Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 358
Filter
1.
Article in English | MEDLINE | ID: mdl-38969945

ABSTRACT

PURPOSE: In East Asia, the incidence of breast cancer has been increasing rapidly, particularly among premenopausal women. An elevated ratio of estrogen-DNA adducts was linked to a higher risk of breast cancer. The present study explored the influence of the interaction between base excision repair (BER) gene polymorphisms and estrogen-DNA adducts on breast cancer risk. METHODS: We conducted a case-control study comprising healthy volunteers and individuals with benign breast disease (control arm, n = 176) and patients with invasive carcinoma or carcinoma in situ (case arm, n = 177). Genotyping for BER-related genes, including SMUG1, OGG1, ERCC5, and APEX1, was performed. A logistic regression model, incorporating interactions between gene polymorphisms, estrogen-DNA adduct ratio, and clinical variables, was used to identify the risk factors for breast cancer. RESULTS: Univariate analysis indicated marginal associations between breast cancer risk and APEX1 rs1130409 T > G (P = 0.057) and APEX1 rs1760944 T > G (P = 0.065). Multivariate regression analysis revealed significant associations with increased breast cancer risk for APEX1_rs1130409 (GT/GG versus TT) combined with a natural logarithmic value of the estrogen-DNA adduct ratio (estimated OR 1.164, P = 0.023) and premenopausal status with an estrogen-DNA adduct ratio > 2.93 (estimated OR 2.433, P = 0.001). CONCLUSION: APEX1_rs1130409 (GT/GG versus TT) polymorphisms, which are related to decreased BER activity, combined with an increased ratio of estrogen-DNA adducts, increase the risk of breast cancer in East Asian women.

2.
Int J Mol Sci ; 25(14)2024 Jul 19.
Article in English | MEDLINE | ID: mdl-39063172

ABSTRACT

The SARS-CoV-2 helicase, non-structural protein 13 (Nsp13), plays an essential role in viral replication, translocating in the 5' → 3' direction as it unwinds double-stranded RNA/DNA. We investigated the impact of structurally distinct DNA lesions on DNA unwinding catalyzed by Nsp13. The selected lesions include two benzo[a]pyrene (B[a]P)-derived dG adducts, the UV-induced cyclobutane pyrimidine dimer (CPD), and the pyrimidine (6-4) pyrimidone (6-4PP) photolesion. The experimentally observed unwinding rate constants (kobs) and processivities (P) were examined. Relative to undamaged DNA, the kobs values were diminished by factors of up to ~15 for B[a]P adducts but only by factors of ~2-5 for photolesions. A minor-groove-oriented B[a]P adduct showed the smallest impact on P, which decreased by ~11% compared to unmodified DNA, while an intercalated one reduced P by ~67%. However, the photolesions showed a greater impact on the processivities; notably, the CPD, with the highest kobs value, exhibited the lowest P, which was reduced by ~90%. Our findings thus show that DNA unwinding efficiencies are lesion-dependent and most strongly inhibited by the CPD, leading to the conclusion that processivity is a better measure of DNA lesions' inhibitory effects than unwinding rate constants.


Subject(s)
DNA Helicases , SARS-CoV-2 , Viral Nonstructural Proteins , SARS-CoV-2/metabolism , Viral Nonstructural Proteins/metabolism , Viral Nonstructural Proteins/chemistry , DNA Helicases/metabolism , DNA Helicases/chemistry , DNA/metabolism , DNA/chemistry , Humans , DNA Damage , COVID-19/virology , Kinetics , Methyltransferases , RNA Helicases
3.
Int J Mol Sci ; 25(13)2024 Jul 05.
Article in English | MEDLINE | ID: mdl-39000496

ABSTRACT

It is generally accepted that adjacent guanine residues in DNA are the primary target for platinum antitumor drugs and that differences in the conformations of the Pt-DNA adducts can play a role in their antitumor activity. In this study, we investigated the effect of the carrier ligand cis-1,3-diaminocyclohexane (cis-1,3-DACH) upon formation, stability, and stereochemistry of the (cis-1,3-DACH)PtG2 and (cis-1,3-DACH)Pt(d(GpG)) adducts (G = 9-EthlyGuanine, guanosine, 5'- and 3'-guanosine monophosphate; d(GpG) = deoxyguanosil(3'-5')deoxyguanosine). A peculiar feature of the cis-1,3-DACH carrier ligand is the steric bulk of the diamine, which is asymmetric with respect to the Pt-coordination plane. The (cis-1,3-DACH)Pt(5'GMP)2 and (cis-1,3-DACH)Pt(3'GMP)2 adducts show preference for the ΛHT and ∆HT conformations, respectively (HT stands for Head-to-Tail). Moreover, the increased intensity of the circular dichroism signals in the cis-1,3-DACH derivatives with respect to the analogous cis-(NH3)2 species could be a consequence of the greater bite angle of the cis-1,3-DACH carrier ligand with respect to cis-(NH3)2. Finally, the (cis-1,3-DACH)Pt(d(GpG)) adduct is present in two isomeric forms, each one giving a pair of H8 resonances linked by a NOE cross peak. The two isomers were formed in comparable amounts and had a dominance of the HH conformer but with some contribution of the ΔHT conformer which is related to the HH conformer by having the 3'-G base flipped with respect to the 5'-G residue.


