Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 3.994
Filter
1.
Front Bioeng Biotechnol ; 12: 1416659, 2024.
Article in English | MEDLINE | ID: mdl-39100621

ABSTRACT

The treatment of aseptic inflammation has always been a clinical challenge. At present, non-steroidal drug-loaded microspheres have been widely used in the treatment of aseptic inflammation due to their excellent injectable and sustained release capabilities. In this study, ketoprofen-loaded shellac microspheres (Keto-SLAC) were prepared by electrospray. Alterations of Keto-SLAC morphology was observed in response to changed shellac concentration in ethanol solution through electrospray. Further examination revealed that ketoprofen presented as amorphous solid dispersion in the shellac microspheres. Most importantly, it was also shown that ketoprofen can be slowly released from the shellac matrix for up to 3 weeks. In vitro cell experiments verified that the microspheres had favorable cell compatibility. We therefore proposed that the prepared microspheres, being readily available in use in a variety of clinical settings through topical application, have promising therapeutic potential for the treatment of aseptic inflammation.

2.
Cureus ; 16(7): e63678, 2024 Jul.
Article in English | MEDLINE | ID: mdl-39092342

ABSTRACT

Background Periodontal disease is a chronic inflammatory condition that gradually deteriorates the supportive tissues of teeth, eventually leading to tooth loss. Mechanical debridement stands as the gold standard method for treating periodontitis. However, antimicrobial therapy is recommended for optimal results when used alongside mechanical debridement. Numerous studies have investigated local drug delivery as an adjunct to mechanical debridement of affected tooth surfaces. Ocimum sanctum exhibits anti-inflammatory, antioxidant, and antimicrobial properties. Similarly, curcumin, as documented in the literature, demonstrates a broad spectrum of anti-inflammatory and antimicrobial effects. Electrospinning has demonstrated itself to be a highly effective method for fabricating drug-loaded fibers. Electrospun nanofibers containing Ocimum sanctum and curcumin are expected to exhibit greater efficacy due to their increased surface area, facilitating the dispersion of larger quantities of drugs, and their ability to control drug release when employed as a local drug delivery system. This study aims to fabricate and characterize the properties of nanofiber membranes loaded with Ocimum sanctum and curcumin using the electrospinning technique. Methods About 50 mg each of Ocimum sanctum and curcumin were blended with 15% polyvinyl alcohol and 2% chitosan polymer in a 4:1 ratio and left to stir overnight. A 10 mL syringe was filled with this solution, and an 18 G blunt-end needle charged at 15.9 kV was used for extrusion. Continuous fibers were collected onto a collector plate positioned 12 cm from the center of the needle tip, at a flow rate of 0.005 mL/min. The morphology of the fabricated membrane was assessed through scanning electron microscopy (SEM), the strength of the material was assessed through tensile strength analysis using INSTRON, an Electropuls E3000 Universal Testing Machine (INSTRON, Norwood, MA), and the drug release pattern was analyzed using Jasco V-730 UV-visible spectrophotometer (Jasco, Easton, MD). Results The morphology of this nanofiber showed a random distribution of fibers with no bead formation. The average diameter of the membrane was 383±102 nm, and the tensile strength of this material was 1.87 MPa. The drug release pattern showed an initial burst release of Ocimum sanctum, followed by a controlled release in subsequent hours. However, curcumin showed very little drug release because of its solubility. Conclusion In summary, the Ocimum sanctum and curcumin-loaded nanofibers exhibited robust tensile strength, a controlled drug release profile, and uniform drug distribution within the nanofiber membrane. Consequently, it can be concluded that curcumin nanofibers and electrospun Ocimum sanctum serve as valuable agents for local drug delivery in the treatment of periodontitis.

