Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters








Database
Language
Publication year range
1.
Proc Natl Acad Sci U S A ; 120(30): e2305187120, 2023 07 25.
Article in English | MEDLINE | ID: mdl-37459543

ABSTRACT

Genetic alterations are often acquired during prolonged propagation of pluripotent stem cells (PSCs). This ruins the stem cell quality and hampers their full applications. Understanding how PSCs maintain genomic integrity would provide the clues to overcome the hurdle. It has been known that embryonic stem cells (ESCs) utilize high-fidelity pathways to ensure genomic stability, but the underlying mechanisms remain largely elusive. Here, we show that many DNA damage response and repair genes display differential alternative splicing in mouse ESCs compared to differentiated cells. Particularly, Rev1 and Polq, two key genes for mutagenic translesion DNA synthesis (TLS) and microhomology-mediated end joining (MMEJ) repair pathways, respectively, display a significantly higher rate of cryptic exon (CE) inclusion in ESCs. The frequent CE inclusion disrupts the normal protein expressions of REV1 and POLθ, thereby suppressing the mutagenic TLS and MMEJ. Further, we identify an ESC-specific RNA binding protein DPPA5A which stimulates the CE inclusion in Rev1 and Polq. Depletion of DPPA5A in mouse ESCs decreased the CE inclusion of Rev1 and Polq, induced the protein expression, and stimulated the TLS and MMEJ activity. Enforced expression of DPPA5A in NIH3T3 cells displayed reverse effects. Mechanistically, we found that DPPA5A directly regulated CE splicing of Rev1. DPPA5A associates with U2 small nuclear ribonucleoprotein of the spliceosome and binds to the GA-rich motif in the CE of Rev1 to promote CE inclusion. Thus, our study uncovers a mechanism to suppress mutagenic TLS and MMEJ pathways in ESCs.


Subject(s)
Mutagens , Nucleotidyltransferases , Animals , Mice , Nucleotidyltransferases/genetics , Nucleotidyltransferases/metabolism , Mouse Embryonic Stem Cells/metabolism , NIH 3T3 Cells , Nuclear Proteins/genetics , Nuclear Proteins/metabolism , DNA , DNA Damage
2.
Mol Cell ; 73(4): 815-829.e7, 2019 02 21.
Article in English | MEDLINE | ID: mdl-30772174

ABSTRACT

Somatic cells can be reprogrammed into induced pluripotent stem cells (iPSCs), which is a highly heterogeneous process. Here we report the cell fate continuum during somatic cell reprogramming at single-cell resolution. We first develop SOT to analyze cell fate continuum from Oct4/Sox2/Klf4- or OSK-mediated reprogramming and show that cells bifurcate into two categories, reprogramming potential (RP) or non-reprogramming (NR). We further show that Klf4 contributes to Cd34+/Fxyd5+/Psca+ keratinocyte-like NR fate and that IFN-γ impedes the final transition to chimera-competent pluripotency along the RP cells. We analyze more than 150,000 single cells from both OSK and chemical reprograming and identify additional NR/RP bifurcation points. Our work reveals a generic bifurcation model for cell fate decisions during somatic cell reprogramming that may be applicable to other systems and inspire further improvements for reprogramming.


Subject(s)
Cell Differentiation/genetics , Cell Lineage/genetics , Cellular Reprogramming Techniques , Cellular Reprogramming/genetics , Induced Pluripotent Stem Cells/physiology , Mouse Embryonic Stem Cells/physiology , Sequence Analysis, RNA , Single-Cell Analysis , Animals , Female , Gene Expression Regulation, Developmental , Induced Pluripotent Stem Cells/metabolism , Interferon-gamma/genetics , Interferon-gamma/metabolism , Kruppel-Like Factor 4 , Male , Mice , Mice, 129 Strain , Mice, Inbred C57BL , Mice, Inbred CBA , Mice, Transgenic , Mouse Embryonic Stem Cells/metabolism , Phenotype , Signal Transduction , Transcription Factors/genetics , Transcription Factors/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL