Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 533
Filter
1.
Theranostics ; 14(13): 5141-5151, 2024.
Article in English | MEDLINE | ID: mdl-39267785

ABSTRACT

Rationale: One of the main challenges in chemotherapy is achieving high treatment efficacy while minimizing adverse events. Fully exploiting the therapeutic potential of an old drug and monitoring its effects in vivo is highly valuable, but often difficult to achieve. Methods: In this study, by encapsulating disulfiram (DSF) approved by US Food and Drug Administration, semiconducting polymer nanocomplex (MEHPPV), and Chlorin e6 into a polymeric matrix F127 via nanoprecipitation method, a nanosystem (FCMC) was developed for afterglow imaging guided cancer treatment. The characteristics, stability as well as the ability of singlet oxygen (1O2) production of FCMC were first carefully examined. Then, we studied the mechanism for enhanced anti-cancer efficiency and afterglow luminescence in vitro. For experiments in vivo, 4T1 subcutaneous xenograft tumor mice were injected with FCMC via the tail vein every three days and the antitumor effect of FCMC was evaluated by monitoring tumor volume and body weight every three day. Results: The nanosystem, which combines DSF with Ce6, can generates abundant 1O2 that enhances the antitumor activity of DSF. The in vivo results show that FCMC-treated group exhibits an obviously higher tumor-growth inhibition rate of 67.89% after 15 days of treatment, compared to the control group of F127@MEHPPV-CuET. Moreover, Ce6 also greatly enhances the afterglow luminescence intensity of MEHPPV and promotes the redshift of the afterglow emission towards the ideal near-infrared imaging window, thereby enabling efficient afterglow tumor imaging in vivo. Conclusions: This multifunctional nanoplatform not only improves the anticancer efficacy of DSF, but also enables monitoring tumor via robust afterglow imaging, thus exhibiting great potential for cancer therapy and early therapeutic outcome prediction.


Subject(s)
Chlorophyllides , Disulfiram , Polymers , Porphyrins , Animals , Disulfiram/pharmacology , Disulfiram/chemistry , Porphyrins/pharmacology , Porphyrins/chemistry , Mice , Polymers/chemistry , Cell Line, Tumor , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Antineoplastic Agents/administration & dosage , Female , Mice, Inbred BALB C , Singlet Oxygen/metabolism , Nanoparticles/chemistry , Semiconductors , Humans , Xenograft Model Antitumor Assays , Optical Imaging/methods
2.
Acta Pharm Sin B ; 14(8): 3697-3710, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39220876

ABSTRACT

Due to the insufficient Cu+ accumulation, Cu+ efflux mechanism, and highly immunosuppressive tumor microenvironment (TME) in lung metastasis, the cuproptosis efficacy is limited. Herein, an inhalable nanodevice (CLDCu) is constructed to successfully overcome the drawbacks of cuproptosis. CLDCu consists of a Cu2+-chitosan shell and low molecular weight heparin-tocopherol succinate (LMWH-TOS, LT) core with disulfiram (DSF) loading. The prepared CLDCu can be inhaled and accumulate in large amounts in lung lesions (63.6%) with 56.5 times higher than intravenous injection. Within tumor cells, the mild acidity triggers the co-release of DSF and Cu2+, thus generating bis(diethyldithiocarbamate)-copper (CuET) to block Cu+ efflux protein ATP7B and forming toxic Cu+, leading to enhanced cuproptosis. Meanwhile, the released chitosan cooperates with CLDCu-induced cuproptosis to activate stimulator of interferon genes (STING) pathway, which significantly potentiates dendritic cells (DCs) maturation, as wells as evokes innate and adaptive immunity. In lung metastatic mice model, CLDCu is found to induce cuproptosis and reverse the immunosuppressive TME by inhalation administration. Moreover, CLDCu combined with anti-programmed cell death protein ligand-1 antibody (aPD-L1) provokes stronger antitumor immunity. Therefore, nanomedicine that combines cuproptosis with STING activation is a novel strategy for tumor immunotherapy.

3.
IDCases ; 37: e02056, 2024.
Article in English | MEDLINE | ID: mdl-39247452

ABSTRACT

Disulfiram-like reactions occur when alcohol is consumed concurrently with certain drugs and can sometimes be fatal. Some cephalosporins such as cefoperazone could cause disulfiram-like reaction, known as cephalosporin-induced disulfiram-like reactions (CIDLRs). We describe a case of cefmetazole (CMZ)-treated CIDLR triggered by alcohol consumption. A 72-year-old Japanese man, treated with CMZ for perforated appendicitis and subsequent paralytic ileus, presented with skin flushing and chest discomfort, developing 30 min after consuming usual meals and alcohol. CIDLR was diagnosed due to recent use of CMZ and the symptoms alleviated without any medication. This is the first case report of a CMZ-induced disulfiram-like reaction.

4.
J Colloid Interface Sci ; 678(Pt B): 866-877, 2024 Sep 06.
Article in English | MEDLINE | ID: mdl-39270387

ABSTRACT

Disulfiram (DSF) is a safe drug with negligible toxicity and Cu-dependent anti-tumor efficacy. However, the accumulation and combination of DSF and Cu in non-tumor tissues leads to systemic toxicity owing to the formation of highly poisonous diethyldithiocarbamate (CuET). In addition, CuET-mediated tumor-killing reactive oxygen species may be weakened by intra-tumoral glutathione (GSH). Herein, a synergistic treatment was developed that utilized the oral delivery of DSF and an injectable polyphenol-copper (PA-Cu) hydrogel loaded with the glutamine uptake inhibitor 2-amino-4-bis(phenoxymethyl)aminobutane (V9302). The injectable hydrogels were synthesized by the Schiff base reaction of hydroxypropyl chitosan (HPCS) with a PA-Cu reversible cross-linking agent. Because of the dynamic coordination between PA and Cu, the PA-Cu/HPCS hydrogel gradually releases Cu2+, forming CuET with DSF. The released V9302 inhibits glutamine uptake, thereby suppressing GSH synthesis and enhancing the therapeutic efficacy of the in situ formed CuET. The synergistic effect of PA-Cu/HPCS/V9302 and DSF in eliminating intracellular GSH and killing tumor cells was validated by in vitro cell experiments. Animal experiments further confirmed that PA-Cu/HPCS/V9302 and DSF have an inhibitory effect on tumor growth while maintaining the biosafety of main organs.

5.
Biochim Biophys Acta Mol Basis Dis ; 1870(8): 167455, 2024 Aug 05.
Article in English | MEDLINE | ID: mdl-39111630

ABSTRACT

Cancer cells lacking functional p53 exhibit poor prognosis, necessitating effective treatment strategies. Inhibiting WEE1, the G2/M cell cycle checkpoint gatekeeper, represents a promising approach for treating p53-deficient NSCLC. Here, we investigate the connection between p53 and WEE1, as well as explore a synergistic therapeutic approach for managing p53-deficient NSCLC. Our study reveals that p53 deficiency upregulates both protein levels and kinase activity of WEE1 by inhibiting its SUMOylation process, thereby enhancing the susceptibility of p53-deficient NSCLC to WEE1 inhibitors. Furthermore, we demonstrate that the WEE1 inhibitor Adavosertib induces intracellular lipid peroxidation, specifically in p53-deficient NSCLC cells, suggesting potential synergy with pro-oxidant reagents. Repurposing Disulfiram (DSF), an alcoholism medication used in combination with copper (Cu), exhibits pro-oxidant properties against NSCLC. The levels of WEE1 protein in p53-deficient NSCLC cells treated with DSF-Cu exhibit a time-dependent increase. Subsequent evaluation of the combination therapy involving Adavosertib and DSF-Cu reveals reduced cell viability along with smaller tumor volumes and lighter tumor weights observed in both p53-deficient cells and xenograft models while correlating with solute carrier family 7-member 11 (SLC7A11)/glutathione-regulated ferroptosis pathway activation. In conclusion, our findings elucidate the molecular interplay between p53 and WEE1 and unveil a novel synergistic therapeutic strategy for treating p53-deficient NSCLC.

6.
Neuroscience ; 557: 51-55, 2024 Oct 04.
Article in English | MEDLINE | ID: mdl-39137869

ABSTRACT

Subarachnoid hemorrhage due to rupture of intracranial aneurysms has a poor outcome, making this disease being the social problem. Inflammation evoked by the increase in intracranial pressure and the clot in the subarachnoid space after the onset of SAH exacerbates neuronal death and vasospasm, resulting in the poor outcome and severe aftereffects. Here, FROUNT mediates CCR2 and CCR5 signaling as an intracellular molecule binding to these chemoattractant receptors which facilitate the migration of inflammatory cells, such as macrophages, in situ to trigger inflammation there. Animal model of subarachnoid hemorrhage was established in rats through intrathecal injection of autologous blood. The effect of the FROUNT inhibitor, disulfiram, on survival rate, neuronal death in hippocampus or vasospasm was then examined. The intrathecal administration of disulfiram significantly suppressed the infiltration of CD68-positive macrophages and myeloperoxidase-positive neutrophils toward the clot in the cistern in situ. In this condition, disulfiram ameliorated the death of animals after the onset of subarachnoid hemorrhage in rats. In addition, disulfiram suppressed both the two major events after subarachnoid hemorrhage, the neuronal death in hippocampus and vasospasm. The pharmacological inhibition of CCR2 and CCR5 signaling by disulfiram could thus be the therapeutic strategy to improve the outcome of subarachnoid hemorrhage.