3.
Int J Biol Macromol ; : 134651, 2024 Aug 10.
Article in English | MEDLINE | ID: mdl-39134200

ABSTRACT

Garcinia indica, known as kokum, has been extensively researched for its therapeutic potential. Among the wide variety of phytoconstituents, garcinol is the most efficacious, holding anti-inflammatory, anti-cancer, and anti-diabetic properties. Hydrophobicity and a certain level of toxicity have constrained the drug's application and necessitated a modified dosage form design. The drug has been well explored in the form of extracts but bears very limited application in dosage forms. These prompted in implementation of protein polymers, due to non-toxicity, biocompatibility, and biodegradability. BSA encapsulates the drug, by the desolvation method. The unavailability of past exploration of garcinol with protein polymer accelerated the novelty of this study, to improve the solubility and bioavailability of the drug, modify the drug release kinetics, and ascertain the effectiveness of the NPs to combat inflammation in-vitro. NPs were characterized and satisfactory outcomes were retrieved in terms of all characterizations. The drug release studies depicted a sustained release of up to 85 % over 16 h, ensuring that garcinol can be modulated to give a desired scale of modified release. In vitro cellular uptake studies suggested a substantial uptake of NPs in cell lines and its effectiveness to mitigate inflammation was affirmed by in-vitro anti-inflammatory studies, using ELISA.

4.
Int J Biol Macromol ; : 134626, 2024 Aug 09.
Article in English | MEDLINE | ID: mdl-39128759

ABSTRACT

Hydrogel dressings with multiple functions are ideal options for wound repair. This study developed hydrogel dressings by interpenetrating the physically crosslinked xanthan gum (XG)/carboxylated chitosan (CCS) network and the chemically crosslinked polyacrylamide (PAAm) network via a one-pot method. The XG-CCS/PAAm hydrogels were found to display tunable mechanical properties, due to the formation of strong network structure. The hydrogels exhibited the strongest tensile strength of 0.6 MPa at an XG/CCS ratio of 40/60, while the largest compressive strength of 4.5 MPa is achieved at an XG/CCS ratio of 60/40. Moreover, the hydrogel with an XG/CCS ratio of 60/40 exhibited desirable adhesion strength on porcine skin, which was 3.7 kPa. It also had a swelling ratio, as high as 1200 %. After loading with cephalexin, the XG-CCS/PAAm hydrogels can deliver the antibacterial drugs following a first-order kinetic. As a result, both E. coli and S. aureus can be completely inactivated by the cefalexin-loaded hydrogels after 12 h. Furthermore, the XG-CCS/PAAm hydrogels were found to exhibit excellent biocompatibility as well as effective wound healing ability, as proven by the in vitro and in vivo tests. In this regard, XG-CCS/PAAm hydrogels can act as promising multifunctional wound dressings.

5.
Curr Med Chem ; 2024 Aug 09.
Article in English | MEDLINE | ID: mdl-39129289

ABSTRACT

INTRODUCTION: Human Immunodeficiency Virus (HIV) infection is still a major global problem, whose drug treatment consists of prophylactic prevention and antiretroviral combination therapy for better pharmacological efficacy and control of circulating virus. However, there are still pharmacological problems that need to be overcome, such as low aqueous solubility of drugs, toxicity, and low patient adherence. Drug delivery technologies can be used to overcome these barriers. OBJECTIVE: This review summarized the latest drug delivery systems for HIV treatment. Initially, an overview of the current therapy was presented along with the problems it presents. Then, the latest drug delivery systems used to overcome the challenges imposed in conventional HIV therapy were discussed. CONCLUSION: Articles published in the last 10 years were reviewed to obtain information on the innovations brought to HIV treatment. Delivery systems can improve the physicochemical properties of antiretroviral drugs, causing greater aqueous solubility, stability, and cellular and membrane permeability, which was reflected in the greater bioavailability of these drugs. However, more stability studies and techniques development are still needed to allow industrial scaling for large-scale production of drugs that use these technologies.

6.
Acta Biomater ; 2024 Aug 06.
Article in English | MEDLINE | ID: mdl-39117116

ABSTRACT

Therapeutic options for addressing inflammatory bowel disease (IBD) include the administration of an enema to reduce intestinal inflammation and alleviate associated symptoms. However, uncontrollable retention of enemas in the intestinal tract has posed a long-term challenge for improving their therapeutic efficacy and safety. Herein we have developed a protease-labile hydrogel system as an on-demand enema vehicle with tunable degradation and drug release rates in response to varying matrix metalloproteinase-9 (MMP-9) expression. The system, composed of three tailored hydrogel networks, is crosslinked by poly (ethylene glycol) (PEG) with 2-, 4- and 8-arms through dynamic hydrazone bonds to confer injectability and generate varying network connectivity. The retention time of the hydrogels can be tuned from 12-36 hours in the intestine due to their different degradation behaviors induced by MMP-9. The drug-releasing rate of the hydrogels can be controlled from 0.0003mg/h to 0.278mg/h. In addition, injection of such hydrogels in vivo resulted in significant differences in therapeutic effects including MMP-9 consumption, colon tissue repair, reduced collagen deposition, and decreased macrophage cells, for treating a mouse model of acute colitis. Among them, GP-8/5-ASA exhibits the best performance. This study validates the effectiveness of the tailored design of hydrogel architecture in response to pathological microenvironment cues, representing a promising strategy for on-demand therapy of IBD. STATEMENT OF SIGNIFICANCE: The uncontrollable retention of enemas at the delivery site poses a long-term challenge for improving therapeutic efficacy in IBD patients. MMP-9 is highly expressed in IBD and correlates with disease severity. Therefore, an MMP-9-responsive GP hydrogel system was developed as an enema by linking multi-armed PEG and gelatin through hydrazone bonds. Thisforms a dynamic hydrogel characterized by in situ gelation, injectability, enhanced bio-adhesion, biocompatibility, controlled retention time, and regulated drug release. GP hydrogels encapsulating 5-ASA significantly improved the intestinal phenotype of acute IBD and demonstrated notable therapeutic differences with increasing PEG arms. This method represents a promising on-demand IBD therapy strategy and provides insights into treating diseases of varying severities using endogenous stimulus-responsive drug delivery systems.

7.
Biomater Adv ; 164: 213989, 2024 Aug 05.
Article in English | MEDLINE | ID: mdl-39126901

ABSTRACT

The development of synthetic hydrogels as a dermal patch offers unique advantage of providing moist environment around the wound site. The incorporation of curcumin in hydrogel plays a significant role in the healing process of chronic wounds. The present investigation aims to develop nano-formulated curcumin-fused lipogel to impart the dual advantages of sustained drug release and enhanced wound healing ability. The wound healing behaviour of the prepared lipogel has been assessed through series of techniques namely DPPH assay and bacterial inhibitory efficacy through the Kirby Bauer assay against E. coli and S. aureus. Further, the promotion of angiogenesis has been determined through an in-ovo CAM assay. The results obtained from the investigation revealed the enhanced solubility of curcumin in liposome formulation. Moreover, the encapsulation of curcumin in liposomes facilitated prolonged drug release and better antibacterial efficacy against the tested bacterial stains. The developed hydrogel also displayed good adhesion and water retention ability, which is an important prerequisite for better wound healing ability.

