Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 57
Filter
Add more filters








Publication year range
1.
Andrology ; 2024 Oct 07.
Article in English | MEDLINE | ID: mdl-39375288

ABSTRACT

BACKGROUND: Histological analysis of the testicular sections is paramount in infertility research but tedious and often requires months of training and practice. OBJECTIVES: Establish an expeditious histopathological analysis of mutant mice testicular sections stained with commonly available hematoxylin and eosin (H&E) via enhanced deep learning model MATERIALS AND METHODS: Automated segmentation and cellular composition analysis on the testes of six mouse reproductive mutants of key reproductive gene family, DAZ and PUMILIO gene family via H&E-stained mouse testicular sections. RESULTS: We improved the deep learning model with human interaction to achieve better pixel accuracy and reduced annotation time for histologists; revealed distinctive cell composition features consistent with previously published phenotypes for four mutants and novel spermatogenic defects in two newly generated mutants; established a fast spermatogenic defect detection protocol for quantitative and qualitative assessment of testicular defects within 2.5-3 h, requiring as few as 8 H&E-stained testis sections; uncovered novel defects in AcDKO and a meiotic arrest defect in HDBKO, supporting the synergistic interaction of Sertoli Pum1 and Pum2 as well as redundant meiotic function of Dazl and Boule. DISCUSSION: Our testicular compositional analysis not only could reveal spermatogenic defects from staged seminiferous tubules but also from unstaged seminiferous tubule sections. CONCLUSION: Our SCSD-Net model offers a rapid protocol for detecting reproductive defects from H&E-stained testicular sections in as few as 3 h, providing both quantitative and qualitative assessments of spermatogenic defects. Our analysis uncovered evidence supporting the synergistic interaction of Sertoli PUM1 and PUM2 in maintaining average testis size, and redundant roles of DAZ family proteins DAZL and BOULE in meiosis.

2.
Dev Biol ; 514: 28-36, 2024 Oct.
Article in English | MEDLINE | ID: mdl-38880277

ABSTRACT

Primordial germ cells (PGCs) are the precursors of sperms and oocytes. Proper development of PGCs is crucial for the survival of the species. In many organisms, factors responsible for PGC development are synthesized during early oogenesis and assembled into the germ plasm. During early embryonic development, germ plasm is inherited by a few cells, leading to the formation of PGCs. While germline development has been extensively studied, how components of the germ plasm regulate PGC development is not fully understood. Here, we report that Dzip1 is dynamically expressed in vertebrate germline and is a novel component of the germ plasm in Xenopus and zebrafish. Knockdown of Dzip1 impairs PGC development in Xenopus embryos. At the molecular level, Dzip1 physically interacts with Dazl, an evolutionarily conserved RNA-binding protein that plays a multifaced role during germline development. We further showed that the sequence between amino acid residues 282 and 550 of Dzip1 is responsible for binding to Dazl. Disruption of the binding between Dzip1 and Dazl leads to defective PGC development. Taken together, our results presented here demonstrate that Dzip1 is dynamically expressed in the vertebrate germline and plays a novel function during Xenopus PGC development.


Subject(s)
Adaptor Proteins, Signal Transducing , Gene Expression Regulation, Developmental , Germ Cells , RNA-Binding Proteins , Xenopus Proteins , Xenopus laevis , Animals , Female , Germ Cells/metabolism , Germ Cells/cytology , Oogenesis/genetics , RNA-Binding Proteins/metabolism , RNA-Binding Proteins/genetics , Xenopus laevis/embryology , Xenopus laevis/metabolism , Xenopus laevis/genetics , Xenopus Proteins/metabolism , Xenopus Proteins/genetics , Zebrafish/embryology , Zebrafish/genetics , Zebrafish/metabolism , Zebrafish Proteins/metabolism , Zebrafish Proteins/genetics , Adaptor Proteins, Signal Transducing/metabolism
3.
Gene ; 916: 148449, 2024 Jul 20.
Article in English | MEDLINE | ID: mdl-38588931