Subject(s)
Disulfiram , Rats, Sprague-Dawley , Subarachnoid Hemorrhage , Animals , Disulfiram/pharmacology , Subarachnoid Hemorrhage/drug therapy , Subarachnoid Hemorrhage/metabolism , Male , Vasospasm, Intracranial/drug therapy , Vasospasm, Intracranial/metabolism , Receptors, CCR2/metabolism , Receptors, CCR2/antagonists & inhibitors , Disease Models, Animal , Hippocampus/drug effects , Hippocampus/metabolism , Receptors, CCR5/metabolism , Macrophages/drug effects , Macrophages/metabolism , Rats , Prognosis , Neurons/drug effects , Neurons/metabolism , Neurons/pathology , Cell Death/drug effects , Cell Death/physiology , Antigens, Differentiation, Myelomonocytic/metabolism
7.
Biotechniques ; 76(7): 343-351, 2024.
Article in English | MEDLINE | ID: mdl-39185783

ABSTRACT

O6-Methylguanine-DNA methyltransferase (MGMT) is a DNA repair enzyme that is overexpressed in certain tumors and is associated with resistance to the DNA alkylating agent temozolomide. MGMT inhibitors show potential in combating temozolomide resistance, but current assays for MGMT enzyme activity and inhibition, primarily oligonucleotide-based and fluorescent probe-based, are laborious and costly. The clinical relevance of temozolomide therapy calls for more convenient methodologies to study MGMT inhibition. Here, we extended the application of SNAP-Capture magnetic beads to develop a novel MGMT inhibition assay that demonstrated efficacy not only with known MGMT inhibitors, but also with the aldehyde dehydrogenase inhibitor, disulfiram. The assay uses standard fluorescence microscopy as a simple and reliable detection method, and is translationally applicable in drug discovery programs.


A cell line expressing MGMT-GFP fusion protein was generated. After harvesting the cells, the cell lysate was prepared and combined with SNAP-Capture magnetic beads and incubated at room temperature. Successful immobilization of MGMT-GFP on SNAP-Capture magnetic beads was verified by fluorescence microscopy. For the MGMT inhibition assay, the cell lysate underwent pre-treatment with established MGMT inhibitors before interaction with SNAP-capture magnetic beads and then underwent immobilization and fluorescence microscopy.


Subject(s)
Enzyme Inhibitors , O(6)-Methylguanine-DNA Methyltransferase , Humans , O(6)-Methylguanine-DNA Methyltransferase/antagonists & inhibitors , O(6)-Methylguanine-DNA Methyltransferase/metabolism , Enzyme Inhibitors/pharmacology , Disulfiram/pharmacology , Temozolomide/pharmacology , Microscopy, Fluorescence/methods
8.
Cell Rep ; 43(8): 114609, 2024 Aug 27.
Article in English | MEDLINE | ID: mdl-39116210

ABSTRACT

The NLRP3 inflammasome is dysregulated in autoinflammatory disorders caused by inherited mutations and contributes to the pathogenesis of several chronic inflammatory diseases. In this study, we discovered that disulfiram, a safe US Food and Drug Administration (FDA)-approved drug, specifically inhibits the NLRP3 inflammasome but not the NLRC4 or AIM2 inflammasomes. Disulfiram suppresses caspase-1 activation, ASC speck formation, and pyroptosis induced by several stimuli that activate NLRP3. Mechanistically, NLRP3 is palmitoylated at cysteine 126, a modification required for its localization to the trans-Golgi network and inflammasome activation, which was inhibited by disulfiram. Administration of disulfiram to animals inhibited the NLRP3, but not NLRC4, inflammasome in vivo. Our study uncovers a mechanism by which disulfiram targets NLRP3 and provides a rationale for using a safe FDA-approved drug for the treatment of NLRP3-associated inflammatory diseases.


