα6) receptor in cynomolgus monkeys spontaneously infected with MfPV3, which this receptor also found in human infected with HPV. METHODS: The study was done on archived Formalin-fixed Paraffin-Embedded (FFPE) samples of uterine and cervix tissue of cynomolgus monkeys. Immunohistochemistry was also performed to quantify the expression levels of ITGα6. RESULTS: The results showed 80% of the samples positive Cervical Intraepithelial Neoplasia (CIN) and increased expression of ITGα6 significantly in Positive-MfPV3 group than negative-MfPV3 group. CONCLUSIONS: This indicated the potential of cynomolgus monkeys as a spontaneous oncogenesis model of PV infection type.


Subject(s)
Papillomavirus Infections , Uterine Cervical Neoplasms , Female , Humans , Animals , Cervix Uteri/metabolism , Macaca fascicularis , Papillomavirus Infections/veterinary , Uterine Cervical Neoplasms/chemistry , Uterine Cervical Neoplasms/metabolism , Papillomaviridae , Integrins/analysis
10.
Psychopharmacology (Berl) ; 241(2): 263-274, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37882812

ABSTRACT

RATIONALE: Previous studies in socially housed monkeys examining acquisition of cocaine self-administration under fixed-ratio (FR) schedules of reinforcement found that subordinate males and dominant females were more vulnerable than their counterparts. OBJECTIVES: The present studies extended these findings in two ways: (1) to replicate the earlier study, in which female monkeys were studied after a relatively short period of social housing (~ 3 months) using cocaine-naïve female monkeys (n = 9; 4 dominant and 5 subordinate) living in well-established social groups (~ 18 months); and (2) in male monkeys (n = 3/social rank), we studied cocaine acquisition under a concurrent schedule, with an alternative, non-drug reinforcer available. RESULTS: In contrast to earlier findings, subordinate female monkeys acquired cocaine reinforcement (i.e., > saline reinforcement) at significantly lower cocaine doses compared with dominant monkeys. In the socially housed males, no dominant monkey acquired a cocaine preference (i.e., > 80% cocaine choice) over food, while two of three subordinate monkeys acquired cocaine reinforcement. In monkeys that did not acquire, the conditions were changed to an FR schedule with only cocaine available and after acquisition, returned to the concurrent schedule. In all monkeys, high doses of cocaine were chosen over food reinforcement. CONCLUSIONS: The behavioral data in females suggests that duration of social enrichment and stress can differentially impact vulnerability to cocaine reinforcement. The findings in socially housed male monkeys, using concurrent food vs. cocaine choice schedules of reinforcement, confirmed earlier social-rank differences using an FR schedule and showed that vulnerability could be modified by exposure to cocaine.


Subject(s)
Cocaine , Housing , Male , Female , Animals , Reinforcement, Psychology , Food , Self Administration , Reinforcement Schedule , Dose-Response Relationship, Drug
11.
J Med Primatol ; 53(1): e12688, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38083989

ABSTRACT

BACKGROUND: The significantly increasing incidence of type 2 diabetes mellitus (T2DM) over the last few decades triggers the demands of T2DM animal models to explore the pathogenesis, prevention, and therapy of the disease. The altered lipid metabolism may play an important role in the pathogenesis and progression of T2DM. However, the characterization of molecular lipid species in fasting serum related to T2DM cynomolgus monkeys is still underrecognized. METHODS: Untargeted and targeted LC-mass spectrometry (MS)/MS-based lipidomics approaches were applied to characterize and compare the fasting serum lipidomic profiles of T2DM cynomolgus monkeys and the healthy controls. RESULTS: Multivariate analysis revealed that 196 and 64 lipid molecules differentially expressed in serum samples using untargeted and targeted lipidomics as the comparison between the disease group and healthy group, respectively. Furthermore, the comparative analysis of differential serum lipid metabolites obtained by untargeted and targeted lipidomics approaches, four common serum lipid species (phosphatidylcholine [18:0_22:4], lysophosphatidylcholine [14:0], phosphatidylethanolamine [PE] [16:1_18:2], and PE [18:0_22:4]) were identified as potential biomarkers and all of which were found to be downregulated. By analyzing the metabolic pathway, glycerophospholipid metabolism was associated with the pathogenesis of T2DM cynomolgus monkeys. CONCLUSION: The study found that four downregulated serum lipid species could serve as novel potential biomarkers of T2DM cynomolgus monkeys. Glycerophospholipid metabolism was filtered out as the potential therapeutic target pathway of T2DM progression. Our results showed that the identified biomarkers may offer a novel tool for tracking disease progression and response to therapeutic interventions.


Subject(s)
Diabetes Mellitus, Type 2 , Animals , Diabetes Mellitus, Type 2/diagnosis , Diabetes Mellitus, Type 2/metabolism , Lipidomics/methods , Macaca fascicularis , Biomarkers , Lipids , Glycerophospholipids
12.
Exp Anim ; 73(1): 73-82, 2024 Feb 14.
Article in English | MEDLINE | ID: mdl-37648485

ABSTRACT

Animals frequently eat less after a test-article treatment in nonclinical toxicological studies, and it can be difficult to distinguish test article-derived toxicities from secondary changes related to this reduced food intake. Therefore, in this study, we restricted the food intake of cynomolgus monkeys (Cambodian, male, n=2 or 3, 48 ± 3 months old) to 25% of the control for two weeks and evaluated the effects on toxicological parameters (general conditions, body weight, electrocardiography, urinalysis, hematology, blood chemistry, bone marrow analysis, pathological examination). After 2 weeks, the monkeys exhibited decreases in bone marrow erythropoiesis (e.g., decreases in reticulocytes and bone marrow erythrocytes), as well as glycogenesis induction (e.g., increase in aspartate aminotransferase (AST)) and malnutrition (e.g., decrease in triglyceride and systemic adipocytes atrophy). Additionally, histopathological analysis revealed granuloma and inflammatory cell infiltration in coronary fat, which had never been found in previous food restriction studies using other animal species. These findings will enable researchers to more accurately evaluate the toxicological risks of test articles that simultaneously induce food intake reduction.


Subject(s)
Eating , Food , Male , Animals , Macaca fascicularis , Body Weight , Electrocardiography
13.
Microbiol Spectr ; 11(6): e0199623, 2023 Dec 12.
Article in English | MEDLINE | ID: mdl-37938001

ABSTRACT

IMPORTANCE: Gut microbiota varies along the gastrointestinal (GI) tract and exerts profound influences on the host's physiology, immunity, and nutrition. Given that gut microbes interact with the host closely and the gastrointestinal function differed from the small to the large intestine, it is essential to characterize the gut biogeography of the microbial community. Here, we focused on intestinal bacteria and fungi in cynomolgus monkeys and determined their spatial distribution along the GI tract by performing 16S and 18S rRNA gene sequencing. The composition and function of bacterial and fungal communities differed significantly at different biogeographic sites of the intestine, and the site-specific correlations between intestinal bacteria and fungi were revealed. Thus, our studies characterized the gut biogeography of bacteria and fungi in NHPs and revealed their site-specific correlations along the GI tract.


Subject(s)
Microbiota , Mycobiome , Animals , Macaca fascicularis/genetics , Bacteria/genetics , Fungi/genetics , Intestines , RNA, Ribosomal, 16S/genetics , Gastrointestinal Tract/microbiology
14.
Front Cell Dev Biol ; 11: 1273723, 2023.
Article in English | MEDLINE | ID: mdl-38020919

