Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 561
Filter
1.
J Environ Sci (China) ; 149: 242-253, 2025 Mar.
Article in English | MEDLINE | ID: mdl-39181639

ABSTRACT

Poly(butylene succinate-co-furandicarboxylate) (PBSF) and poly(butylene adipate-co-furandicarboxylate) (PBAF) are novel furandicarboxylic acid-based biodegradable copolyesters with great potential to replace fossil-derived terephthalic acid-based copolyesters such as poly(butylene succinate-co-terephthalate) (PBST) and poly(butylene adipate-co-terephthalate) (PBAT). In this study, quantum chemistry techniques after molecular dynamics simulations are employed to investigate the degradation mechanism of PBSF and PBAF catalyzed by Candida antarctica lipase B (CALB). Computational analysis indicates that the catalytic reaction follows a four-step mechanism resembling the ping-pong bibi mechanism, with the initial two steps being acylation reactions and the subsequent two being hydrolysis reactions. Notably, the first step of the hydrolysis is identified as the rate-determining step. Moreover, by introducing single-point mutations to expand the substrate entrance tunnel, the catalytic distance of the first acylation step decreases. Additionally, energy barrier of the rate-determining step is decreased in the PBSF system by site-directed mutations on key residues increasing hydrophobicity of the enzyme's active site. This study unprecedently show the substrate binding pocket and hydrophobicity of the enzyme's active site have the potential to be engineered to enhance the degradation of copolyesters catalyzed by CALB.


Subject(s)
Fungal Proteins , Lipase , Polyesters , Lipase/metabolism , Lipase/chemistry , Fungal Proteins/metabolism , Fungal Proteins/chemistry , Polyesters/chemistry , Polyesters/metabolism , Biodegradation, Environmental , Molecular Dynamics Simulation , Hydrolysis , Models, Chemical
2.
J Colloid Interface Sci ; 678(Pt B): 639-656, 2024 Sep 11.
Article in English | MEDLINE | ID: mdl-39265336

ABSTRACT

The construction of semiconductor heterojunction is an effective way for charge separation in photocatalytic degradation of pollutants. In this study, a novel MoS2@MoO3/(Cu+/g-C3N4) ternary composites (MMCCN) was prepared via a simple calcination method. The as-prepared composites exhibited exceptional performance in activating peroxymonosulfate (PMS) for the degradation of rhodamine B (RhB). The activity testing results indicated that 99.41 % of RhB (10 mg·L-1, 10 mL) was effectively removed by the synergistic effect of composites photocatalyst (0.1 g·L-1) and PMS (0.1 g·L-1) under visible light irradiation for 40 min. Its reaction rate constant exceeded that of Cu+/g-C3N4, MoO3 and MoS2 by a factor of 3.56, 17.30 and 11.73 times, respectively. The crystal structure, band gap and density of states (DOS) of the semiconductors were calculated according to the density functional theory (DFT). Free radical trapping tests and electron spin resonance spectroscopy validated that 1O2, O2- and h+ are primary reactive species participating in the decomposition of RhB. The ternary composites demonstrated good stability and maintained excellent degradation efficiency even across four reaction cycles. Furthermore, the activation mechanism and the intermediates produced during the decomposition course of RhB by MMCCN/PMS/vis system were analyzed and elucidated. A double S-scheme heterojunctions was responsible for efficient separation of photo-induced electron-hole pairs. This work presents a novel method in the construction of double S-scheme heterojunctions for PMS activation which is expected to find wide applications in wastewater treatment and environmental remediation.