Subject(s)
Disulfiram , Inflammasomes , Lipoylation , NLR Family, Pyrin Domain-Containing 3 Protein , United States Food and Drug Administration , Disulfiram/pharmacology , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Inflammasomes/metabolism , Animals , Humans , Mice , Lipoylation/drug effects , Mice, Inbred C57BL , United States , Caspase 1/metabolism , HEK293 Cells , Drug Approval , Pyroptosis/drug effects
9.
Int J Biol Macromol ; 276(Pt 2): 133955, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39025177

ABSTRACT

Coronaviruses (CoV) are highly pathogenic single-strand RNA viruses. CoV infections cause fatal respiratory symptoms and lung injuries in humans and significant economic losses in livestock. Since the SARS-2 outbreak in 2019, the highly conserved main protease (Mpro), also termed 3-chymotrypsin-like protease (3CLpro), has been considered an attractive drug target for treating CoV infections. Mpro mediates the proteolytic cleavage of eleven sites in viral polypeptides necessary for virus replication. Here, we report that disulfiram, an FDA-approved drug for alcoholic treatment, exhibits a broad-spectrum inhibitory effect on CoV Mpros. Analytical ultracentrifugation and circular dichroism analyses indicated that disulfiram treatment blocks the dimeric formation of SARS and PEDV Mpros and decreases the thermostability of SARS, SARS-2, and PEDV Mpros, whereas it facilitates the dimerization and stability of MERS Mpro. Furthermore, mass spectrometry and structural alignment revealed that disulfiram targets the Cys44 residue of Mpros, which is located at the substrate entrance and close to the catalytic His41. In addition, molecular docking analysis suggests that disulfiram conjugation interferes with substrate entry to the catalytic center. In agreement, mutation of Cys44 modulates the disulfiram sensitivity of CoV Mpros. Our study suggests a broad-spectrum inhibitory function of disulfiram against CoV Mpros.


Subject(s)
Coronavirus 3C Proteases , Disulfiram , Molecular Docking Simulation , Disulfiram/pharmacology , Disulfiram/chemistry , Coronavirus 3C Proteases/antagonists & inhibitors , Coronavirus 3C Proteases/metabolism , Coronavirus 3C Proteases/chemistry , SARS-CoV-2/drug effects , SARS-CoV-2/enzymology , Humans , Catalytic Domain , Substrate Specificity , Protein Multimerization/drug effects , Protease Inhibitors/pharmacology , Protease Inhibitors/chemistry , Antiviral Agents/pharmacology , Antiviral Agents/chemistry
10.
J Cell Mol Med ; 28(14): e18533, 2024 Jul.
Article in English | MEDLINE | ID: mdl-39034442

ABSTRACT

Hepatitis B Virus (HBV) infection significantly elevates the risk of hepatocellular carcinoma (HCC), with the HBV X protein (HBx) playing a crucial role in cancer progression. Sorafenib, the primary therapy for advanced HCC, shows limited effectiveness in HBV-infected patients due to HBx-related resistance. Numerous studies have explored combination therapies to overcome this resistance. Sodium diethyldithiocarbamate (DDC), known for its anticancer effects and its inhibition of superoxide dismutase 1 (SOD1), is hypothesized to counteract sorafenib (SF) resistance in HBV-positive HCCs. Our research demonstrates that combining DDC with SF significantly reduces HBx and SOD1 expressions in HBV-positive HCC cells and human tissues. This combination therapy disrupts the PI3K/Akt/mTOR signalling pathway and promotes apoptosis by increasing reactive oxygen species (ROS) levels. These cellular changes lead to reduced tumour viability and enhanced sensitivity to SF, as evidenced by the synergistic suppression of tumour growth in xenograft models. Additionally, DDC-mediated suppression of SOD1 further enhances SF sensitivity in HBV-positive HCC cells and xenografted animals, thereby inhibiting cancer progression more effectively. These findings suggest that the DDC-SF combination could serve as a promising strategy for overcoming SF resistance in HBV-related HCC, potentially optimizing therapy outcomes.


Subject(s)
Carcinoma, Hepatocellular , Hepatitis B virus , Liver Neoplasms , Phosphatidylinositol 3-Kinases , Proto-Oncogene Proteins c-akt , Reactive Oxygen Species , Signal Transduction , Sorafenib , Superoxide Dismutase-1 , TOR Serine-Threonine Kinases , Sorafenib/pharmacology , Sorafenib/therapeutic use , Humans , Liver Neoplasms/drug therapy , Liver Neoplasms/virology , Liver Neoplasms/metabolism , Liver Neoplasms/pathology , Carcinoma, Hepatocellular/drug therapy , Carcinoma, Hepatocellular/virology , Carcinoma, Hepatocellular/metabolism , Carcinoma, Hepatocellular/pathology , Reactive Oxygen Species/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Superoxide Dismutase-1/metabolism , Superoxide Dismutase-1/genetics , Animals , TOR Serine-Threonine Kinases/metabolism , TOR Serine-Threonine Kinases/antagonists & inhibitors , Phosphatidylinositol 3-Kinases/metabolism , Signal Transduction/drug effects , Mice , Hepatitis B virus/drug effects , Cell Line, Tumor , Xenograft Model Antitumor Assays , Apoptosis/drug effects , Hepatitis B/complications , Hepatitis B/drug therapy , Hepatitis B/virology , Ditiocarb/pharmacology , Drug Resistance, Neoplasm/drug effects , Mice, Nude , Cell Proliferation/drug effects , Trans-Activators , Viral Regulatory and Accessory Proteins
11.
Int J Biol Sci ; 20(9): 3393-3411, 2024.
Article in English | MEDLINE | ID: mdl-38993566