ABSTRACT

Human umbilical cord mesenchymal stem cells (hUC-MSCs) are proposed for the treatment of acute lung injury and atopic dermatitis. To advance hUC-MSC entry into clinical trials, the effects of hUC-MSCs on the general toxicity, immune perturbation and toxicokinetic study of hUC-MSCs in cynomolgus monkeys were assessed. hUC-MSCs were administered to cynomolgus monkeys by intravenous infusion of 3.0 × 106 or 3.0 × 107cells/kg or by subcutaneous injection of 3.0 × 107cells/kg twice a week for 3 weeks followed by withdrawal and observation for 6 weeks. Toxicity was assessed by clinical observation, clinical pathology, ophthalmology, immunotoxicology and histopathology. Moreover, toxicokinetic study was performed using a validated qPCR method after the first and last dose. After 3rd or 4th dosing, one or three the monkeys in the intravenous high-dose group exhibited transient coma, which was eliminated by slow-speed infusion after 5th or 6th dosing. In all dose groups, hUC-MSCs significantly increased NEUT levels and decreased LYMPH and CD3+ levels, which are related to the immunosuppressive effect of hUC-MSCs. Subcutaneous nodules and granulomatous foci were found at the site of administration in all monkeys in the subcutaneous injection group. Other than above abnormalities, no obvious systemic toxicity was observed in any group. The hUC-MSCs was detectable in blood only within 1 h after intravenous and subcutaneous administration. The present study declared the preliminary safety of hUC-MSCs, but close monitoring of hUC-MSCs for adverse effects, such as coma induced by intravenous infusion, is warranted in future clinical trials.

15.
Magn Reson Imaging ; 104: 121-128, 2023 Oct 14.
Article in English | MEDLINE | ID: mdl-37844784

ABSTRACT

BACKGROUND: The application of functional MRI to non-human primates after stroke has not yet been undertaken. This is the first study to explore the functional connectivity changes in non-human primate models during acute stages after stroke onset. METHODS: Nineteen healthy male cynomolgus monkeys (4-5 years) were used in this study. The photothrombosis model was employed to induce focal ischemic stroke in F1 area in the monkey's left hemisphere. T1-weighted structural images and resting-state functional magnetic resonance imaging (rs-fMRI) of all subjects were obtained using a 3.0 Tesla MRI system on the third day following stroke. Based on the D99 atlas, the structural and functional changes of bilateral F1 areas in monkeys were analyzed using region of interest (ROI)-based functional connectivity (FC). The bilateral F1 areas were selected as the seed regions due to their crucial role in motor control and their potential to unveil the comprehensive functional reorganization of the motor system at a whole-brain level following stroke. RESULTS: Ischemic lesions were observed after the stroke, with larger lesion volumes associated with poorer neurological dysfunction. Compared with baseline condition, left area F1 demonstrated decreased FC with the left cerebellum, left ventral pons and left 5_(PEa). When the ROI was located in the right area F1, ischemic monkeys showed decreased FC in left ventral pons, left cerebellum, left primary visual cortex and left 5_(PEa), accompanied by increased FC in the right orbitofrontal cortex. Importantly, the degree of altered FC between left area F1 and left cerebellum was associated with upper limb tone. CONCLUSIONS: These results provide valuable insights into the early-stage functional connectivity changes in the F1 areas of monkeys under ischemic conditions, highlighting the potential involvement of specific brain regions in the pathophysiology of ischemic injury.

16.
Toxicol Pathol ; 51(5): 264-277, 2023 07.
Article in English | MEDLINE | ID: mdl-37702042

ABSTRACT

During toxicology studies, fasting animals prior to clinical pathology blood collection is believed to reduce variability in some clinical chemistry analytes. However, fasting adds stress to animals that are already stressed from the administration of potentially toxic doses of the test article. The purpose of this study was to assess the impacts of different fasting durations on cynomolgus monkeys' welfare during toxicology studies. To this end, we assessed the cynomolgus monkeys traditional and ancillary clinical pathology endpoints at different fasting times. We showed that most clinical pathology endpoints were largely comparable between different fasting times suggesting that cynomolgus monkeys could be fasted for as little as 4 hours for toxicology studies, as longer fasting times (up to 20 hours) resulted in stress, dehydration, and significant decreases in blood glucose- changes that impacts animal welfare. Shorter fasting times were associated with higher triglycerides variability among individual animals. Therefore, we propose that shorter fasting time (i.e., 4 hours) should be adequate for most toxicology studies except when: (1) parameters that could be affected by non-fasting conditions are important for safety and pharmacodynamic assessments (i.e., glucose and lipids) and (2) fasting would be needed for the bioavailability of an orally administered test article.