Subject(s)
DNA Adducts , DNA , Oxaliplatin , DNA/chemistry , DNA/metabolism , DNA Adducts/chemistry , Oxaliplatin/chemistry , Oxaliplatin/pharmacology , Organoplatinum Compounds/chemistry , Organoplatinum Compounds/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Ligands , Models, Molecular , Nucleic Acid Conformation
4.
J Biol Chem ; 300(7): 107358, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38782206

ABSTRACT

Aristolochic acids I and II (AA-I/II) are carcinogenic principles of Aristolochia plants, which have been employed in traditional medicinal practices and discovered as food contaminants. While the deleterious effects of AAs are broadly acknowledged, there is a dearth of information to define the mechanisms underlying their carcinogenicity. Following bioactivation in the liver, N-hydroxyaristolactam and N-sulfonyloxyaristolactam metabolites are transported via circulation and elicit carcinogenic effects by reacting with cellular DNA. In this study, we apply DNA adduct analysis, X-ray crystallography, isothermal titration calorimetry, and fluorescence quenching to investigate the role of human serum albumin (HSA) in modulating AA carcinogenicity. We find that HSA extends the half-life and reactivity of N-sulfonyloxyaristolactam-I with DNA, thereby protecting activated AAs from heterolysis. Applying novel pooled plasma HSA crystallization methods, we report high-resolution structures of myristic acid-enriched HSA (HSAMYR) and its AA complexes (HSAMYR/AA-I and HSAMYR/AA-II) at 1.9 Å resolution. While AA-I is located within HSA subdomain IB, AA-II occupies subdomains IIA and IB. ITC binding profiles reveal two distinct AA sites in both complexes with association constants of 1.5 and 0.5 · 106 M-1 for HSA/AA-I versus 8.4 and 9.0 · 105 M-1 for HSA/AA-II. Fluorescence quenching of the HSA Trp214 suggests variable impacts of fatty acids on ligand binding affinities. Collectively, our structural and thermodynamic characterizations yield significant insights into AA binding, transport, toxicity, and potential allostery, critical determinants for elucidating the mechanistic roles of HSA in modulating AA carcinogenicity.


Subject(s)
Aristolochic Acids , Serum Albumin, Human , Aristolochic Acids/metabolism , Aristolochic Acids/chemistry , Humans , Crystallography, X-Ray , Serum Albumin, Human/metabolism , Serum Albumin, Human/chemistry , DNA Adducts/metabolism , DNA Adducts/chemistry , Protein Binding , Myristic Acid/metabolism , Myristic Acid/chemistry
5.
Int J Mol Sci ; 25(7)2024 Mar 28.
Article in English | MEDLINE | ID: mdl-38612589

ABSTRACT

Lung cancer is the leading cause of cancer death worldwide. Polycyclic aromatic hydrocarbons (PAHs) are metabolized by the cytochrome P450 (CYP)1A and 1B1 to DNA-reactive metabolites, which could lead to mutations in critical genes, eventually resulting in cancer. Omega-3 fatty acids, such as eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), are beneficial against cancers. In this investigation, we elucidated the mechanisms by which omega-3 fatty acids EPA and DHA will attenuate PAH-DNA adducts and lung carcinogenesis and tumorigenesis mediated by the PAHs BP and MC. Adult wild-type (WT) (A/J) mice, Cyp1a1-null, Cyp1a2-null, or Cyp1b1-null mice were exposed to PAHs benzo[a]pyrene (BP) or 3-methylcholanthrene (MC), and the effects of omega-3 fatty acid on PAH-mediated lung carcinogenesis and tumorigenesis were studied. The major findings were as follows: (i) omega-3 fatty acids significantly decreased PAH-DNA adducts in the lungs of each of the genotypes studied; (ii) decreases in PAH-DNA adduct levels by EPA/DHA was in part due to inhibition of CYP1B1; (iii) inhibition of soluble epoxide hydrolase (sEH) enhanced the EPA/DHA-mediated prevention of pulmonary carcinogenesis; and (iv) EPA/DHA attenuated PAH-mediated carcinogenesis in part by epigenetic mechanisms. Taken together, our results suggest that omega-3 fatty acids have the potential to be developed as cancer chemo-preventive agents in people.