8.
Int J Pharm ; : 124560, 2024 Aug 08.
Article in English | MEDLINE | ID: mdl-39127171

ABSTRACT

In this study we present a proof of concept of a simple and straightforward approach for the development of a Bacterial Nanocellulose drug delivery system (BNC-DDS), envisioning the local delivery of immunomodulatory drugs to prevent foreign body reaction (FBR). Inspired by the self-adhesion behavior of BNC upon drying, we proposed a BNC laminate entrapping commercial crystalline drugs (dexamethasone-DEX and GW2580) in a sandwich system. The stability of the bilayer BNC-DDS was evidenced by the high interfacial energy of the bilayer films, 150 ±â€¯11 and 88 ±â€¯7 J/m2 respectively for 2 mm- and 10-mm thick films, corresponding to an increase of 7.5 and 4.4-fold comparatively to commercial tissue adhesives. In vitro release experiments unveiled the tunability of the bilayer BNC-DDS by showing extended drug release when thicker BNC membranes were used (from 16 to 47 days and from 35 to 132 days, for the bilayer-BNC entrapping DEX and GW2580, respectively). Mathematical modeling of the release data pointed to a diffusion-driven mechanism with non-fickian behavior. Overall, the results have demonstrated the potential of this simple approach for developing BNC-drug depots for localized and sustained release of therapeutic agents over adjustable timeframes.

9.
Article in English | MEDLINE | ID: mdl-39110913

ABSTRACT

Flocculation is a type of aggregation where the surfaces of approaching droplets are still at distances no closer than a few nanometers while still remaining in close proximity. In a high internal-phase oil-in-water (O/W) emulsion, the state of flocculation affects the bulk flow behavior and viscoelasticity, which can consequently control the three-dimensional (3D)-printing process and printing performance. Herein, we present the assembly of O/W Pickering high-internal-phase emulsions (Pickering-HIPEs) as printing inks and demonstrate how depletion flocculation in such Pickering-HIPE inks can be used as a facile colloidal engineering approach to tailor a porous 3D structure suitable for drug delivery. Pickering-HIPEs were prepared using different levels of cellulose nanocrystals (CNCs), co-stabilized using "raw" submicrometer-sized sustainable particles from a biomass-processing byproduct. In the presence of this sustainable particle, the higher CNC contents facilitated particle-induced depletion flocculation, which led to the formation of a mechanically robust gel-like ink system. Nonetheless, the presence of adsorbed particles on the surface of droplets ensured their stability against coalescence, even in such a highly aggregated system. The gel structures resulting from the depletion phenomenon enabled the creation of high-performance printed objects with tunable porosity, which can be precisely controlled at two distinct levels: first, by introducing voids within the internal structure of filaments, and second, by generating cavities (pore structures) through the elimination of the water phase. In addition to printing efficacy, the HIPEs could be applied for curcumin delivery, and in vitro release kinetics demonstrated that the porous 3D scaffolds engineered for the first time using depletion-flocculated HIPE inks played an important role in 3D scaffold disintegration and curcumin release. Thus, this study offers a unique colloidal engineering approach of using depletion flocculation to template 3D printing of sustainable inks to generate next-generation porous scaffolds for personalized drug deliveries.

10.
J Pharm Sci ; 2024 Aug 02.
Article in English | MEDLINE | ID: mdl-39094942

ABSTRACT

Candesartan cilexetil (CC) is one of well-tolerated antihypertensive drugs, while its poor solubility and low bioavailability limit its use. Herein, two mesoporous silica (Syloid XDP 3150 and Syloid AL-1 FP) and the corresponding amino-modified products (N-XDP 3150 and N-AL-1 FP) have been selected as the carriers of Candesartan cilexetil to prepare solid dispersion through solvent immersion, and characterized through using powder X-ray diffraction analysis, infrared spectroscopy, differential scanning calorimetry, scanning electron microscopy, and solid-state nuclear magnetic resonance spectroscopy, etc. The state of CC changed from crystalline to amorphous after loading onto the silica carriers, in which no interactions between CC and silica existed. Then, the dissolution behaviors in vitro were studied through using flow-through cell dissolution method. CC-XDP 3150 sample exhibited the most extensive dissolution, and the cumulative release of CC from it was 1.88-fold larger than that of CC. Moreover, the pharmacokinetic results in rats revealed that the relative bioavailability of CC-XDP 3150 and CC-N-XDP 3150 solid dispersions were estimated to be 326 % % and 238 % % in comparison with CC, respectively. Clearly, pore size, pore volume, and surface properties of silica carrier have remarkable effect on loading, dissolution and bioavailability of CC. In brief, this work will provide valuable information in construction of mesoporous silica-based delivery system toward poorly water-soluble drugs.