Subject(s)
Animal Welfare , Fasting , Animals , Macaca fascicularis
17.
J Pharmacol Toxicol Methods ; 124: 107471, 2023.
Article in English | MEDLINE | ID: mdl-37690768

ABSTRACT

Computer-based analysis of long-term electrocardiogram (ECG) monitoring in animal models represents a cost and time-consuming process as manual supervision is often performed to ensure accuracy in arrhythmia detection. Here, we investigate the performance and feasibility of three ECG interval analysis approaches A) attribute-based, B) attribute- and pattern recognition-based and C) combined approach with additional manual beat-to-beat analysis (gold standard) with regard to subsequent detection of ventricular arrhythmias (VA) and time consumption. ECG analysis was performed on ECG raw data of 5 male cynomolgus monkeys (1000 h total, 2 × 100 h per animal). Both approaches A and B overestimated the total number of arrhythmias compared to gold standard (+8.92% vs. +6.47%). With regard to correct classification of detected VA event numbers (accelerated idioventricular rhythms [AIVR], ventricular tachycardia [VT]) approach B revealed higher accuracy compared to approach A. Importantly, VA burden (% of time) was precisely depicted when using approach B (-1.13%), whereas approach A resulted in relevant undersensing of ventricular arrhythmias (-11.76%). Of note, approach A and B could be performed with significant less working time (-95% and - 91% working time) compared to gold standard. In sum, we show that a combination of attribute-based and pattern recognition analysis (approach B) can reproduce VA burden with acceptable accuracy without using manual supervision. Since this approach allowed analyses to be performed with distinct time saving it represents a valuable approach for cost and time efficient analysis of large preclinical ECG datasets.


Subject(s)
Arrhythmias, Cardiac , Electrocardiography , Animals , Male , Macaca fascicularis , Feasibility Studies , Arrhythmias, Cardiac/diagnosis , Computers
18.
J Med Primatol ; 52(6): 361-368, 2023 12.
Article in English | MEDLINE | ID: mdl-37525379

ABSTRACT

BACKGROUND: Klebsiella pneumoniae infection in nonhuman primates has been widely reported and causes significant morbidity and mortality. Animal deaths occur routinely at the Primate Research Center of IPB University. The results of necropsy and culture suggested a K. pneumoniae infection. METHODS: A mass health assessment of Cynomolgus monkeys (n = 429) was carried out by physical examination and molecular targeting K. pneumoniae (n = 96), family of Coronaviridae (n = 148) and Paramyxoviridae (n = 148). RESULTS: A total of 49.18% of the animals had clinical symptoms of respiratory disorders, abscesses, trauma, and others. PCR results indicated that 28.57% were positive for K. pneumoniae with 35.71% mortality, while all samples were negative for both virus families. CONCLUSIONS: There have been outbreaks caused by K. pneumoniae and/or K. pneumoniae subsp. pneumoniae. This disease is chronic, infects all of the buildings, and no tendency for disease transmission according to gender and age class.


Subject(s)
Klebsiella Infections , Klebsiella pneumoniae , Humans , Animals , Macaca fascicularis , Indonesia/epidemiology , Primates , Disease Outbreaks , Klebsiella Infections/epidemiology , Klebsiella Infections/veterinary , Klebsiella Infections/diagnosis
19.
J Control Release ; 359: 384-399, 2023 07.
Article in English | MEDLINE | ID: mdl-37315691