Subject(s)
Fatty Acids, Omega-3 , Polycyclic Aromatic Hydrocarbons , Humans , Adult , Mice , Animals , Fatty Acids, Omega-3/pharmacology , DNA Adducts , Carcinogenesis , Cell Transformation, Neoplastic , Docosahexaenoic Acids/pharmacology , Eicosapentaenoic Acid/pharmacology
6.
Int J Mol Sci ; 25(7)2024 Mar 29.
Article in English | MEDLINE | ID: mdl-38612635

ABSTRACT

We previously found that feeding rats with broccoli or cauliflower leads to the formation of characteristic DNA adducts in the liver, intestine and various other tissues. We identified the critical substances in the plants as 1-methoxy-3-indolylmethyl (1-MIM) glucosinolate and its degradation product 1-MIM-OH. DNA adduct formation and the mutagenicity of 1-MIM-OH in cell models were drastically enhanced when human sulfotransferase (SULT) 1A1 was expressed. The aim of this study was to clarify the role of SULT1A1 in DNA adduct formation by 1-MIM-OH in mouse tissues in vivo. Furthermore, we compared the endogenous mouse Sult1a1 and transgenic human SULT1A1 in the activation of 1-MIM-OH using genetically modified mouse strains. We orally treated male wild-type (wt) and Sult1a1-knockout (ko) mice, as well as corresponding lines carrying the human SULT1A1-SULT1A2 gene cluster (tg and ko-tg), with 1-MIM-OH. N2-(1-MIM)-dG and N6-(1-MIM)-dA adducts in DNA were analysed using isotope-dilution UPLC-MS/MS. In the liver, caecum and colon adducts were abundant in mice expressing mouse and/or human SULT1A1, but were drastically reduced in ko mice (1.2-10.6% of wt). In the kidney and small intestine, adduct levels were high in mice carrying human SULT1A1-SULT1A2 genes, but low in wt and ko mice (1.8-6.3% of tg-ko). In bone marrow, adduct levels were very low, independently of the SULT1A1 status. In the stomach, they were high in all four lines. Thus, adduct formation was primarily controlled by SULT1A1 in five out of seven tissues studied, with a strong impact of differences in the tissue distribution of mouse and human SULT1A1. The behaviour of 1-MIM-OH in these models (levels and tissue distribution of DNA adducts; impact of SULTs) was similar to that of methyleugenol, classified as "probably carcinogenic to humans". Thus, there is a need to test 1-MIM-OH for carcinogenicity in animal models and to study its adduct formation in humans consuming brassicaceous foodstuff.


Subject(s)
DNA Adducts , Glucosinolates , Mice , Humans , Animals , Rats , Mice, Knockout , Chromatography, Liquid , Tandem Mass Spectrometry , Arylsulfotransferase/genetics
7.
World J Microbiol Biotechnol ; 40(6): 180, 2024 Apr 26.
Article in English | MEDLINE | ID: mdl-38668960

ABSTRACT

DNA adduction in the model yeast Saccharomyces cerevisiae was investigated after exposure to the fungicide penconazole and the reference genotoxic compound benzo(a)pyrene, for validating yeasts as a tool for molecular toxicity studies, particularly of environmental pollution. The effect of the toxicants on the yeast's growth kinetics was determined as an indicator of cytotoxicity. Fermentative cultures of S. cerevisiae were exposed to 2 ppm of Penconazole during different phases of growth; while 0.2 and 2 ppm of benzo(a)pyrene were applied to the culture medium before inoculation and on exponential cultures. Exponential respiratory cultures were also exposed to 0.2 ppm of B(a)P for comparison of both metabolisms. Penconazole induced DNA adducts formation in the exponential phase test; DNA adducts showed a peak of 54.93 adducts/109 nucleotides. Benzo(a)pyrene induced the formation of DNA adducts in all the tests carried out; the highest amount of 46.7 adducts/109 nucleotides was obtained in the fermentative cultures after the exponential phase exposure to 0.2 ppm; whereas in the respiratory cultures, 14.6 adducts/109 nucleotides were detected. No cytotoxicity was obtained in any experiment. Our study showed that yeast could be used to analyse DNA adducts as biomarkers of exposure to environmental toxicants.


Subject(s)
Benzo(a)pyrene , DNA Adducts , Environmental Pollutants , Saccharomyces cerevisiae , DNA Adducts/metabolism , Saccharomyces cerevisiae/drug effects , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/growth & development , Benzo(a)pyrene/toxicity , Benzo(a)pyrene/metabolism , Environmental Pollutants/toxicity , Environmental Pollutants/metabolism , Mutagens/toxicity , Mutagens/metabolism , DNA, Fungal/genetics , Fungicides, Industrial/toxicity , Fungicides, Industrial/metabolism
8.
Environ Pollut ; 351: 123941, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38614427

ABSTRACT

Urbanization has numerous benefits to human society, but some aspects of urban environments, such as air pollution, can negatively affect human health. Two major air pollutants, particulate matter (PM) and polycyclic aromatic hydrocarbons (PAH), have been classified as carcinogens by the International Agency for Research on Cancer. Here, we answer two questions: (1) What are the carcinogenic effects of PM and PAH exposure? (2) How does carcinogenic risk vary across geographical regions? We performed a comprehensive literature search of peer-reviewed published studies examining the link between air pollution and human cancer rates. Focusing on studies published since 2014 when the last IARC monograph on air pollution was published, we converted the extracted data into relative risks and performed subgroup analyses. Exposure to PM2.5 (per 10 µg/m3) resulted in an 8.5% increase in cancer incidence when all cancer types were combined, and risk for individual cancer types (i.e. lung cancer and adenocarcinoma) was also elevated. PM2.5 was also associated with 2.5% higher mortality due to cancer when all types of cancer were combined, and for individual cancer types (i.e., lung and breast cancer). Exposure to PM2.5 and PM10 posed the greatest risk to lung cancer incidence and mortality in Europe (PM2.5 RR 2.15; PM10 RR 1.26); the risk in Asia and the Americas was also elevated. Exposure to PAH and benzo[a]pyrene significantly increased the pooled risk of cancer incidence (10.8% and 8.0% respectively) at the highest percentile of exposure concentration. Our meta-analyses of studies over the past decade shows that urban air pollution in the form of PM2.5, PM10, and PAH all elevate the incidence and mortality of cancer. We discuss the possible mechanisms of carcinogenesis of PM and PAH. These results support World Health Organization's conclusion that air pollution poses among the greatest health risks to humans living in cities.


Subject(s)
Air Pollutants , Carcinogens , Neoplasms , Particulate Matter , Polycyclic Aromatic Hydrocarbons , Humans , Air Pollution/statistics & numerical data , Carcinogens/toxicity , Environmental Exposure/statistics & numerical data , Neoplasms/chemically induced , Neoplasms/epidemiology , Polycyclic Aromatic Hydrocarbons/toxicity
9.
Environ Toxicol Pharmacol ; 108: 104449, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38636743

ABSTRACT

The concept of the exposome is the encompassing of all the environmental exposures, both exogenous and endogenous, across the life course. Many, if not all, of these exposures can result in the generation of reactive species, and/or the modulation of cellular processes, that can lead to a breadth of modifications of DNA, the nature of which may be used to infer their origin. Because of their role in cell function, such modifications have been associated with various major human diseases, including cancer, and so their assessment is crucial. Historically, most methods have been able to only measure one or a few DNA modifications at a time, limiting the information available. With the development of DNA adductomics, which aims to determine the totality of DNA modifications, a far more comprehensive picture of the DNA adduct burden can be gained. Importantly, DNA adductomics can facilitate a "top-down" investigative approach whereby patterns of adducts may be used to trace and identify the originating exposure source. This, together with other 'omic approaches, represents a major tool for unraveling the complexities of the exposome and hence allow a better a understanding of the environmental origins of disease.


Subject(s)
Biomarkers , DNA Adducts , Environmental Exposure , Exposome , Humans , Animals , DNA
10.
Curr Res Toxicol ; 6: 100160, 2024.
Article in English | MEDLINE | ID: mdl-38469320

ABSTRACT

Pyrrolizidine alkaloids (PAs) and their N-oxides (PA-N-oxides) are phytotoxins found in food, feed and the environment. Yet, limited data exist from which the relative potency of a PA-N-oxide relative to its corresponding PA (REPPANO to PA) can be defined. This study aims to investigate the influence of dose, fraction bioactivated and endpoint on the REPPANO to PA of a series of pyrrolizidine N-oxides using in vitro-in silico data and physiologically based kinetic (PBK) modeling. The first endpoint used to calculate the REPPANO to PA was the ratio of the area under the concentration-time curve of PA resulting from an oral dose of PA-N-oxide divided by that from an equimolar dose of PA (Method 1). The second endpoint was the ratio of the amount of pyrrole-protein adducts formed under these conditions (Method 2). REPPANO to PA values appeared to decrease with increasing dose, with the decrease for Method 2 already starting at lower dose level than for Method 1. At dose levels as low as estimated daily human intakes, REPPANO to PA values amounted to 0.92, 0.81, 0.78, and 0.68 for retrorsine N-oxide, seneciphylline N-oxide, riddelliine N-oxide and senecivernine N-oxide, respectively, and became independent of the dose or fraction bioactivated, because no GSH depletion, saturation of PA clearance or PA-N-oxide reduction occurs. Overall, the results demonstrate the strength of using PBK modeling in defining REPPANO to PA values, thereby substantiating the use of the same approach for other PA-N-oxides for which in vivo data are lacking.

11.
Biomarkers ; 29(3): 154-160, 2024 May.
Article in English | MEDLINE | ID: mdl-38506499

ABSTRACT

CONTEXT: Exocyclic DNA adducts have been shown to be potential biomarkers of cancer risk related to oxidative stress and exposure to aldehydes in smokers. In fact, aldehydes potentially arise from tobacco combustion directly and endogenously through lipid peroxidation. OBJECTIVE: This study aims to investigate the relationship between a profile of nine aldehydes-induced DNA adducts and antioxidant activities, in order to evaluate new biomarkers of systemic exposure to aldehydes. METHODS: Using our previously published UPLC-MS/MS method, adducts levels were quantified in the blood DNA of 34 active smokers. The levels of antioxidant vitamins (A, C and E), coenzyme Q10, ß-carotene, superoxide dismutase (SOD) and autoantibodies against oxidized low-density lipoprotein were measured. RESULTS: Adducts induced by tobacco smoking-related aldehydes were quantified at levels reflecting an oxidative production from lipid peroxidation. A significant correlation between SOD and crotonaldehyde-induced adducts (p = 0.0251) was also observed. ß-Carotene was negatively correlated with the adducts of formaldehyde (p = 0.0351) and acetaldehyde (p = 0.0413). Vitamin C tended to inversely correlate with acetaldehyde-induced adducts (p = 0.0584). CONCLUSION: These results are promising, and the study is now being conducted on a larger cohort with the aim of evaluating the impact of smoking cessation programs on the evolution of adducts profile and antioxidants activities.


Subject(s)
DNA Adducts , Smokers , Humans , Biological Monitoring , Antioxidants , beta Carotene , Chromatography, Liquid , Tandem Mass Spectrometry , Aldehydes , Oxidative Stress , Biomarkers , Acetaldehyde , Superoxide Dismutase
12.
Arch Toxicol ; 98(4): 1081-1093, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38436695

ABSTRACT

Large interspecies differences between rats and mice concerning the hepatotoxicity and carcinogenicity of aflatoxin B1 (AFB1) are known, with mice being more resistant. However, a comprehensive interspecies comparison including subcellular liver tissue compartments has not yet been performed. In this study, we performed spatio-temporal intravital analysis of AFB1 kinetics in the livers of anesthetized mice and rats. This was supported by time-dependent analysis of the parent compound as well as metabolites and adducts in blood, urine, and bile of both species by HPLC-MS/MS. The integrated data from intravital imaging and HPLC-MS/MS analysis revealed major interspecies differences between rats and mice: (1) AFB1-associated fluorescence persisted much longer in the nuclei of rat than mouse hepatocytes; (2) in the sinusoidal blood, AFB1-associated fluorescence was rapidly cleared in mice, while a time-dependent increase was observed in rats in the first three hours after injection followed by a plateau that lasted until the end of the observation period of six hours; (3) this coincided with a far stronger increase of AFB1-lysine adducts in the blood of rats compared to mice; (4) the AFB1-guanine adduct was detected at much higher concentrations in bile and urine of rats than mice. In both species, the AFB1-glutathione conjugate was efficiently excreted via bile, where it reached concentrations at least three orders of magnitude higher compared to blood. In conclusion, major differences between mice and rats were observed, concerning the nuclear persistence, formation of AFB1-lysine adducts, and the AFB1-guanine adducts.