11.
Int J Biol Macromol ; 277(Pt 4): 134386, 2024 Aug 05.
Article in English | MEDLINE | ID: mdl-39111498

ABSTRACT

In this study, an amphiphilic polymer (Bio-HA(TPE-CN)-mPEG) was designed and synthesized, which was fabricated by introducing hydrophobic aggregation-induced emission (AIE) fluorophore, acid-labile imine bond, methoxy poly (ethylene glycol) (mPEG) and tumor targeting ligand biotin to the backbone of hyaluronic acid. The polymer could self-assemble into micelles and solubilize hydrophobic anticancer drugs. In vitro drug release study indicated that the micelles could disassemble rapidly under acidic environment. The involvement of biotin and HA could enhance the cellular uptake of micelles by tumor cells. Modification of micelles by mPEG could minimize non-specific protein adsorption. Fluorescence studies indicated that the micelles exhibited excellent AIE features and emitted intense long-wavelength fluorescence. More excitingly, the micelles were red emissive in the normal physiological environment, but switched to blue fluorescence in the acidic tumor environment, which could be further applied for real-time monitoring and quantification of the drug release. The in vivo antitumor efficacy study demonstrated the superior antitumor activity of the PTX-loaded micelles. The Bio-HA(TPE-CN)-mPEG micelles were promising drug carriers for chemotherapy and bioimaging.

12.
Biomaterials ; 312: 122712, 2024 Jul 31.
Article in English | MEDLINE | ID: mdl-39098305

ABSTRACT

Immunosuppressive tumor microenvironment (ITM) severely limited the efficacy of immunotherapy against triple-negative breast cancer (TNBC). Herein, Apt-LPR, a light-activatable photodynamic therapy (PDT)/RNAi immune synergy-enhancer was constructed by co-loading miR-34a and photosensitizers in cationic liposomes (in phase III clinical trial). Interestingly, the introduction of tumor-specific aptamers creates a special "Liposome-Aptamer-Target" interface, where the aptamers are initially in a "lying down" state but transform to "standing up" after target binding. The interfacing mechanism was elaborately revealed by computational and practical experiments. This unique interface endowed Apt-LPR with neutralized surface potential of cationic liposomes to reduce non-specific cytotoxicity, enhanced DNase resistance to protect aptamers, and preserved target-binding ability for selective drug delivery. Upon near-infrared irradiation, the generated reactive oxygen species would oxidize unsaturated phospholipids to destabilize both liposomes and lysosomes, realizing stepwise lysosomal escape of miR-34a for tumor cell apoptosis and downregulation of PD-L1 to suppress immune escape. Together, tumor-associated antigens released from PDT-damaged mitochondria and endoplasmic reticulum could activate the suppressive immune cells to establish an "immune hot" milieu. The collaborative immune-enhancing strategy effectively aroused systemic antitumor immunity and inhibited primary and distal tumor progression as well as lung metastasis in 4T1 xenografted mouse models. The photo-controlled drug release and specific tumor-targeting capabilities of Apt-LPR were also visualized in MDA-MB-231 xenografted zebrafish models. Therefore, this photoswitchable PDT/RNAi immune stimulator offered a powerful approach to reprogramming ITM and reinforcing cancer immunotherapy efficacy.