3.
Chemosphere ; : 143382, 2024 Sep 22.
Article in English | MEDLINE | ID: mdl-39317243

ABSTRACT

2-(2H-benzotriazol-2-yl)-4,6-di-tert-pentylphenol (UV328) is an emerging persistent organic pollutant ubiquitously found in environmental matrices. Though some advanced oxidation processes have been tested to degrade UV328 in waste streams, the degradation mechanisms are largely unknown. In this study, the degradation of UV328 by ozone (O3) and peroxymonosulfate (PMS) was systemically investigated. At neutral pH, 97.0% UV328 was removed in 5 min with 6.4 mg/min O3 and 2 mM PMS, and the degradation rate was positively correlated with the concentration of oxidants. Hydroxyl radical (•OH), sulfate radical (SO4•-) and singlet oxygen (1O2) participated in the degradation of UV328, in which 1O2 played a key role. Based on the identified transformation intermediates and density functional theory simulations, three degradation pathways of dehydrogenation, cycloaddition and hydroxylation were proposed. •OH and SO4•- radicals could attack UV328 through hydrogen atom abstraction channel. 1O2-mediated cycloaddition reaction is favorable, and •OH could react with UV328 via radical adduct formation pathway. Toxicity assessment indicated that O3/PMS treatment mitigated the ecological risks of UV328.

4.
Sci Total Environ ; 954: 176281, 2024 Sep 13.
Article in English | MEDLINE | ID: mdl-39278507

ABSTRACT

Microplastics (MPs) in the aquatic environment are difficult to degrade naturally due to their hydrophobicity and structure. A variety of engineered degradation methods were developed to treat MPs contamination in the aquatic environment. Current reviews of MPs degradation methods only provided an inventory but lacked systematic comparisons and application recommendations. However, selecting suitable degradation methods for different types of MPs contamination may be more effective. This work examined the present engineered degradation methods for MPs in the aquatic environment. They were categorized into chemical degradation, biodegradation, thermal degradation and photodegradation. These degradation methods were systematically summarized in terms of degradation efficiency, technical limitations and production of environmental hazards. Also, the potential influences of different environmental factors and media on degradation were analyzed, and the selection of degradation methods were suggested from the perspectives of contamination types and degradation mechanisms. Finally, the development trend and challenges for studying MPs engineered degradation were proposed. This work will contribute to a better selection of customized degradation methods for different types of MPs contamination scenarios in aquatic environments.

5.
Chemosphere ; 364: 143265, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39236927

ABSTRACT

Loxoprofen has been widely used as a non-steroidal anti-inflammatory drug globally and it can also persist in the environment. Although it is known to be a non-toxic drug, its presence may still pose a potential risk to organisms in the environment. Here, the hyper lignin-degrading fungus Phanerochaete sordida YK-624 was used to study the degradation of loxoprofen. This fungus showed excellent loxoprofen biodegradation ability with 90.4% and 93.4% after one day of incubation at lower concentrations of 0.01 and 0.005 mM, respectively. And at a higher concentration of 0.1 mM, a significant removal of 94.2% was also observed after 10 days of incubation. In this study, four metabolites were isolated and determined by HR-ESI-MS and NMR. Furthermore, LC/MS analysis suggested the presence of intermediate hydroxy loxoprofen. In addition, loxoprofen-OH was also identified as a metabolite of loxoprofen through comparison with the synthesized compounds. In this metabolism of loxoprofen, cytochrome P450 may play a significant role. Interestingly, P. sordida YK-624 showed enantioselectivity in the degradation process of loxoprofen. By these results, three degradation pathways of loxoprofen by P. sordida YK-624 were hypothesized. To the best of our knowledge, this is the first report describing the potential degradation mechanisms of loxoprofen by a white-rot fungus.