ABSTRACT

Chronic prostatitis is one of the most common urologic diseases that troubles young men, with unclear etiology and ineffective treatment approach. Pyroptosis is a novel model of cell death, and its roles in chronic prostatitis are unknown. In this study, P2X7R, NEK7, and GSDMD-NT expression levels were detected in prostate tissues from benign prostate hyperplasia (BPH) patients and experiment autoimmune prostatitis (EAP) mice. P2X7R agonist, antagonist, NLRP3 inhibitor, and disulfiram were used to explore the roles of the P2X7R-NEK7-NLRP3 axis in prostate epithelial cell pyroptosis and chronic prostatitis development. We found that P2X7R, NEK7, and GSDMD-NT were highly expressed in the prostate epithelial cells of BPH patients with prostatic inflammation and EAP mice. Activation of P2X7R exacerbated prostatic inflammation and increased NLRP3 inflammasome component expressions and T helper 17 (Th17) cell proportion. Moreover, P2X7R-mediated potassium efflux promoted NEK7-NLRP3 interaction, and NLRP3 assembly and activation, which caused GSDMD-NT-mediated prostate epithelial cell pyroptosis to exacerbate EAP development. Disulfiram could effectively improve EAP by inhibiting GSDMD-NT-mediated prostate epithelial cell pyroptosis. In conclusion, the P2X7R-NEK7-NLRP3 axis could promote GSDMD-NT-mediated prostate epithelial cell pyroptosis and chronic prostatitis development, and disulfiram may be an effective drug to treat chronic prostatitis.


Subject(s)
Epithelial Cells , NIMA-Related Kinases , NLR Family, Pyrin Domain-Containing 3 Protein , Phosphate-Binding Proteins , Prostate , Prostatitis , Pyroptosis , Animals , Humans , Male , Mice , Autoimmune Diseases/metabolism , Epithelial Cells/metabolism , Gasdermins , Mice, Inbred C57BL , NIMA-Related Kinases/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Phosphate-Binding Proteins/metabolism , Poly-ADP-Ribose Binding Proteins/metabolism , Prostate/metabolism , Prostatitis/metabolism , Pyroptosis/drug effects , Receptors, Purinergic P2X7/metabolism
12.
Ther Deliv ; : 1-24, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38949622

ABSTRACT

Aim: The current study aims to develop and optimize microemulsions (ME) through Quality-by-Design (QbD) approach to improve the aqueous solubility and dissolution of poorly water-soluble drug disulfiram (DSF) for repurposing in melanoma and breast cancer therapy. Materials & methods: The ME was formulated using Cinnamon oil & Tween® 80, statistically optimized using a D-optimal mixture design-based QbD approach to develop the best ME with low vesicular size (Zavg) and polydispersity index (PDI). Results: The DSF-loaded optimized stable ME showed enhanced dissolution, in-vitro cytotoxicity and improved cellular uptake in B16F10 and MCF-7 cell lines compared with their unformulated free DSF. Conclusion: Our investigations suggested the potential of the statistically designed DSF-loaded optimized ME for repurposing melanoma and breast cancer therapy.


Identifying new medicinal uses of an existing marketed drug can save both money and time in the process of drug development. From many of the recently reported literature, disulfiram (a drug used for alcoholism) has shown its activity against various cancers, including breast and skin cancer. However, it possesses poor water solubility and absorption, leading to low medicinal activity. The current study aims to develop a novel microemulsion dosage form through a statistical design approach to enhance the solubility, dissolution and anticancer activity for repurposing in melanoma and breast cancer treatment. The novel microemulsion was prepared, statistically analyzed and optimized. The optimized microemulsion was found to be stable and showed improved medicinal activity against breast and skin cancer compared with the pure drug. Our research showed the potential of the developed microemulsion of the disulfiram for its new therapeutic use in skin cancer and breast cancer.