Subject(s)
Aflatoxins , Rats , Mice , Animals , Aflatoxins/metabolism , Aflatoxins/toxicity , Lysine/metabolism , Liquid Chromatography-Mass Spectrometry , Tandem Mass Spectrometry , Liver/metabolism , Aflatoxin B1/toxicity , Guanine/metabolism , Intravital Microscopy
13.
Curr Res Toxicol ; 6: 100162, 2024.
Article in English | MEDLINE | ID: mdl-38496007

ABSTRACT

Colorectal cancer (CRC) is the third leading cause of cancer-related mortalities in the USA and around 52,550 people were expected to die from this disease by December 2023. The objective of this study was to investigate the effect of diet type on benzo(a)pyrene [B(a)P]-induced colon cancer in an adult male rat model, the Polyposis In the Rat Colon (PIRC) kindred type. Groups of PIRC rats (n = 10) were fed with AIN-76A regular diet (RD) or Western diet (WD) and received 25, 50 and 100 µg B(a)P/kg body wt. via oral gavage for 60 days. Rats fed diets alone, but no B(a)P, served as controls. After exposure, rats were euthanized; colon and liver samples were analyzed for activation of drug metabolizing enzymes (DMEs) CYP1A1, CYP1B1, SULT and GST. Plasma and tissue samples were analyzed by reverse phase-HPLC for B(a)P metabolites. In addition to these studies, DNA isolated from colon and liver tissues was analyzed for B(a)P-induced DNA adducts by the 32P-postlabeling method using a thin-layer chromatography system. Western diet consumption resulted in a marked increase in DME expression and B(a)P metabolite concentrations in rats that were administered 100 µg/kg B(a)P + WD (p < 0.05) compared to other treatment groups. Our findings demonstrate that WD accelerates the development of colon tumors induced by B(a)P through enhanced biotransformation, and the products of this process (metabolites) were found to bind with DNA and form B(a)P-DNA adducts, which may have given rise to colon polyps characterized by gain in tumor number, sizes, and dysplasia.

14.
J Mol Biol ; 436(6): 168450, 2024 03 15.
Article in English | MEDLINE | ID: mdl-38246411

ABSTRACT

Helix-distorting DNA damages block RNA and DNA polymerase, compromising cell function and fate. In human cells, these damages are removed primarily by nucleotide excision repair (NER). Here, we describe damage-sensing PCR (dsPCR), a PCR-based method for the detection of these DNA damages. Exposure to DNA damaging agents results in lower PCR signal in comparison to non-damaged DNA, and repair is measured as the restoration of PCR signal over time. We show that the method successfully detects damages induced by ultraviolet (UV) radiation, by the carcinogenic component of cigarette smoke benzo[a]pyrene diol epoxide (BPDE) and by the chemotherapeutic drug cisplatin. Damage removal measured by dsPCR in a heterochromatic region is less efficient than in a transcribed and accessible region. Furthermore, lower repair is measured in repair-deficient knock-out cells. This straight-forward method could be applied by non-DNA repair experts to study the involvement of their gene-of-interest in repair. Furthermore, this method is fully amenable for high-throughput screening of DNA repair activity.


Subject(s)
DNA Adducts , DNA Damage , DNA Repair , Humans , Carcinogens/toxicity , DNA/drug effects , DNA/radiation effects , DNA Adducts/analysis , DNA Repair/genetics , Polymerase Chain Reaction/methods
15.
Redox Biol ; 69: 102986, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38091879

ABSTRACT

Fuchs endothelial corneal dystrophy (FECD) is a genetically complex, age-related, female-predominant disorder characterized by loss of post-mitotic corneal endothelial cells (CEnCs). Ultraviolet-A (UVA) light has been shown to recapitulate the morphological and molecular changes seen in FECD to a greater extent in females than males, by triggering CYP1B1 upregulation in females. Herein, we investigated the mechanism of greater CEnC susceptibility to UVA in females by studying estrogen metabolism in response to UVA in the cornea. Loss of NAD(P)H quinone oxidoreductase 1 (NQO1) resulted in increased production of estrogen metabolites and mitochondrial-DNA adducts, with a higher CEnC loss in Nqo1-/- female compared to wild-type male and female mice. The CYP1B1 inhibitors, trans-2,3',4,5'-tetramethoxystilbene (TMS) and berberine, rescued CEnC loss. Injection of wild-type male mice with estrogen (E2; 17ß-estradiol) increased CEnC loss, followed by increased production of estrogen metabolites and mitochondrial DNA (mtDNA) damage, not seen in E2-treated Cyp1b1-/-male mice. This study demonstrates that the endo-degenerative phenotype is driven by estrogen metabolite-dependent CEnC loss that is exacerbated in the absence of NQO1; thus, explaining the mechanism accounting for the higher incidence of FECD in females. The mitigation of estrogen-adduct production by CYP1B1 inhibitors could serve as a novel therapeutic strategy for FECD.


Subject(s)
Fuchs' Endothelial Dystrophy , Male , Female , Mice , Animals , Fuchs' Endothelial Dystrophy/genetics , Endothelial Cells/metabolism , Estrogens , DNA Damage , Cornea/metabolism , DNA, Mitochondrial/genetics
16.
Toxicology ; 501: 153714, 2024 01.
Article in English | MEDLINE | ID: mdl-38141718

ABSTRACT

For genotoxic carcinogens, covalent binding to DNA is a critical initiating event in tumorigenesis. The present research investigated dose-effect relationships of three genotoxic carcinogens representing different structural classes, 2-acetylaminofluorene (2-AAF), benzo[a]pyrene (B[a]P) and quinoline (QUI), to assess the existence of no-observed-effect-levels (NOELs) for the formation of DNA adducts. Carcinogens were administered into the air sac of fertilized turkey eggs over wide dose ranges in three daily injections on days 22 to 24 of incubation. DNA adducts were measured in the fetal turkey livers by the 32P-nucleotide postlabeling (NPL) assay. B[a]P and QUI produced DNA adducts in a dosage-related manner and exhibited NOELs at 0.65 and 0.35 mg/kg bw/day, respectively. In contrast, 2-AAF formed DNA adducts at all tested dosages down to 0.005 mg/kg bw/day. Benchmark dose (BMD) analysis identified the potencies of 2-AAF and QUI to be similar, while B[a]P was the least potent compound. Overall, findings in fetal turkey livers demonstrated that exposure levels to genotoxic compounds that do not result in DNA adducts can exist but are not evident with all carcinogens of this type. The use of mechanistic dose-effect studies for genotoxic endpoints can provide critical information for prioritization of concerns for risk assessment.


Subject(s)
Carcinogens , DNA Adducts , Carcinogens/metabolism , DNA Adducts/metabolism , Liver , DNA Damage , 2-Acetylaminofluorene/pharmacology , 2-Acetylaminofluorene/toxicity
17.
Article in English | MEDLINE | ID: mdl-38086972

ABSTRACT

BACKGROUND: Few epidemiologic studies have focused on the specific source of ambient air pollution and adverse health effects in early life. Here, we investigated whether air pollutants from different emission sources were associated with decreased birth anthropometry parameters and increased DNA adduct formation in mother-child pairs residing in the Mexico City Metropolitan Area (MCMA). METHODS: This cross-sectional study included 190 pregnant women recruited during their last trimester of pregnancy from two hospitals at MCMA, and a Modeling Emissions Inventory (MEI) to calculate exposure to ambient air pollutants from different emissions sources (area, point, mobile, and natural) for two geographical buffers 250 and 750 m radii around the participants households. RESULTS: Contaminants were positively correlated with umbilical cord blood (UCB) adducts, but not with maternal blood (MB) adducts. PM10 emissions (area and point sources, overall emissions), PM2.5 (point sources), volatile organic compounds (VOC), total organic compounds (TOC) from point sources were positively correlated with UCB adducts. Air pollutants emitted from natural sources were correlated with a decrease in MB and UCB adducts. PM10 and PM2.5 were correlated (p < 0.05) with a decrease in birth weight (BW), birth length (BL) and gestational age at term (GA). In multivariate analyses adjusted for potential confounders, PM10 was associated with an increase in UCB adducts. PM10 and PM2.5 from overall emissions were associated with a decrease in BW, BL and GA at term. IMPACT: Results suggested higher susceptibility of newborns compared to mothers to damage related to ambient air pollution. PMs are associated with birth anthropometry parameters and DNA damage in adjusted models, highlighting the need for more strict regulation of PM emissions.