Subject(s)
Anti-Inflammatory Agents, Non-Steroidal , Biodegradation, Environmental , Lignin , Phanerochaete , Phenylpropionates , Phenylpropionates/metabolism , Anti-Inflammatory Agents, Non-Steroidal/metabolism , Phanerochaete/metabolism , Lignin/metabolism
6.
Sci Total Environ ; 953: 176039, 2024 Nov 25.
Article in English | MEDLINE | ID: mdl-39241870

ABSTRACT

Domoic acid (DA) is a compound generated as a secondary metabolite during harmful algal blooms, has historically received attention as the potent neurotoxicity in marine environment. However, the aerobic degradation mechanism of DA and the DA-degrader remain largely unknown. Here, we revealed the mechanism of aerobic degradation of DA by a ubiquitous marine Pseudoalteromonas sp., and more importantly, we confirmed that the degradation of DA is mediated by biogenic reactive oxygen species (ROS), rather than direct enzyme-mediated as traditionally conceived. Results indicated that DA degradation was caused by biogenic O2- and OH, where DA underwent reactions of decarboxylation, hydroxylation, and oxidation to yield the detoxification terminal product. Besides, whole genome sequencing and RT-qPCR analysis revealed that the genes conferring to encoding leucine dehydrogenase (ldh) and Na+-translocated NADH-quinone oxidoreductase (nqrA, nqrF) are responsible for biogenic ROS production. Finally, we found through comparative proteomic analysis that biogenic ROS mediated the DA degradation may be prevalent in the environment. Overall, this work not only reveals aerobic biotransformation mechanism of DA, but also identifies a novel mechanism of DA degradation, which provides new perspective into the environmental fate of DA and the artificial bioremediation of DA.


Subject(s)
Kainic Acid , Marine Toxins , Reactive Oxygen Species , Marine Toxins/metabolism , Reactive Oxygen Species/metabolism , Kainic Acid/analogs & derivatives , Kainic Acid/metabolism , Biodegradation, Environmental , Pseudoalteromonas/metabolism , Pseudoalteromonas/genetics , Water Pollutants, Chemical/metabolism
7.
ChemSusChem ; : e202401486, 2024 Sep 26.
Article in English | MEDLINE | ID: mdl-39324248

ABSTRACT

Cathode prelithium agent is regarded as the most applicable approach to compensate the initial capacity loss in lithium ion batteries (LIBs). Li2NiO2 (LNO) has attracted numerous attention due to its superior environmental stability and reliable synthesis approach. To promote the commercial application of LNO, the understanding of the degradation mechanism induced by air-exposure and finding reliable strategies to improve the air stability are necessary. Herein, by preserving the LNO in different environments (relative humidity of 70% and 40%), the surface chemistry evolution of LNO is subtly investigated, which shows Li2CO3 and LiOH cover the surface of the LNO, which decline the Li+ diffusion kinetics as well as the charge capacity. What's more, the slurry turns gel when the LNO exposed to the environment of 70% relative humidity for 2 days and 40% relative humidity for 5 days. Facile approaches, including washing the deteriorative LNO with ethanol, reacting the alkali components with H3BO3, and coating the LNO with Al2O3 are conducted to recover the disabled LNO, which retains 84.2% of initial capacity. In addition, a coating approach is proposed for the fresh LNO to effectively improve the air stability. This work provides guideline to the commercial application of the LNO.

8.
Environ Sci Technol ; 2024 Sep 26.
Article in English | MEDLINE | ID: mdl-39324836

ABSTRACT

In this study, vacuum ultraviolet (VUV) was first proposed to activate ferrate (Fe(VI)) for degrading micropollutants (e.g., carbamazepine (CBZ)). Results indicated that VUV/Fe(VI) could significantly facilitate the CBZ degradation, and the removal efficiencies of VUV/Fe(VI) were 30.9-83.4% higher than those of Fe(VI) at pH = 7.0-9.0. Correspondingly, the degradation rate constants of VUV/Fe(VI) were 2.3-36.0-fold faster than those of Fe(VI). Free radical quenching and probe experiments revealed that the dominant active species of VUV/Fe(VI) were •OH and Fe(V)/Fe(IV), whose contribution ratios were 43.3 to 48.6% and 48.2 to 46.6%, respectively, at pH = 7.0-9.0. VUV combined with Fe(VI) not only effectively mitigated the weak oxidizing ability of Fe(VI) under alkaline conditions (especially pH = 9.0) but also attenuated the deteriorating effect of background constituents on Fe(VI). In different real waters (tap water, river water, WWTPs effluent), VUV/Fe(VI) retained a remarkably enhanced effect on CBZ degradation compared to Fe(VI). Moreover, VUV/Fe(VI) exhibited outstanding performance in the debasement of CBZ and sulfamethoxazole (SMX), as well as six other micropollutants, displaying broad-spectrum capability in degrading micropollutants. Overall, this study developed a novel oxidation process that was efficient and energy-saving for the rapid removal of micropollutants.