ABSTRACT

Germline-specific genes are usually activated in cancer cells and drive cancer progression; such genes are called cancer-germline or cancer-testis genes. The RNA-binding protein DAZL is predominantly expressed in germ cells and plays a role in gametogenesis as a translational activator or repressor. However, its expression and role in non-small cell lung cancer (NSCLC) are unknown. Here, mining of RNA-sequencing data from public resources and immunohistochemical analysis of tissue microarrays showed that DAZL was expressed exclusively in testis among normal human tissues but ectopically expressed in NSCLC tissues. Testis and NSCLC cells expressed the shorter and longer transcript variants of the DAZL gene, respectively. Overexpression of the longer DAZL transcript promoted tumor growth in a mouse xenograft model. Silencing of DAZL suppressed cell proliferation, colony formation, migration, invasion, and cisplatin resistance in vitro and tumor growth in vivo. Quantitative proteomic analysis based on tandem mass tag and Western blot analysis showed that DAZL upregulated the expression of JAK2 and MCM8. RNA-binding protein immunoprecipitation assays showed that DAZL bound to the mRNA of JAK2 and MCM8. The JAK2 inhibitor fedratinib attenuated the oncogenic outcomes induced by DAZL overexpression, whereas silencing MCM8 counteracted the effects of DAZL overexpression on cisplatin-damaged DNA synthesis and half-maximal inhibitory concentration of cisplatin. In conclusion, DAZL was identified as a novel cancer-germline gene that enhances the translation of JAK2 and MCM8 to promote NSCLC progression and resistance to cisplatin, respectively. These findings suggest that DAZL is a potential therapeutic target in NSCLC.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Cisplatin , Drug Resistance, Neoplasm , Gene Expression Regulation, Neoplastic , Janus Kinase 2 , Lung Neoplasms , Minichromosome Maintenance Proteins , RNA-Binding Proteins , Animals , Female , Humans , Male , Mice , Carcinoma, Non-Small-Cell Lung/genetics , Carcinoma, Non-Small-Cell Lung/drug therapy , Carcinoma, Non-Small-Cell Lung/pathology , Carcinoma, Non-Small-Cell Lung/metabolism , Cell Line, Tumor , Cell Proliferation/drug effects , Cisplatin/pharmacology , Disease Progression , Drug Resistance, Neoplasm/genetics , Janus Kinase 2/genetics , Janus Kinase 2/metabolism , Lung Neoplasms/genetics , Lung Neoplasms/drug therapy , Lung Neoplasms/pathology , Lung Neoplasms/metabolism , Mice, Inbred BALB C , Mice, Nude , Minichromosome Maintenance Proteins/genetics , Minichromosome Maintenance Proteins/metabolism , RNA-Binding Proteins/genetics , RNA-Binding Proteins/metabolism , Up-Regulation , Xenograft Model Antitumor Assays
4.
Theriogenology ; 222: 22-30, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38615433

ABSTRACT

Primordial germ cells (PGCs) are the precursors of germ cells and play a crucial role in germline transmission. In chickens, PGCs can be cultured in vitro while maintaining their germline stem cell characteristics. The Deleted in Azoospermia-Like (DAZL) gene, which is highly expressed in PGCs, is essential for germ cell development. Here, through gene knockout experiments, we discovered that the loss of DAZL expression in chicken PGCs led to decreased proliferation and survival. By next employed techniques such as RIP-seq (RNA Binding Protein Immunoprecipitation) and Co-IP-MS/MS (Co-immunoprecipitation Mass Spectrometry), we identified genes directly regulated by DAZL or cooperating with DAZL at the transcriptomic and proteomic levels. DAZL was found to control genes related to germline development, pluripotency, and cell proliferation in PGCs. Additionally, we observed a significant overlap between RNAs and proteins that interact with both DAZL and DDX4, indicating their cooperation in the gene regulation network in chicken PGCs. Our research provides valuable insights into the function of the DAZL gene in germline cells.


Subject(s)
Cell Proliferation , Chickens , DEAD-box RNA Helicases , Germ Cells , RNA-Binding Proteins , Animals , RNA-Binding Proteins/metabolism , RNA-Binding Proteins/genetics , Chickens/genetics , Germ Cells/metabolism , DEAD-box RNA Helicases/genetics , DEAD-box RNA Helicases/metabolism , Gene Expression Regulation , Gene Expression Regulation, Developmental
5.
Cells ; 12(21)2023 11 06.
Article in English | MEDLINE | ID: mdl-37947660