13.
Nanomaterials (Basel) ; 14(13)2024 Jun 30.
Article in English | MEDLINE | ID: mdl-38998738

ABSTRACT

Disulfiram (DS) has been shown to have potent anti-cancer activity; however, it is also characterised by its low water solubility and rapid metabolism in vivo. Biodegradable polylactic-co-glycolic acid (PLGA) polymers have been frequently employed in the manufacturing of PLGA nano-carrier drug delivery systems. Thus, to develop DS-loaded PLGA nanoparticles (NPs) capable of overcoming DS's limitations, two methodologies were used to formulate the NPs: direct nanoprecipitation (DNP) and single emulsion/solvent evaporation (SE), followed by particle size reduction. The DNP method was demonstrated to produce NPs of superior characteristics in terms of size (151.3 nm), PDI (0.083), charge (-37.9 mV), and loading efficiency (65.3%). Consequently, NPs consisting of PLGA and encapsulated DS coated with mPEG2k-PLGA at adjustable ratios were prepared using the DNP method. Formulations were then characterised, and their stability in horse serum was assessed. Results revealed the PEGylated DS-loaded PLGA nano-carriers to be more efficient; hence, in-vitro studies testing these formulations were subsequently performed using two distinct breast cancer cell lines, showing great potential to significantly enhance cancer therapy.

14.
Daru ; 2024 Jul 04.
Article in English | MEDLINE | ID: mdl-38963538

ABSTRACT

BACKGROUND: Melanoma poses a significant threat to human health, making the development of a safe and effective treatment a crucial challenge. Disulfiram (DS) is a proven anticancer drug that has shown effectiveness when used in combination with copper (DS-Cu complex). OBJECTIVES: This study focuses on encapsulation of DS-copper complex into nanofiber scaffold from polyvinyl alcohol (PVA) (DS-Cu@PVA). In order to increase bioavailability towards melanoma cell lines and decrease its toxicity. METHODS: The scaffold was fabricated through an electrospinning process using an aqueous solution, and subsequently analyzed using ART-Fourier transform infrared spectroscopy (ART-FTIR), scanning electron microscopy (SEM), and energy dispersive X-ray analysis (EDX). Additionally, cellular cytotoxicity, flow cytometry analysis, and determination of caspase 3 activity were conducted to further characterize the scaffold. RESULTS: The results confirmed that encapsulation of DS-Cu complex into PVA was successful via different characterization. The scanning electron microscopy (SEM) analysis revealed that the diameter of the nanofibers remained consistent despite the addition of DS-Cu. Additionally, ATR-FTIR confirmed that the incorporation of DS-Cu into PVA did not significantly alter the characteristic peaks of PVA. Furthermore, the cytotoxicity assessment of the DS-Cu@PVA nanofibrous scaffold using human normal skin cells (HFB4) demonstrated its superior biocompatibility compared to DS-Cu-free counterparts. Notably, the presence of DS-Cu maintained its effectiveness in promoting apoptosis by increasing cellular reactive oxygen species, proapoptotic gene expression, and caspase 3 activity, while simultaneously reducing glutathione levels and oncogene expression in human and mouse melanoma cell lines (A375 and B16F10, respectively). Overall, these findings suggest that the addition of DS-Cu to PVA nanofibers enhances their biocompatibility and cytotoxic effects on melanoma cells, making them a promising candidate for biomedical applications. CONCLUSION: The findings indicate that the targeted delivery of DS-Cu onto a PVA nanofiber scaffold holds potential approach to enhance the efficacy of DS-Cu in combating melanoma.

15.
Pharmacol Res ; 206: 107264, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38876443

ABSTRACT

Disturbances in copper (Cu) homeostasis have been observed in diabetes and associated complications. Cu is an essential micronutrient that plays important roles in various fundamental biological processes. For example, diabetic cardiomyopathy is associated with elevated levels of Cu in the serum and tissues. Therefore, targeting Cu may be a novel treatment strategy for diabetic complications. This review provides an overview of physiological Cu metabolism and homeostasis, followed by a discussion of Cu metabolism disorders observed during the occurrence and progression of diabetic complications. Finally, we discuss the recent therapeutic advances in the use of Cu coordination complexes as treatments for diabetic complications and their potential mechanisms of action. This review contributes to a complete understanding of the role of Cu in diabetic complications and demonstrates the broad application prospects of Cu-coordinated compounds as potential therapeutic agents.