9.
Environ Res ; 262(Pt 2): 119889, 2024 Aug 30.
Article in English | MEDLINE | ID: mdl-39216738

ABSTRACT

Antibiotics with pseudo-persistence in water have been regarded as emerging pollutants, which have obvious biological toxicity even at trace levels. On account of high reactivity, heterogeneous catalytic ozonation has been widely applied to remove antibiotics. Among the heterogeneous catalysts, with well-developed pores and regulable surface defects, carbon-based materials can act as both adsorbents and catalysts. Metal cations, surface hydroxyl (-OH) groups and oxygen vacancies (OVs) serve as primary active sites in metal oxides. However, composites (perovskite, apatite, etc.) with special crystalline structure have more crystallographic planes and abundant active sites. The unsaturated bonds and aromatic rings which have dense structure of the electron cloud are more likely to be attacked by ozone (O3) directly. Sulfonamides (SAs) can be oxidized by O3 directly within a short time due to the structure of activated aromatic rings and double bonds. With the existence of catalysts, almost all antibiotics can attain fair removal effects. The presence of water matrix can greatly influence the removal rate of pollutants via changing the surface properties of catalysts, competing active sites with O3, etc. Correspondingly, the application of diverse heterogeneous catalysts was introduced in details, based on modification including metal/non-metal doping, surface modification and carrier composite. The degradation pathways of SAs, fluoroquinolones (FQNs), tetracyclines (TCs) and ß-lactams were summarized founded on the functional group structures. Furthermore, the effects of water matrix (pH, coexisting ions, organics) for catalytic ozonation were also debated. It is expected to proffer advanced guidance for researchers in catalytic ozonation of antibiotics.

10.
Nanomaterials (Basel) ; 14(15)2024 Jul 30.
Article in English | MEDLINE | ID: mdl-39120389

ABSTRACT

Since enormous amounts of antibiotics are consumed daily by millions of patients all over the world, tons of pharmaceutical residuals reach aquatic bodies. Accordingly, our study adopted the Fenton catalytic degradation approach to conquer such detrimental pollutants. (Ce0.33Fe) MIL-88A was fabricated by the hydrothermal method; then, it was supported on the surface of g-C3N4 sheets using the post-synthetic approach to yield a heterogeneous Fenton-like (Ce0.33Fe) MIL-88A/10%g-C3N4 catalyst for degrading the tetracycline hydrochloride drug. The physicochemical characteristics of the catalyst were analyzed using FT-IR, SEM-EDX, XRD, BET, SEM, and XPS. The pH level, the H2O2 concentration, the reaction temperature, the catalyst dose, and the initial TC concentration were all examined as influencing factors of TC degradation efficiency. Approximately 92.44% of the TC was degraded within 100 min under optimal conditions: pH = 7, catalyst dosage = 0.01 g, H2O2 concentration = 100 mg/L, temperature = 25 °C, and TC concentration = 50 mg/L. It is noteworthy that the practical outcomes revealed how the Fenton-like process and adsorption work together. The degradation data were well-inspected by first-order and second-order models to define the reaction rate. The synergistic interaction between the (Ce0.33Fe) MIL-88A/10%g-C3N4 components produces a continuous redox cycle of two active metal species and the electron-rich source of g-C3N4. The quenching test demonstrates that •OH is the primary active species for degrading TC in the H2O2-(Ce0.33Fe) MIL-88A/10%g-C3N4 system. The GC-MS spectrum elucidates the yielded intermediates from degrading the TC molecules.