13.
Eur J Pharm Biopharm ; : 114435, 2024 Aug 03.
Article in English | MEDLINE | ID: mdl-39103002

ABSTRACT

The clinical usage of docetaxel (DTX) is severely hindered by the dose-limiting neutropenia and peripheral neurotoxicity of polysorbate 80-solubilized DTX injection, and there are no alternative formulations until now. In this study, we developed a new liposomal formulation of DTX to reduce its toxicities, accompanying with the greatly improved antitumor activity. The DTX was encapsulated into liposomes in the form of hydrophilic glutathione (GSH)-conjugated prodrugs using a click drug loading method, which achieved a high encapsulation efficiency (∼95 %) and loading capacity (∼30 % wt). The resulting liposomal DTX-GSH provided a sustained and efficient DTX release (∼50 % within 48 h) in plasma, resulting in a greatly improved antitumor activities as compared with that of polysorbate 80-solubilized DTX injection in the subcutaneous and orthotopic 4 T1 breast tumor bearing mice. Even large tumors > 500 mm3 could be effectively inhibited and shrunk after the administration of liposomal DTX-GSH. More importantly, the liposomal DTX-GSH significantly decreased the neutropenia and peripheral neurotoxicity as compared with that of polysorbate 80-solubilized DTX injection at the equivalent dose. These data suggested that the liposomal DTX-GSH might become a superior alternative formulation to the commercial DTX injection.

14.
Sci Rep ; 14(1): 16047, 2024 07 11.
Article in English | MEDLINE | ID: mdl-38992105

ABSTRACT

ß-glucans are polysaccharides found in the cell walls of various fungi, bacteria and cereals. ß-glucan have been found to show various kinds of anti-inflammatory, antimicrobial, antidiabetic antioxidant and anticancerous activities. In the present study, we have isolated ß-glucan from the baker's yeast Saccharomyces cerevisiae and white button mushroom Agaricus bisporus and tested their antioxidant potential and anticancerous activity against prostate cancer cell line PC3. Particles were characterized with zeta sizer and further with FTIR that confirmed that the isolated particles are ß-glucan and alginate sealing made slow and sustained release of the Quercetin from the ß-glucan particles. Morphological analysis of the hollow and Quercetin loaded ß-glucan was performed with the SEM analysis and stability was analyzed with TGA and DSC analysis that showed the higher stability of the alginate sealed particles. Assessments of the antioxidant potential showed that Quercetin loaded particles were having higher antioxidant activity than hollow ß-glucan particles. Cell viability of the PC3 cells was examined with MTT assay and it was found that Quercetin loaded alginate sealed Agaricus bisporus derived ß-glucan particles were having lowest IC50. Further ROS generation was found to increase in a dose dependent manner. Apoptosis detection was carried out with Propidium iodide and AO/EtBr staining dye which showed significant death in the cells treated with higher concentration of the particles. Study showed that particles derived from both of the sources were having efficient anticancer activity and showing a dose dependent increase in cell death in PC3 cells upon treatment.


Subject(s)
Agaricus , Antineoplastic Agents , Antioxidants , Quercetin , Saccharomyces cerevisiae , beta-Glucans , Quercetin/pharmacology , Quercetin/chemistry , beta-Glucans/pharmacology , beta-Glucans/chemistry , Antioxidants/pharmacology , Antioxidants/chemistry , Humans , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Agaricus/chemistry , Saccharomyces cerevisiae/drug effects , Cell Survival/drug effects , PC-3 Cells , Cell Line, Tumor , Reactive Oxygen Species/metabolism
15.
Article in English | MEDLINE | ID: mdl-38990106

ABSTRACT

KEY POINTS: Chitosan is a promising drug delivery vector for therapeutics owing to its biocompatibility. Once crosslinked with chitosan, prolonged drug release was noted regardless of hydrophilicity. Hydrophilic drugs may require different strategies to obtain a sustained release profile.