ABSTRACT

Spermatogonial stem cell (SSC) transplantation into the testis of a germ cell (GC)-depleted surrogate allows transmission of donor genotype via donor-derived sperm produced by the recipient. Transplantation of gene-edited SSCs provides an approach to propagate gene-edited large animal models. DAZL is a conserved RNA-binding protein important for GC development, and DAZL knockout (KO) causes defects in GC commitment and differentiation. We characterized DAZL-KO pigs as SSC transplantation recipients. While there were GCs in 1-week-old (wko) KO, complete GC depletion was observed by 10 wko. Donor GCs were transplanted into 18 DAZL-KO recipients at 10-13 wko. At sexual maturity, semen and testes were evaluated for transplantation efficiency and spermatogenesis. Approximately 22% of recipient seminiferous tubules contained GCs, including elongated spermatids and proliferating spermatogonia. The ejaculate of 89% of recipients contained sperm, exclusively from donor origin. However, sperm concentration was lower than the wild-type range. Testicular protein expression and serum hormonal levels were comparable between DAZL-KO and wild-type. Intratesticular testosterone and Leydig cell volume were increased, and Leydig cell number decreased in transplanted DAZL-KO testis compared to wild-type. In summary, DAZL-KO pigs support donor-derived spermatogenesis following SSC transplantation, but low spermatogenic efficiency currently limits their use for the production of offspring.


Subject(s)
Semen , Spermatogonia , Male , Animals , Swine , Spermatogonia/metabolism , Testis , Spermatozoa , Stem Cell Transplantation
6.
Anim Biotechnol ; 34(8): 4000-4014, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37671929

ABSTRACT

Deleted in azoospermia-like (DAZL) is essential for mammalian testicular function and spermatogenesis. To explore the molecular characterization, expression patterns, and cellular localization of the DAZL in Hezuo pig testes, testicular tissue was isolated from Hezuo pig at five development stages including 30 days old (30 d), 90 days old (90 d), 120 days old (120 d), 180 days old (180 d), and 240 days old (240 d). DAZL cDNA was first cloned using the RT-PCR method, and its molecular characterization was analyzed using relevant bioinformatics software. Subsequently, the expression patterns and cellular localization of DAZL were evaluated using quantitative real-time PCR (qRT-PCR), Western blot, and immunohistochemistry. The cloning and sequence analysis showed that the Hezuo pig DAZL cDNA fragment contained 888 bp open reading frame (ORF) capable of encoding 295 amino acid residues and exhibited high identities with some other mammals. The qRT-PCR and Western blot results indicated that DAZL was specifically expressed in Hezuo pig testes, and DAZL levels of both mRNA and protein were expressed at all five reproductive stages of Hezuo pig testes, with extremely significant higher expression levels in 90 d, 120 d, 180 d, and 240 d than those in 30 d (p < 0.01). Additionally, immunohistochemistry results revealed that DAZL protein was mainly localized in gonocytes at 30 d testes, primary spermatocytes, and spermatozoon at other developmental stages, and Leydig cells throughout five development stages. Together, these results suggested that DAZL may play an important role by regulating the proliferation or differentiation of gonocytes, development of primary spermatocytes and spermatozoon, and functional maintenance of Leydig cells in testicular development and spermatogenesis of Hezuo pig. Nevertheless, the specific regulatory mechanisms underlying these phenomena still requires further investigated and verified.


Subject(s)
Spermatogenesis , Testis , Male , Animals , Swine/genetics , DNA, Complementary/genetics , DNA, Complementary/metabolism , Testis/physiology , Spermatogenesis/genetics , Spermatozoa , Cloning, Molecular , Mammals/genetics
7.
Biotech Histochem ; 98(7): 523-533, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37655584

ABSTRACT

Although adriamycin (ADR) is used to treat many cancers, it can be toxic to healthy organs including the testis. We investigated the effects of ADR on pluripotency in rat testis. Testicular damage was induced by either cumulative or single dose single dose administration of ADR in Wistar albino rats. Rats were divided randomly into three groups: untreated control, cumulative dose ADR group (2 mg/kg ADR every three days for 30 days) and single dose ADR group (15 mg/kg, single dose ADR). Testicular damage was evaluated and seminiferous tubule diameters were measured using light microscopy. Expression levels of Oct4, Sox2, Klf4, c-Myc, Utf1 and Dazl were assessed by immunohistochemistry and real time PCR. Serum testosterone levels were measured using ELISA assay. Histopathologic scores were lower and mean seminiferous tubule diameters were less compared to the ADR groups. Oct4, Sox2, Klf4 and Utf1 expressions were decreased significantly in spermatogenic cells of both cumulative and single dose ADR groups compared to the control group. We found that c-Myc expression in spermatogenic and Leydig cells were increased significantly in both ADR groups compared to the control group. Dazl expression was decreased in the cumulative adriamycin group compared to the control group, but increased in the single dose ADR group compared to both the control and cumulative ADR groups. Serum testosterone levels were decreased in both ADR groups compared to the control group. Our findings suggest that ADR is detrimental to regulation and maintenance of pluripotency in rat testis.