11.
Small ; : e2405171, 2024 Aug 20.
Article in English | MEDLINE | ID: mdl-39165056

ABSTRACT

Polyanionic A3V2(PO4)3 (A = Li+, Na+) with open channels have been extensively utilized as cathode materials for aqueous zinc-metal batteries (AZMBs), whereas suffering from severe capacity fading and rapid operation voltage decay during cycling. when used as In this work, it is disclosed that the rapid degradation is induced by an irreversible phase change from electrochemical active Li3V2(PO4)3 to nonactive monoclinic LiZnPO4, as well as active Na3V2(PO4)3 to nonactive rhombic Zn3(PO4)2(H2O)4. Subsequently, a rational dual-cation (Al-Fe) doping strategy is proposed to suppress these detrimental transformations. Such dual-cation doping entails stronger P-O and V-O bonds, thus stabilizing the initial polyanionic structures. Consequently, the optimized member of Li3V1.775Al0.075Fe0.225(PO4)3 (LVAFP) exhibits desirable cycling stability (1000 cycles, 68.5% capacity retention) and notable rate capability (92.1% of the initial capacity at 10 C). Moreover, the dual-cation doping methodology is successfully extended to improve the stability of Na3V2(PO4)3 cathode in aqueous dual-ion batteries, signifying the versatility and feasibility of this strategy. The comprehensive identification of local structural evolution in these polyanions will broaden the scope of designing high-performance alkali-vanadyl-phosphates for multivalent aqueous batteries.

12.
Materials (Basel) ; 17(15)2024 Aug 02.
Article in English | MEDLINE | ID: mdl-39124495

ABSTRACT

Mining industries have long relied on cyanidation as the primary method for gold extraction, but this process generates thiocyanates as a problematic byproduct, posing challenges for wastewater treatment and recycling. The stability of thiocyanates makes their reduction or elimination in mining wastewater difficult. In this study, a p-n heterojunction of ZnO and BiOI was created and evaluated for its ability to photodegrade thiocyanate ions under simulated solar conditions. Various analytical techniques revealed a highly porous structure with a sponge-like morphology and agglomeration in the synthesized heterojunction. The compound exhibited crystalline patterns without impurity peaks, a slight red shift in absorbance, and Type IV isotherm adsorption. The synthesized heterostructure achieved the complete destruction of thiocyanate ions in less than 30 min. The investigation of different process parameters indicated that the destruction of the contaminant by the heterostructure was influenced by the initial thiocyanate concentration, which decreased as the thiocyanate concentration increased. The peak photodestruction reaction was observed at pH 7. By applying a pseudo-first-order kinetic model, it was found that increasing the catalyst mass to 15 mg raised the rate constant from 0.188 to 0.420 min-1, while increasing the pH to 10 led to a 3.5-fold reduction. The strong correlation between the observed data and the predicted values of the pseudo-first-order kinetic model was indicated by the observed (R2) values. The findings of this study hold potential significance for mining industries, as it offers a potential solution for eliminating cyanide and thiocyanates from mining wastewater. The elimination of thiocyanate generation in the cyanidation process is crucial for mining companies, making this study valuable for the industry.

13.
Bioresour Technol ; 409: 131234, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39117245

ABSTRACT

To recycle the nutrients in spiramycin (SPM) fermentation residue (SFR) through biological methods, acid hydrothermal treatment (AHT) was employed as pretreatment to enhance SFR biodegradability. The results showed that the degradation rate of residual SPM in SFR reached 100% after 120 min at 100℃ and 0.30 M acid with a 30.5% and 89.7% increase in proteins and polysaccharides, respectively. The SPM degradation was faster at higher acidity and temperature. However, elevated SPM concentration and the presence of protein, humic acid, and polysaccharide inhibited SPM degradation. The disintegration of SFR was evidenced by changes in its microstructure and could be predicted through the release of dissolved organic matter. Eight major SPM intermediates were identified with lower mutagenicity and antibacterial activity testing against Staphylococcus aureus. These results demonstrate that AHT not only disintegrates SFR but also degrades the residual SPM antibiotics, which implies the possibility for practical applications.


Subject(s)
Anti-Bacterial Agents , Fermentation , Spiramycin , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Spiramycin/pharmacology , Spiramycin/chemistry , Staphylococcus aureus/drug effects , Temperature , Water/chemistry , Hydrogen-Ion Concentration , Acids/chemistry , Biodegradation, Environmental
14.
Environ Technol ; : 1-11, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38955504

ABSTRACT

As volatile organic compounds (VOCs), gaseous ethylbenzene has adverse effects on human health and ecology. Therefore, an effective degradation process is highly desirable. The Fenton process under UV 365 nm was selected as the first option to remove gaseous ethylbenzene in a bubble column reactor. The main parameters for the batch experiments were systematically studied, including H2O2 concentration, [H2O2]/[Fe2+], pH, UV wavelength, UV intensity, gaseous ethylbenzene concentration, gas flow rate, and process stability towards removal efficiency. The optimum conditions were found to be H2O2 concentration of 100 mmol·L-1, [H2O2]/[Fe2+] of 4, pH of 3.0, UV wavelength of 365 nm, UV power of 5 W, gas flow rate of 900 mL·min-1, and gaseous ethylbenzene concentration of 30 ppm, resulting in a removal efficiency of 76.3%. The study found that the Fenton process, when coupled with UV 365 nm, was highly effective in removing gaseous ethylbenzene. The degradation mechanism of gaseous ethylbenzene was proposed in the UV365/Fenton process based on EPR, radical quenching experiments, iron analysis, carbon balance, and GC-MS analysis. The results indicated that •OH played a crucial role in the process.

15.
Int J Mol Sci ; 25(13)2024 Jun 22.
Article in English | MEDLINE | ID: mdl-38999979

ABSTRACT

This study presents a pioneering synthesis of a direct Z-scheme Y2TmSbO7/GdYBiNbO7 heterojunction photocatalyst (YGHP) using an ultrasound-assisted hydrothermal synthesis technique. Additionally, novel photocatalytic nanomaterials, namely Y2TmSbO7 and GdYBiNbO7, were fabricated via the hydrothermal fabrication technique. A comprehensive range of characterization techniques, including X-ray diffractometry, Fourier-transform infrared spectroscopy, Raman spectroscopy, UV-visible spectrophotometry, X-ray photoelectron spectroscopy, transmission electron microscopy, X-ray energy-dispersive spectroscopy, fluorescence spectroscopy, photocurrent testing, electrochemical impedance spectroscopy, ultraviolet photoelectron spectroscopy, and electron paramagnetic resonance, was employed to thoroughly investigate the morphological features, composition, chemical, optical, and photoelectric properties of the fabricated samples. The photocatalytic performance of YGHP was assessed in the degradation of the pesticide acetochlor (AC) and the mineralization of total organic carbon (TOC) under visible light exposure, demonstrating eximious removal efficiencies. Specifically, AC and TOC exhibited removal rates of 99.75% and 97.90%, respectively. Comparative analysis revealed that YGHP showcased significantly higher removal efficiencies for AC compared to the Y2TmSbO7, GdYBiNbO7, or N-doped TiO2 photocatalyst, with removal rates being 1.12 times, 1.21 times, or 3.07 times higher, respectively. Similarly, YGHP demonstrated substantially higher removal efficiencies for TOC than the aforementioned photocatalysts, with removal rates 1.15 times, 1.28 times, or 3.51 times higher, respectively. These improvements could be attributed to the Z-scheme charge transfer configuration, which preserved the preferable redox capacities of Y2TmSbO7 and GdYBiNbO7. Furthermore, the stability and durability of YGHP were confirmed, affirming its potential for practical applications. Trapping experiments and electron spin resonance analyses identified active species generated by YGHP, namely •OH, •O2-, and h+, allowing for comprehensive analysis of the degradation mechanisms and pathways of AC. Overall, this investigation advances the development of efficient Z-scheme heterostructural materials and provides valuable insights into formulating sustainable remediation strategies for combatting AC contamination.