ABSTRACT

The nose-to-brain (N2B) pathway has garnered attention because it transports drugs directly into the brain. Although recent studies have suggested the necessity of selective drug administration to the olfactory region for effective N2B drug delivery, the importance of delivering the formulation to the olfactory region and the detailed pathway involved in drug uptake in primates brain remain unclear. Here, we developed a combination system for N2B drug delivery comprising a proprietary mucoadhesive powder formulation and a dedicated nasal device (N2B-system) and evaluated it for nasal drug delivery to the brain in cynomolgus monkeys. This N2B-system demonstrated a much greater formulation distribution ratio in the olfactory region in an in vitro experiment using a 3D-printed nasal cast and in vivo experiment using cynomolgus monkeys, as compared to that in other nasal drug delivery systems that comprise of a proprietary nasal powder device developed for nasal absorption and vaccination and a commercially available liquid spray. Additionally, Texas Red-labeled dextran (TR-DEX, 3 kDa) was administered using the N2B-system to estimate the drug transition pathway from the nasal cavity to the brain. TR-DEX preferentially localized to the olfactory epithelium and reached the olfactory bulb through the cribriform foramina. Moreover, domperidone, a model drug with poor blood-brain barrier permeability, was administered to assess the brain uptake of medicine after olfactory region-selective administration by using the N2B-system. Domperidone accumulation in the brain was evaluated using positron emission tomography with intravenously administered [18F]fallypride based on competitive inhibition of the dopamine D2 receptor (D2R). Compared to other systems, the N2B-system significantly increased D2R occupancy and domperidone uptake in the D2R-expressing brain regions. The current study reveals that the olfactory region of the nasal cavity is a suitable target for efficient nasal drug delivery to the brain in cynomolgus monkeys. Thus, the N2B-system, which targets the olfactory region, provides an efficient approach for developing effective technology for nasal drug delivery to the brain in humans.


Subject(s)
Brain , Domperidone , Humans , Animals , Administration, Intranasal , Powders , Domperidone/metabolism , Domperidone/pharmacology , Macaca fascicularis , Brain/metabolism , Drug Delivery Systems/methods , Pharmaceutical Preparations/metabolism
20.
Neurobiol Dis ; 184: 106197, 2023 08.
Article in English | MEDLINE | ID: mdl-37328037

ABSTRACT

Poly(PR) is a dipeptide repeat protein comprising proline and arginine residues. It is one of the translational product of expanded G4C2 repeats in the C9orf72 gene, and its accumulation is contributing to the neuropathogenesis of C9orf72-associated amyotrophic lateral sclerosis and/or frontotemporal dementia (C9-ALS/FTD). In this study, we demonstrate that poly(PR) protein alone is sufficient to induce neurodegeneration related to ALS/FTD in cynomolgus monkeys. By delivering poly(PR) via AAV, we observed that the PR proteins were located within the nucleus of infected cells. The expression of (PR)50 protein, consisting of 50 PR repeats, led to increased loss of cortical neurons, cytoplasmic lipofuscin, and gliosis in the brain, as well as demyelination and loss of ChAT positive neurons in the spinal cord of monkeys. While, these pathologies were not observed in monkeys expressing (PR)5, a protein comprising only 5 PR repeats. Furthermore, the (PR)50-expressing monkeys exhibited progressive motor deficits, cognitive impairment, muscle atrophy, and abnormal electromyography (EMG) potentials, which closely resemble clinical symptoms seen in C9-ALS/FTD patients. By longitudinally tracking these monkeys, we found that changes in cystatin C and chitinase-1 (CHIT1) levels in the cerebrospinal fluid (CSF) corresponded to the phenotypic progression of (PR)50-induced disease. Proteomic analysis revealed that the major clusters of dysregulated proteins were nuclear-localized, and downregulation of the MECP2 protein was implicated in the toxic process of poly(PR). This research indicates that poly(PR) expression alone induces neurodegeneration and core phenotypes associated with C9-ALS/FTD in monkeys, which may provide insights into the mechanisms of disease pathogenesis.


Subject(s)
Amyotrophic Lateral Sclerosis , Frontotemporal Dementia , Animals , Frontotemporal Dementia/genetics , Frontotemporal Dementia/pathology , Amyotrophic Lateral Sclerosis/metabolism , Macaca fascicularis/genetics , Macaca fascicularis/metabolism , C9orf72 Protein/genetics , C9orf72 Protein/metabolism , Proteomics , Proteins/genetics , DNA Repeat Expansion , Dipeptides/genetics
SELECTION OF CITATIONS
SEARCH DETAIL