Subject(s)
Doxorubicin , Testis , Male , Rats , Animals , Doxorubicin/pharmacology , Rats, Wistar , Spermatogenesis , Testosterone/pharmacology , Testosterone/metabolism , Cell Proliferation
8.
Front Vet Sci ; 10: 1205064, 2023.
Article in English | MEDLINE | ID: mdl-37396999

ABSTRACT

Chronic asymptomatic idiopathic orchitis (CAO) is an important but neglected cause of acquired infertility due to non-obstructive azoospermia (NOA) in male dogs. The similarity of the pathophysiology in infertile dogs and men supports the dog's suitability as a possible animal model for studying human diseases causing disruption of spermatogenesis and evaluating the role of spermatogonial stem cells (SSCs) as a new therapeutic approach to restore or recover fertility in cases of CAO. To investigate the survival of resilient stem cells, the expression of the protein gene product (PGP9.5), deleted in azoospermia like (DAZL), foxo transcription factor 1 (FOXO1) and tyrosine-kinase receptor (C-Kit) were evaluated in healthy and CAO-affected canine testes. Our data confirmed the presence of all investigated germ cell markers at mRNA and protein levels. In addition, we postulate a specific expression pattern of FOXO1 and C-Kit in undifferentiated and differentiating spermatogonia, respectively, whereas DAZL and PGP9.5 expressions were confirmed in the entire spermatogonial population. Furthermore, this is the first study revealing a significant reduction of PGP9.5, DAZL, and FOXO1 in CAO at protein and/or gene expression level indicating a severe disruption of spermatogenesis. This means that chronic asymptomatic inflammatory changes in CAO testis are accompanied by a significant loss of SSCs. Notwithstanding, our data confirm the survival of putative stem cells with the potential of self-renewal and differentiation and lay the groundwork for further research into stem cell-based therapeutic options to reinitialize spermatogenesis in canine CAO-affected patients.

9.
Cells ; 12(8)2023 04 18.
Article in English | MEDLINE | ID: mdl-37190092

ABSTRACT

The presence of stem cells has been previously described in human precancerous and malignant cervical cultures. Previous studies have shown a direct interplay of the stem cell niche, which is present in practically every tissue with the extracellular matrix. In the present study, we sought to determine the expression of stemness markers in cytological specimens collected from the ectocervix among women with cervical insufficiency during the second trimester of pregnancy and women with normal cervical length. A prospective cohort of 59 women was enrolled of whom 41 were diagnosed with cervical insufficiency. The expression of OCT-4 and NANOG was higher in the cervical insufficiency group compared to the control group (-5.03 (-6.27, -3.72) vs. -5.81 (-7.67, -5.02) p = 0.040 for OCT4) and (-7.47 (-8.78, -6.27) vs. -8.5 (-10.75, -7.14), p = 0.035 for NANOG. Differences in the DAZL gene were not significantly different (5.94 (4.82, 7.14) vs. 6.98 (5.87, 7.43) p = 0.097). Pearson correlation analysis indicated the existence of a moderate correlation of OCT-4 and Nanog with cervical length. Considering this information, the enhanced activity of stemness biomarkers among pregnant women diagnosed with cervical insufficiency may be predisposed to cervical insufficiency, and its predictive accuracy remains to be noted in larger population sizes.


Subject(s)
Cervix Uteri , Vaginal Smears , Humans , Pregnancy , Female , Prospective Studies , Cervix Uteri/metabolism , Genes, Homeobox
10.
Biol Reprod ; 108(2): 218-228, 2023 02 13.
Article in English | MEDLINE | ID: mdl-36308428