Subject(s)
Copper , Diabetes Complications , Humans , Copper/metabolism , Animals , Diabetes Complications/metabolism , Diabetes Complications/drug therapy , Homeostasis
16.
Acta Pharm Sin B ; 14(6): 2698-2715, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38828135

ABSTRACT

Drug repurposing offers a valuable strategy for identifying new therapeutic applications for existing drugs. Recently, disulfiram (DSF), a drug primarily used for alcohol addiction treatment, has emerged as a potential treatment for inflammatory diseases by inhibiting pyroptosis, a form of programmed cell death. The therapeutic activity of DSF can be further enhanced by the presence of Cu2+, although the underlying mechanism of this enhancement remains unclear. In this study, we investigated the mechanistic basis of Cu2+-induced enhancement and discovered that it is attributed to the formation of a novel copper ethylthiocarbamate (CuET) complex. CuET exhibited significantly stronger anti-pyroptotic activity compared to DSF and employed a distinct mechanism of action. However, despite its potent activity, CuET suffered from poor solubility and limited permeability, as revealed by our druggability studies. To overcome these intrinsic limitations, we developed a scalable method to prepare CuET nanocrystals (CuET NCs) using a metal coordination-driven self-assembly approach. Pharmacokinetic studies demonstrated that CuET NCs exhibited a 6-fold improvement in bioavailability. Notably, CuET NCs exhibited high biodistribution in the intestine, suggesting their potential application for the treatment of inflammatory bowel diseases (IBDs). To evaluate their therapeutic efficacy in vivo, we employed a murine model of DSS-induced colitis and observed that CuET NCs effectively attenuated inflammation and ameliorated colitis symptoms. Our findings highlight the discovery of CuET as a potent anti-pyroptotic agent, and the development of CuET NCs represents a novel approach to enhance the druggability of CuET.

17.
Pharmaceuticals (Basel) ; 17(6)2024 Jun 07.
Article in English | MEDLINE | ID: mdl-38931416

ABSTRACT

The treatment adherence of narcotics-addicted individuals with reduced incidences of relapse can be enhanced by a sustained drug release formulation of antinarcotics. So far, different drug formulations have been reported with sustained drug release periods of 28 and 35 days. To further enhance this duration, different formulations of injectable hydrogels (IHs) have been developed by combining low molecular weight (LMW) and high molecular weight (HMW) chitosan (CS) with guar gum (GG) and crosslinking them by sodium bi phosphate dibasic. The structural, morphological, and physicochemical properties of LMW-CS IH, and HMW-CS IH were evaluated using Fourier transform infrared spectroscopy (FT-IR), thermo-gravimetric analysis (TGA), scanning electron microscopy (SEM), and rheological, swelling, and biodegradation analysis. The HMW-CS IH showed high crosslinking, increased thermal stability, high mechanical strength, elevated swelling, and low biodegradation. The antinarcotic drugs naltrexone (NTX) and disulfiram (DSF) were loaded separately into the HMW-CS IH and LMW-CS IH. The release of NTX and DSF was investigated in phosphate buffer saline (PBS) and ethanol (0.3%, 0.4%, and 0.5%) over a 56-day period using an UV spectrophotometer. The drug release data were tested in zero-order, first-order, and Korsemeyer-Peppas mathematical models. In PBS, all prepared formulations followed non-Fickian drug release, while in ethanol, only NTX HMW-CS IH followed non-Fickian release in all three different concentrations of ethanol.

18.
Pharmacol Res ; 205: 107256, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38866263

ABSTRACT

Inflammation is a crucial factor in cardiac remodeling after acute myocardial infarction (MI). Neutrophils, as the first wave of leukocytes to infiltrate the injured myocardium, exacerbate inflammation and cardiac injury. However, therapies that deplete neutrophils to manage cardiac remodeling after MI have not consistently produced promising outcomes. Recent studies have revealed that neutrophils at different time points and locations may have distinct functions. Thus, transferring neutrophil phenotypes, rather than simply blocking their activities, potentially meet the needs of cardiac repair. In this review, we focus on discussing the fate, heterogeneity, functions of neutrophils, and attempt to provide a more comprehensive understanding of their roles and targeting strategies in MI. We highlight the strategies and translational potential of targeting neutrophils to limit cardiac injury to reduce morbidity and mortality from MI.


Subject(s)
Myocardial Infarction , Neutrophils , Humans , Myocardial Infarction/drug therapy , Myocardial Infarction/immunology , Neutrophils/immunology , Neutrophils/drug effects , Animals , Myocardium/pathology , Myocardium/immunology , Myocardium/metabolism
19.
Free Radic Biol Med ; 222: 130-148, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38866192