Subject(s)
Light , Toluidines , Catalysis , Toluidines/chemistry , Photolysis , Water Pollutants, Chemical/chemistry , Photochemical Processes , Photoelectron Spectroscopy , Gadolinium/chemistry
16.
ChemSusChem ; : e202401220, 2024 Jul 22.
Article in English | MEDLINE | ID: mdl-39037362

ABSTRACT

Proton Exchange Membrane Water Electrolysis (PEMWE) has emerged as a clean and effective approach for the conversion and storage of renewable electricity, particularly due to its compatibility with fluctuating photovoltaic and wind power. However, the high cost and limited performance of iridium oxide catalysts (i.e. IrO2) used as anode catalyst in industrial PEM electrolyzers remain significant obstacles to widespread application. Although numerous low-cost and efficient alternative catalysts have been developed in laboratory research, comprehensive stability studies critical for industrial use are often overlooked. This leads to the failure of performance transfer from catalysts tested in liquid half-cell systems to those employed in PEM electrolyzers. This concept presents a thorough overview for the stability issues of anode catalysts in PEMWE, and discuss their degradation mechanisms in both liquid half-cell systems and PEM electrolyzers. We summarize comprehensive protocol for the assessment and characterization, analyze the effective strategies for stability optimization, and explore the opportunities for designing viable anode catalysts for PEM electrolyzers.

17.
J Environ Manage ; 364: 121435, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38889646

ABSTRACT

The abuse and uncontrolled discharge of antibiotics present a severe threat to environment and human health, necessitating the development of efficient and sustainable treatment technology. In this work, we employ a facile one-step electrodeposition method to prepare polyaniline/graphite oxide (PANI/GO) and samarium (Sm) co-modified Ti/PbO2 (Ti/PbO2-PANI/GO-Sm) electrode for the degradation of amoxicillin (AMX). Compared with traditional Ti/PbO2 electrode, Ti/PbO2-PANI/GO-Sm electrode exhibits more excellent oxygen evolution potential (2.63 V) and longer service life (56 h). In degradation experiment, under optimized conditions (50 mg L-1 AMX, 20 mA cm-2, pH 3, 0.050 M Na2SO4, 25 °C), Ti/PbO2-PANI/GO-Sm electrode achieves remarkable removal efficiencies of 88.76% for AMX and 79.92% for chemical oxygen demand at 90 min. In addition, trapping experiment confirms that ·OH plays a major role in the degradation process. Based on theoretical calculation and liquid chromatography-mass spectrometer results, the heterocyclic portion of AMX molecule is more susceptible to ·OH attacks. Thus, this novel electrode offers a sustainable and efficient solution to address environmental challenges posed by antibiotic-contaminated wastewater.


Subject(s)
Amoxicillin , Electrodes , Amoxicillin/chemistry , Titanium/chemistry , Water Pollutants, Chemical/chemistry , Samarium/chemistry
18.
J Hazard Mater ; 474: 134819, 2024 Aug 05.
Article in English | MEDLINE | ID: mdl-38850940