16.
Front Hum Neurosci ; 18: 1412921, 2024.
Article in English | MEDLINE | ID: mdl-38979100

ABSTRACT

Transcranial focused ultrasound enables precise and non-invasive manipulations of deep brain circuits in humans, promising to provide safe and effective treatments of various neurological and mental health conditions. Ultrasound focused to deep brain targets can be used to modulate neural activity directly or localize the release of psychoactive drugs. However, these applications have been impeded by a key barrier-the human skull, which attenuates ultrasound strongly and unpredictably. To address this issue, we have developed an ultrasound-based approach that directly measures and compensates for the ultrasound attenuation by the skull. No additional skull imaging, simulations, assumptions, or free parameters are necessary; the method measures the attenuation directly by emitting a pulse of ultrasound from an array on one side of the head and measuring with an array on the opposite side. Here, we apply this emerging method to two primary future uses-neuromodulation and local drug release. Specifically, we show that the correction enables effective stimulation of peripheral nerves and effective release of propofol from nanoparticle carriers through an ex vivo human skull. Neither application was effective without the correction. Moreover, the effects show the expected dose-response relationship and targeting specificity. This article highlights the need for precise control of ultrasound intensity within the skull and provides a direct and practical approach for addressing this lingering barrier.

17.
Int J Pharm ; 661: 124450, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-38986968

ABSTRACT

Wounds pose a formidable challenge in healthcare, necessitating the exploration of innovative tissue-healing solutions. Traditional wound dressings exhibit drawbacks, causing tissue damage and impeding natural healing. Using a Microwave (MW)-)-assisted technique, we envisaged a novel hydrogel (Hg) scaffold to address these challenges. This hydrogel scaffold was created by synthesizing a pH-responsive crosslinked material, specifically locust bean gum-grafted-poly(acrylamide-co-acrylic acid) [LBG-g-poly(AAm-co-AAc)], to enable sustained release of c-phycocyanin (C-Pc). Synthesized LBG-g-poly(AAm-co-AAc) was fine-tuned by adjusting various synthetic parameters, including the concentration of monomers, duration of reaction, and MW irradiation intensity, to maximize the yield of crosslinked LBG grafted product and enhance encapsulation efficiency of C-Pc. Following its synthesis, LBG-g-poly(AAm-co-AAc) was thoroughly characterized using advanced techniques, like XRD, TGA, FTIR, NMR, and SEM, to analyze its structural and chemical properties. Moreover, the study examined the in-vitro C-Pc release profile from LBG-g-poly(AAm-co-AAc) based hydrogel (HgCPcLBG). Findings revealed that the maximum release of C-Pc (64.12 ± 2.69 %) was achieved at pH 7.4 over 48 h. Additionally, HgCPcLBG exhibited enhanced antioxidant performance and compatibility with blood. In vivo studies confirmed accelerated wound closure, and ELISA findings revealed reduced inflammatory markers (IL-6, IL-1ß, TNF-α) within treated skin tissue, suggesting a positive impact on injury repair. A low-cost and eco-friendly approach for creating LBG-g-poly(AAm-co-AAc) and HgCPcLBG has been developed. This method achieved sustained release of C-Pc, which could be a significant step forward in wound care technology.


Subject(s)
Acrylamide , Galactans , Hydrogels , Mannans , Plant Gums , Polymerization , Wound Healing , Plant Gums/chemistry , Mannans/chemistry , Galactans/chemistry , Wound Healing/drug effects , Hydrogen-Ion Concentration , Animals , Hydrogels/chemistry , Acrylamide/chemistry , Male , Acrylates/chemistry , Delayed-Action Preparations , Drug Liberation , Microwaves , Rats , Acrylamides
18.
Sci Rep ; 14(1): 16358, 2024 07 16.
Article in English | MEDLINE | ID: mdl-39014107

ABSTRACT

This study aims to optimize and evaluate drug release kinetics of Modified-Release (MR) solid dosage form of Quetiapine Fumarate MR tablets by using the Artificial Neural Networks (ANNs). In training the neural network, the drug contents of Quetiapine Fumarate MR tablet such as Sodium Citrate, Eudragit® L100 55, Eudragit® L30 D55, Lactose Monohydrate, Dicalcium Phosphate (DCP), and Glyceryl Behenate were used as variable input data and Drug Substance Quetiapine Fumarate, Triethyl Citrate, and Magnesium Stearate were used as constant input data for the formulation of the tablet. The in-vitro dissolution profiles of Quetiapine Fumarate MR tablets at ten different time points were used as a target data. Several layers together build the neural network by connecting the input data with the output data via weights, these weights show importance of input nodes. The training process optimises the weights of the drug product excipients to achieve the desired drug release through the simulation process in MATLAB software. The percentage drug release of predicted formulation matched with the manufactured formulation using the similarity factor (f2), which evaluates network efficiency. The ANNs have enormous potential for rapidly optimizing pharmaceutical formulations with desirable performance characteristics.