ABSTRACT

The clinical application of the therapeutic approach in myelodysplastic syndromes (MDS) remains an insurmountable challenge for the high propensity for progressing to acute myeloid leukemia and predominantly affecting elderly individuals. Thus, the discovery of molecular mechanisms underlying the regulatory network of different programmed cell death holds great promise for the identification of therapeutic targets and provides insights into new therapeutic avenues. Herein, we found that disulfiram/copper (DSF/Cu) significantly repressed the cell viability, increased reactive oxygen species (ROS) accumulation, destroyed mitochondrial morphology, and altered oxygen consumption rate. Further studies verified that DSF/Cu induces cuproptosis, as evidenced by the depletion of glutathione (GSH), aggregation of lipoylated DLAT, and induced loss of Fe-S cluster-containing proteins, which could be rescued by tetrathiomolybdate and knockdown of ferredoxin 1 (FDX1). Additionally, GSH contributed to the tolerance of DSF/Cu-mediated cuproptosis, while pharmacological chelation of GSH triggered ROS accumulation and sensitized cell death. The xCT-GSH-GPX4 axis is the ideal downstream component of ferroptosis that exerts a powerful protective mechanism. Notably, classical xCT inhibitors were capable of leading to the catastrophic accumulation of ROS and exerting synergistic cell death, while xCT overexpression restored these phenomena. Simvastatin, an inhibitor of HMG-CoA (3-hydroxy-3-methylglutaryl-coenzyme A) reductase, has beneficial effects in repurposing for inhibiting GPX4. Similarly, the combination treatment of DSF/Cu and simvastatin dramatically decreased the expression of GPX4 and Fe-S proteins, ultimately accelerating cell death. Moreover, we identified that the combination treatment of DSF/Cu and simvastatin also had a synergistic antitumor effect in the MDS mouse model, with the reduced GPX4, increased COX-2 and accumulated lipid peroxides. Overall, our study provided insight into developing a novel synergistic strategy to sensitize MDS therapy by targeting ferroptosis and cuproptosis.


Subject(s)
Disulfiram , Ferroptosis , Glutathione , Myelodysplastic Syndromes , Phospholipid Hydroperoxide Glutathione Peroxidase , Reactive Oxygen Species , Myelodysplastic Syndromes/drug therapy , Myelodysplastic Syndromes/metabolism , Myelodysplastic Syndromes/pathology , Myelodysplastic Syndromes/genetics , Humans , Glutathione/metabolism , Mice , Animals , Disulfiram/pharmacology , Ferroptosis/drug effects , Phospholipid Hydroperoxide Glutathione Peroxidase/metabolism , Phospholipid Hydroperoxide Glutathione Peroxidase/genetics , Reactive Oxygen Species/metabolism , Copper/metabolism , Amino Acid Transport System y+/metabolism , Amino Acid Transport System y+/genetics , Amino Acid Transport System y+/antagonists & inhibitors , Signal Transduction/drug effects , Cell Survival/drug effects
20.
Biochim Biophys Acta Mol Basis Dis ; 1870(7): 167320, 2024 10.
Article in English | MEDLINE | ID: mdl-38936515

ABSTRACT

Postmenopausal women experience bone loss and weight gain. To date, crosstalk between estrogen receptor signals and nuclear factor-κB (NF-κB) has been reported, and estrogen depletion enhances bone resorption by osteoclasts via NF-κB activation. However, it is unclear when and in which tissues NF-κB is activated after menopause, and how NF-κB acts as a common signaling molecule for postmenopausal weight gain and bone loss. Therefore, we examined the role of NF-κB in bone and energy metabolism following menopause. NF-κB reporter mice, which can be used to measure NF-κB activation in vivo, were ovariectomized (OVX) and the luminescence intensity after OVX increased in the metaphyses of the long bones and perigonadal white adipose tissue, but not in the other tissues. OVX was performed on wild-type (WT) and p65 mutant knock-in (S534A) mice, whose mutation enhances the transcriptional activity of NF-κB. Weight gain with worsening glucose tolerance was significant in S534A mice after OVX compared with those of WT mice. The bone density of the sham group in WT or S534A mice did not change, whereas in the S534A-OVX group it significantly decreased due to the suppression of bone formation and increase in bone marrow adipocytes. Disulfiram, an anti-alcoholic drug, suppressed OVX-induced activation of NF-κB in the metaphyses of long bones and white adipose tissue (WAT), as well as weight gain and bone loss. Overall, the activation of NF-κB in the metaphyses of long bones and WAT after OVX regulates post-OVX weight gain and bone loss.


Subject(s)
Bone Resorption , NF-kappa B , Ovariectomy , Signal Transduction , Weight Gain , Animals , Ovariectomy/adverse effects , Female , Mice , NF-kappa B/metabolism , Bone Resorption/metabolism , Bone Resorption/pathology , Humans , Bone Density , Mice, Inbred C57BL , Transcription Factor RelA/metabolism , Transcription Factor RelA/genetics
SELECTION OF CITATIONS
SEARCH DETAIL