ABSTRACT

Olive flounder Paralichthys olivaceus is an important cultured marine fish. We found that the meiosis marker scp3 and its intrinsic regulator dazl were mainly expressed in the gonads. During the ovarian differentiation, scp3 signal was detected first in pre-meiotic oogonia at 60-mm total length (TL) and then in primary oocytes at 80- and 100-mm TL, with a sharp increase in scp3 expression level observed at 80- and 100-mm TL. Dazl signal was detected in primordial germ cells at 30-mm TL and oogonia at 60-mm TL, but no significant change of expression was observed. During the testicular differentiation period, scp3 and dazl expression remained at low levels, and scp3 signal was weakly detected in spermatogonia at 80-mm TL, whereas dazl signal was not found. During the ovarian developmental stages, the highest expression levels of scp3 and dazl were detected at stages I and II, respectively, and strong signals of scp3 and dazl were detected in primary oocytes and oocytes at phases I and II. In the testis, the high expression of scp3 and dazl was detected at stages II-IV and II-III, respectively. Scp3 signal was weakly observed in pre-meiotic spermatogonia at stages I and II and strongly detected in primary spermatocytes at stages III-V. Dazl was detected in the nuclei of spermatogonia and spermatids at stages II-IV. Furthermore, scp3 expression in the ovary could be promoted by 17α-ethynylestradiol and tamoxifen, whereas dazl expression could be downregulated by tamoxifen.


Subject(s)
Flounder , Male , Female , Animals , Flounder/genetics , Flounder/metabolism , Testis/metabolism , Ovary/metabolism , Spermatogonia/metabolism , Tamoxifen/pharmacology
11.
Int J Mol Sci ; 23(20)2022 Oct 20.
Article in English | MEDLINE | ID: mdl-36293427

ABSTRACT

Meiosis is the unique division of germ cells resulting in the recombination of the maternal and paternal genomes and the production of haploid gametes. In mammals, it begins during the fetal life in females and during puberty in males. In both cases, entering meiosis requires a timely switch from the mitotic to the meiotic cell cycle and the transition from a potential pluripotent status to meiotic differentiation. Revealing the molecular mechanisms underlying these interrelated processes represents the essence in understanding the beginning of meiosis. Meiosis facilitates diversity across individuals and acts as a fundamental driver of evolution. Major differences between sexes and among species complicate the understanding of how meiosis begins. Basic meiotic research is further hindered by a current lack of meiotic cell lines. This has been recently partly overcome with the use of primordial-germ-cell-like cells (PGCLCs) generated from pluripotent stem cells. Much of what we know about this process depends on data from model organisms, namely, the mouse; in mice, the process, however, appears to differ in many aspects from that in humans. Identifying the mechanisms and molecules controlling germ cells to enter meiosis has represented and still represents a major challenge for reproductive medicine. In fact, the proper execution of meiosis is essential for fertility, for maintaining the integrity of the genome, and for ensuring the normal development of the offspring. The main clinical consequences of meiotic defects are infertility and, probably, increased susceptibility to some types of germ-cell tumors. In the present work, we report and discuss data mainly concerning the beginning of meiosis in mammalian female germ cells, referring to such process in males only when pertinent. After a brief account of this process in mice and humans and an historical chronicle of the major hypotheses and progress in this topic, the most recent results are reviewed and discussed.


Subject(s)
Meiosis , Pluripotent Stem Cells , Humans , Male , Female , Mice , Animals , Meiosis/genetics , Germ Cells/metabolism , Cell Differentiation , Mammals/genetics
12.
Int J Mol Sci ; 23(15)2022 Aug 05.
Article in English | MEDLINE | ID: mdl-35955852

ABSTRACT

Studies indicate that phthalates are endocrine disruptors affecting reproductive health. One of the most commonly used phthalates, di-n-butyl phthalate (DBP), has been linked with adverse reproductive health outcomes in men, but the mechanisms behind these effects are still poorly understood. Here, adult male mice were orally exposed to DBP (10 or 100 mg/kg/day) for five weeks, and the testis and adrenal glands were collected one week after the last dose, to examine more persistent effects. Quantification of testosterone, androstenedione, progesterone and corticosterone concentrations by liquid chromatography-mass spectrometry showed that testicular testosterone was significantly decreased in both DBP treatment groups, whereas the other steroids were not significantly altered. Western blot analysis of testis revealed that DBP exposure increased the levels of the steroidogenic enzymes CYP11A1, HSD3ß2, and CYP17A1, the oxidative stress marker nitrotyrosine, and the luteinizing hormone receptor (LHR). The analysis further demonstrated increased levels of the germ cell marker DAZL, the Sertoli cell markers vimentin and SOX9, and the Leydig cell marker SULT1E1. Overall, the present work provides more mechanistic understanding of how adult DBP exposure can induce effects on the male reproductive system by affecting several key cells and proteins important for testosterone biosynthesis and spermatogenesis, and for the first time shows that these effects persist at least one week after the last dose. It also demonstrates impairment of testosterone biosynthesis at a lower dose than previously reported.


Subject(s)
Dibutyl Phthalate , Testis , Animals , Dibutyl Phthalate/metabolism , Humans , Leydig Cells/metabolism , Male , Mice , Spermatogenesis , Testis/metabolism , Testosterone/metabolism
13.
J Anim Sci Biotechnol ; 13(1): 64, 2022 Jun 06.
Article in English | MEDLINE | ID: mdl-35659766

ABSTRACT

BACKGROUND: Germ cell mitotic arrest is conserved in many vertebrates, including birds, although the time of entry or exit into quiescence phase differs. Mitotic arrest is essential for the normal differentiation of male germ cells into spermatogonia and accompanies epigenetic reprogramming and meiosis inhibition from embryonic development to post-hatch. However, mitotic arrest was not well studied in chickens because of the difficulty in obtaining pure germ cells from relevant developmental stage. RESULTS: We performed single-cell RNA sequencing to investigate transcriptional dynamics of male germ cells during mitotic arrest in DAZL::GFP chickens. Using differentially expressed gene analysis and K-means clustering to analyze cells at different developmental stages (E12, E16, and hatch), we found that metabolic and signaling pathways were regulated, and that the epigenome was reprogrammed during mitotic arrest. In particular, we found that histone H3K9 and H3K14 acetylation (by HDAC2) and DNA demethylation (by DNMT3B and HELLS) led to a transcriptionally permissive chromatin state. Furthermore, we found that global DNA demethylation occurred gradually after the onset of mitotic arrest, indicating that the epigenetic-reprogramming schedule of the chicken genome differs from that of the mammalian genome. DNA hypomethylation persisted after hatching, and methylation was slowly re-established 3 weeks later. CONCLUSIONS: We found a unique epigenetic-reprogramming schedule of mitotic-arrested chicken prospermatogonia and prolonged hypomethylation after hatching. This will provide a foundation for understanding the process of germ-cell epigenetic regulation in several species for which this process is not clearly described. Our findings on the biological processes related to sex-specific differentiation of prospermatogonia could help studying germline development in vitro more elaborately.

14.
Comput Struct Biotechnol J ; 20: 1654-1669, 2022.
Article in English | MEDLINE | ID: mdl-35465157

ABSTRACT

Avian germ cells can be distinguished by certain characteristics during development. On the basis of these characteristics, germ cells can be used for germline transmission. However, the dynamic transcriptional landscape of avian germ cells during development is unknown. Here, we used a novel germ-cell-tracing method to monitor and isolate chicken germ cells at different stages of development. We targeted the deleted in azoospermia like (DAZL) gene, a germ-cell-specific marker, to integrate a green fluorescent protein (GFP) reporter gene without affecting endogenous DAZL expression. The resulting transgenic chickens (DAZL::GFP) were used to uncover the dynamic transcriptional landscape of avian germ cells. Single-cell RNA sequencing of 4,752 male and 13,028 female DAZL::GFP germ cells isolated from embryonic day E2.5 to 1 week post-hatch identified sex-specific developmental stages (4 stages in male and 5 stages in female) and trajectories (apoptosis and meiosis paths in female) of chicken germ cells. The male and female trajectories were characterized by a gradual acquisition of stage-specific transcription factor activities. We also identified evolutionary conserved and species-specific gene expression programs during both chicken and human germ-cell development. Collectively, these novel analyses provide mechanistic insights into chicken germ-cell development.

15.
FASEB J ; 36(2): e22131, 2022 02.
Article in English | MEDLINE | ID: mdl-34985827

ABSTRACT

Although germ cell fate is believed to be determined by signaling factors from differentiated somatic cells, the molecular mechanism behind this process remains obscure. In this study, premature meiosis in male germ cells was observed during the embryonic stage by conditional activation of ß-catenin in Sertoli cells. Somatic and germ cell transcriptome results indicated that the BMP signaling pathway was enriched after ß-catenin activation. In addition, we observed a decreased DNA methylation within a reduction of DNMT3A in germ cells of ß-catenin activated testes and reversed increase after inhibiting BMP signaling pathway with LDN-193189. We also found that Dazl expression was increased in ß-catenin activated testes and decreased after LDN treatment. Taken together, this study demonstrates that male germ cells entered meiosis prematurely during the embryonic stage after ß-catenin activated in Sertoli cells. BMP signaling pathway involved in germ cell meiosis initiation by mediating DNA methylation to induce meiotic genes expression.


Subject(s)
Bone Morphogenetic Proteins/genetics , Embryonic Development/genetics , Germ Cells/physiology , Meiosis/genetics , RNA-Binding Proteins/genetics , Up-Regulation/genetics , Animals , Cell Differentiation/genetics , DNA Methylation/genetics , Female , Male , Mice , Mice, Inbred C57BL , Mice, Transgenic , Pregnancy , Sertoli Cells/physiology , Signal Transduction/genetics , Testis/pathology , Transcriptome/genetics , beta Catenin/genetics
16.
Zygote ; 30(2): 221-226, 2022 Apr.
Article in English | MEDLINE | ID: mdl-34315561

ABSTRACT

The Dazl (deleted in azoospermia-like) gene encodes an RNA-binding protein containing an RNA recognition motif (RRM) and a DAZ motif. Dazl is essential for gametogenesis in vertebrates. In this study, we report the cloning of Dazl cDNA from Cynops cyanurus. Ccdazl mRNA showed a germline-specific expression pattern as expected. Ccdazl expression gradually decreased during oogenesis, suggesting that it may be involved in oocyte development. Phylogenetic analysis revealed that the Ccdazl protein shares conserved motifs/domains with Dazl proteins from other species. Cloning of Ccdazl provides a new tool to carry out comparative studies of germ cell development in amphibians.


Subject(s)
Germ Cells , RNA-Binding Proteins , Animals , Germ Cells/metabolism , Oogenesis , Phylogeny , RNA-Binding Proteins/genetics , RNA-Binding Proteins/metabolism , Salamandridae/genetics
17.
Stem Cell Reports ; 16(11): 2798-2812, 2021 11 09.
Article in English | MEDLINE | ID: mdl-34653405

ABSTRACT

We propose a new concept that human somatic cells can be converted to become male germline stem cells by the defined factors. Here, we demonstrated that the overexpression of DAZL, DAZ2, and BOULE could directly reprogram human Sertoli cells into cells with the characteristics of human spermatogonial stem cells (SSCs), as shown by their similar transcriptomes and proteomics with human SSCs. Significantly, human SSCs derived from human Sertoli cells colonized and proliferated in vivo, and they could differentiate into spermatocytes and haploid spermatids in vitro. Human Sertoli cell-derived SSCs excluded Y chromosome microdeletions and assumed normal chromosomes. Collectively, human somatic cells could be converted directly to human SSCs with the self-renewal and differentiation potentials and high safety. This study is of unusual significance, because it provides an effective approach for reprogramming human somatic cells into male germ cells and offers invaluable male gametes for treating male infertility.


Subject(s)
Cell Differentiation/genetics , Cell Self Renewal/genetics , Cellular Reprogramming/genetics , RNA-Binding Proteins/genetics , Sertoli Cells/metabolism , Spermatogonia/metabolism , Animals , Cells, Cultured , Gene Expression Profiling/methods , Haploidy , Humans , Male , Mice, Nude , Proteomics/methods , RNA-Binding Proteins/metabolism , Sertoli Cells/cytology , Spermatids/cytology , Spermatids/metabolism , Spermatogonia/cytology , Stem Cell Transplantation/methods , Transplantation, Heterologous
18.
Dev Cell ; 56(5): 641-656.e5, 2021 03 08.
Article in English | MEDLINE | ID: mdl-33651978

ABSTRACT

In many animal models, primordial germ cell (PGC) development depends on maternally deposited germ plasm, which prevents somatic cell fate. Here, we show that PGCs respond to regulatory information from the germ plasm in two distinct phases using two distinct mechanisms in zebrafish. We demonstrate that PGCs commence zygotic genome activation together with the somatic blastocysts with no demonstrable differences in transcriptional and chromatin opening. Unexpectedly, both PGC and somatic blastocysts activate germ-cell-specific genes, which are only stabilized in PGCs by cytoplasmic germ plasm determinants. Disaggregated perinuclear relocalization of germ plasm during PGC migration is regulated by the germ plasm determinant Tdrd7 and is coupled to dramatic divergence between PGC and somatic transcriptomes. This transcriptional divergence relies on PGC-specific cis-regulatory elements characterized by promoter-proximal distribution. We show that Tdrd7-dependent reconfiguration of chromatin accessibility is required for elaboration of PGC fate but not for PGC migration.