ABSTRACT

Developing superior-performance marine-biodegradable plastics remains a critical challenge in mitigating marine plastic pollution. Commercially available biodegradable polymers, such as poly(L-lactide) (PLA), undergo slow degradation in complex marine environments. This study introduces an innovative bioplastic design that employs a facile ring-opening and coupling reaction to incorporate hydrophilic polyethylene glycol (PEG) into PLA, yielding PEG-PLA copolymers with either sequence-controlled alternating or random structures. These materials exhibit exceptional toughness in both wet and dry states, with an elongation at break of 1446.8% in the wet state. Specifically, PEG4kPLA2k copolymer biodegraded rapidly in proteinase K enzymatic solutions and had a significant weight loss of 71.5% after 28 d in seawater. The degradation primarily affects the PLA segments within the PEG-PLA copolymer, as evidenced by structural changes confirmed through comprehensive characterization techniques. The seawater biodegradability, in line with the Organization for Economic Cooperation and Development 306 Marine biodegradation test guideline, reached 72.63%, verified by quantitative biochemical oxygen demand analysis, demonstrating rapid chain scission in marine environments. The capacity of PEG-PLA bioplastic to withstand DI water and rapidly biodegrade in seawater makes it a promising candidate for preventing marine plastic pollution.


Subject(s)
Biodegradation, Environmental , Polyesters , Polyethylene Glycols , Seawater , Seawater/microbiology , Polyesters/chemistry , Polyesters/metabolism , Polyethylene Glycols/chemistry , Biodegradable Plastics/chemistry , Water Pollutants, Chemical/chemistry , Water Pollutants, Chemical/metabolism
19.
J Hazard Mater ; 475: 134834, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-38889460

ABSTRACT

Organophosphate esters (OPEs) are widely used commercial additives, but their environmental persistence and toxicity raise serious concerns necessitating associated remediation strategies. Although there are various existing technologies for OPE removal, comprehensive screening for them is urgently needed to guide further research. This review provides a comprehensive overview of the techniques used to remove OPEs from soil and water, including their related influencing factors, removal mechanisms/degradation pathways, and practical applications. Based on an analysis of the latest literature, we concluded that (1) methods used to decontaminate OPEs include adsorption, hydrolysis, photolysis, advanced oxidation processes (AOPs), activated sludge processes, and microbial degradation; (2) factors such as the quantity/characteristics of the catalysts/additives, pH value, inorganic ion concentration, and natural organic matter (NOM) affect OPE removal; (3) primary degradation mechanisms involve oxidation induced by reactive oxygen species (ROS) (including •OH and SO4•-) and degradation pathways include hydrolysis, hydroxylation, oxidation, dechlorination, and dealkylation; (5) interference from the pH value, inorganic ion and the presence of NOM may limit complete mineralization during the treatment, impacting practical application of OPE removal techniques. This review provides guidance on existing and potential OPE removal methods, providing a theoretical basis and innovative ideas for developing more efficient and environmentally friendly techniques to treat OPEs in soil and water.


Subject(s)
Environmental Restoration and Remediation , Esters , Organophosphates , Soil Pollutants , Water Pollutants, Chemical , Esters/chemistry , Soil Pollutants/chemistry , Water Pollutants, Chemical/chemistry , Environmental Restoration and Remediation/methods , Organophosphates/chemistry , Organophosphates/toxicity , Water Purification/methods
20.
ACS Appl Mater Interfaces ; 16(27): 35006-35012, 2024 Jul 10.
Article in English | MEDLINE | ID: mdl-38935752

ABSTRACT

Na2Ti3O7 has attracted significant attention due to its ecofriendliness and cost-effectiveness for sodium-ion batteries. However, their limited cycling stability hampers their practical applications. Herein, we elucidate a mechanism of structural degradation caused by the heterogeneous phase transition in the Na2Ti3O7 anode using aberration-corrected (scanning) transmission electron microscopy (S)TEM and in situ TEM. It is found that the unevenly distributed phase transition results in the accumulation of strain, which promotes the growth of microcracks and eventually leads to structural decomposition and electrochemical failure. Motivated by this degradation mechanism, nanowires were proposed, and the structural stability is thus improved with the lattice strain effectively released. These findings deepen our understanding of ion transport and degradation mechanisms in intercalated layered electrode materials while emphasizing the significance of the material structure engineered for improving electrode performance.

SELECTION OF CITATIONS
SEARCH DETAIL