18.
Biochem Biophys Res Commun ; 687: 149167, 2023 12 20.
Article in English | MEDLINE | ID: mdl-37939506

ABSTRACT

Under the exposure of lipids to reactive oxygen species (ROS), lipid peroxidation proceeds non-enzymatically and generates an extremely heterogeneous mixture of reactive carbonyl species (RCS). Among them, HNE, HHE, MDA, methylglyoxal, glyoxal, and acrolein are the most studied and/or abundant ones. Over the last decades, significant progress has been achieved in understanding mechanisms of RCS generation, protein/DNA adduct formation, and their identification and quantification in biological samples. In our review, we critically discuss the advancements in understanding the roles of RCS-induced protein/DNA modifications in signaling switches to provide adaptive cell response under physiological and oxidative stress conditions. At non-toxic concentrations, RCS modify susceptible Cys residue in c-Src to activate MAPK signaling and Cys, Lys, and His residues in PTEN to cause its reversible inactivation, thereby stimulating PI3K/PKB(Akt) pathway. RCS toxic concentrations cause irreversible Cys modifications in Keap1 and IKKß followed by stabilization of Nrf2 and activation of NF-κB, respectively, for their nuclear translocation and antioxidant gene expression. Dysregulation of these mechanisms causes diseases including cancer. Alterations in RCS, RCS detoxifying enzymes, RCS-modified protein/DNA adducts, and signaling pathways have been implicated in various cancer types.


Subject(s)
DNA Adducts , Neoplasms , Humans , Lipid Peroxidation , Kelch-Like ECH-Associated Protein 1/metabolism , NF-E2-Related Factor 2/metabolism , Oxidative Stress , Reactive Oxygen Species/metabolism
19.
Arch Toxicol ; 97(12): 3179-3196, 2023 12.
Article in English | MEDLINE | ID: mdl-37794256

ABSTRACT

Aflatoxin B1 (AFB1) is a highly hepatotoxic and carcinogenic mycotoxin produced by Aspergillus species. The compound is mainly metabolized in the liver and its metabolism varies between species. The present study quantified relevant AFB1- metabolites formed by mouse, rat, and human primary hepatocytes after treatment with 1 µM and 10 µM AFB1. The use of liquid chromatographic separation coupled with tandem mass spectrometric detection enabled the selective and sensitive determination of phase I and phase II metabolites of AFB1 over incubation times of up to 24 h. The binding of AFB1 to macromolecules was also considered. The fastest metabolism of AFB1 was observed in mouse hepatocytes which formed aflatoxin P1 as a major metabolite and also its glucuronidated form, while AFP1 occurred only in traces in the other species. Aflatoxin M1 was formed in all species and was, together with aflatoxin Q1 and aflatoxicol, the main metabolite in human cells. Effective epoxidation led to high amounts of DNA adducts already 30 min post-treatment, especially in rat hepatocytes. Lower levels of DNA adducts and fast DNA repair were found in mouse hepatocytes. Also, protein adducts arising from reactive intermediates were formed rapidly in all three species. Detoxification via glutathione conjugation and subsequent formation of the N-acetylcysteine derivative appeared to be similar in mice and in rats and strongly differed from human hepatocytes which did not form these metabolites at all. The use of qualitative reference material of a multitude of metabolites and the comparison of hepatocyte metabolism in three species using advanced methods enabled considerations on toxification and detoxification mechanisms of AFB1. In addition to glutathione conjugation, phase I metabolism is strongly involved in the detoxification of AFB1.


Subject(s)
Aflatoxin B1 , Aflatoxins , Humans , Rats , Mice , Animals , Aflatoxin B1/toxicity , Chromatography, High Pressure Liquid , DNA Adducts/metabolism , Tandem Mass Spectrometry , DNA , Aflatoxins/pharmacology , Aflatoxins/toxicity , Liver , Hepatocytes/metabolism , Glutathione/metabolism
20.
Methods Mol Biol ; 2701: 77-90, 2023.
Article in English | MEDLINE | ID: mdl-37574476

ABSTRACT

Many chemicals cause mutation or cancer in animals and humans by forming DNA lesions, including base adducts, which play a critical role in mutagenesis and carcinogenesis. A large number of such adducts are repaired by the DNA glycosylase-mediated base excision repair (BER) pathway, and some are processed by nucleotide excision repair (NER) and nucleotide incision repair (NIR). To understand what structural features determine repair enzyme specificity and mechanism in chemically modified DNA in vitro, we developed and optimized a DNA cleavage assay using defined oligonucleotides containing a single, site specifically placed lesion. This assay can be used to investigate novel activities against any newly identified derivatives from chemical compounds, substrate specificity and cleavage efficiency of repair enzymes, and quantitative structure-function relationships. Overall, the methodology is highly sensitive and can also be modified to explore whether a lesion is processed by NER or NIR activity, as well as to study its miscoding properties in translesion DNA synthesis (TLS).


Subject(s)
DNA Glycosylases , Oligonucleotides , Humans , Animals , Oligonucleotides/genetics , Oligonucleotides/metabolism , DNA Cleavage , DNA Repair , DNA Glycosylases/metabolism , DNA/genetics
SELECTION OF CITATIONS
SEARCH DETAIL