Subject(s)
Cell Differentiation , Chromatin/genetics , Germ Cells/cytology , Ribonucleoproteins/metabolism , Transcriptome , Zebrafish Proteins/metabolism , Zebrafish/growth & development , Animals , Cell Movement , Chromatin/chemistry , Epigenesis, Genetic , Genome , Germ Cells/metabolism , Ribonucleoproteins/genetics , Zebrafish/genetics , Zebrafish/metabolism , Zebrafish Proteins/genetics
19.
Development ; 148(7)2021 04 01.
Article in English | MEDLINE | ID: mdl-33722898

ABSTRACT

Fertility and gamete reserves are maintained by asymmetric divisions of the germline stem cells to produce new stem cells or daughters that differentiate as gametes. Before entering meiosis, differentiating germ cells (GCs) of sexual animals typically undergo cystogenesis. This evolutionarily conserved process involves synchronous and incomplete mitotic divisions of a GC daughter (cystoblast) to generate sister cells connected by intercellular bridges that facilitate the exchange of materials to support rapid expansion of the gamete progenitor population. Here, we investigated cystogenesis in zebrafish and found that early GCs are connected by ring canals, and show that Deleted in azoospermia-like (Dazl), a conserved vertebrate RNA-binding protein (Rbp), is a regulator of this process. Analysis of dazl mutants revealed the essential role of Dazl in regulating incomplete cytokinesis, germline cyst formation and germline stem cell specification before the meiotic transition. Accordingly, dazl mutant GCs form defective ring canals, and ultimately remain as individual cells that fail to differentiate as meiocytes. In addition to promoting cystoblast divisions and meiotic entry, dazl is required for germline stem cell establishment and fertility.


Subject(s)
Germ Cells/growth & development , Germ Cells/metabolism , RNA-Binding Proteins/genetics , RNA-Binding Proteins/metabolism , Zebrafish/genetics , Zebrafish/metabolism , Animals , Cytokinesis/physiology , Female , Fertility/genetics , Fertility/physiology , Gene Knockout Techniques , Male , Mutagenesis , Stem Cells/metabolism , Zebrafish/embryology , Zebrafish Proteins/genetics , Zebrafish Proteins/metabolism
20.
Mol Reprod Dev ; 88(1): 3-14, 2021 01.
Article in English | MEDLINE | ID: mdl-33251684

ABSTRACT

Multiplying the germline would increase the number of offspring that can be produced from selected animals, accelerating genetic improvement for livestock breeding. This could be achieved by producing multiple chimaeric animals, each carrying a mix of donor and host germ cells in their gonads. However, such chimaeric germlines would produce offspring from both donor and host genotypes, limiting the rate of genetic improvement. To resolve this problem, we disrupted the RNA-binding protein DAZL and generated germ cell-deficient host animals. Using Cas9-mediated homology-directed repair (HDR), we introduced a DAZL loss-of-function mutation in male ovine fetal fibroblasts. Following manual single cell isolation, 4/48 (8.3%) of donor cell strains were homozygously HDR-edited. Sequence-validated strains were used as nuclear donors for somatic cell cloning to generate three lambs, which died at birth. All DAZL null male neonatal sheep lacked germ cells on histological sections and showed greatly reduced germ cell markers. Somatic cells within their testes were morphologically intact and expressed normal levels of lineage-specific markers, suggesting that the germ cell niche remained intact. This extends the DAZL mutant phenotype beyond mice into agriculturally relevant ruminants, providing a pathway for using absolute germline transmitters in rapid livestock improvement.


Subject(s)
Fibroblasts/metabolism , Loss of Function Mutation , RNA-Binding Proteins/genetics , RNA-Binding Proteins/metabolism , Sheep/metabolism , Spermatogonia/metabolism , Testis/metabolism , Animals , Animals, Genetically Modified , Animals, Newborn , Base Sequence , Biomarkers/metabolism , Breeding/methods , Cells, Cultured , Gene Editing/methods , Gene Expression , Male , Mice , Phenotype , Recombinational DNA Repair/genetics , Sheep/genetics
SELECTION OF CITATIONS
SEARCH DETAIL