Subject(s)
Drug Liberation , Neural Networks, Computer , Tablets , Tablets/chemistry , Excipients/chemistry , Delayed-Action Preparations/chemistry , Quetiapine Fumarate/chemistry , Quetiapine Fumarate/pharmacokinetics , Quetiapine Fumarate/administration & dosage , Chemistry, Pharmaceutical/methods
19.
Biomater Adv ; 163: 213954, 2024 Oct.
Article in English | MEDLINE | ID: mdl-38996543

ABSTRACT

The release of the model drug theophylline from silica-pectin aerogels was investigated. The composite aerogels were prepared via impregnation of pectin alcogels with silica sol, followed by in situ silica gelation and drying with supercritical CO2. The structural and physico-chemical properties of the aerogels were tuned via the preparation conditions (type of silica sol, calcium crosslinking of pectin or not). Theophylline was loaded via impregnation and its release into simulated gastric fluid was studied during 1 h followed by release into simulated intestinal fluid. The swelling, mass loss and theophylline release behavior of the composites were analyzed and correlated with material properties. It followed that only aerogels prepared with calcium-crosslinked pectin and polyethoxydisiloxane were stable in aqueous systems, exhibiting a slow theophylline release governed by near-Fickian diffusion.


Subject(s)
Drug Delivery Systems , Gels , Pectins , Silicon Dioxide , Theophylline , Pectins/chemistry , Silicon Dioxide/chemistry , Theophylline/chemistry , Theophylline/administration & dosage , Gels/chemistry , Drug Delivery Systems/methods , Drug Liberation , Drug Carriers/chemistry
20.
Sci Rep ; 14(1): 16588, 2024 07 18.
Article in English | MEDLINE | ID: mdl-39025925

ABSTRACT

Invasive fungal infections (IFI) pose a significant health burden, leading to high morbidity, mortality, and treatment costs. This study aims to develop and characterize nanomicelles for the codelivery of posaconazole and hemp seed oil for IFI via the oral route. The nanomicelles were prepared using a nanoprecipitation method and optimized through the Box Behnken design. The optimized nanomicelles resulted in satisfactory results for zeta potential, size, PDI, entrapment efficiency, TEM, and stability studies. FTIR and DSC results confirm the compatibility and amorphous state of the prepared nanomicelles. Confocal laser scanning microscopy showed that the optimized nanomicelles penetrated the tissue more deeply (44.9µm) than the suspension (25µm). The drug-loaded nanomicelles exhibited sustained cumulative drug release of 95.48 ± 3.27% for 24 h. The nanomicelles showed significant inhibition against Aspergillus niger and Candida albicans (22.4 ± 0.21 and 32.2 ± 0.46 mm, respectively). The pharmacokinetic study on Wistar rats exhibited a 1.8-fold increase in relative bioavailability for the nanomicelles compared to the suspension. These results confirm their therapeutic efficacy and lay the groundwork for future research and clinical applications, providing a promising synergistic antifungal nanomicelles approach for treating IFIs.


Subject(s)
Antifungal Agents , Plant Oils , Animals , Antifungal Agents/administration & dosage , Antifungal Agents/pharmacokinetics , Antifungal Agents/pharmacology , Antifungal Agents/chemistry , Rats , Plant Oils/chemistry , Plant Oils/pharmacology , Plant Oils/administration & dosage , Triazoles/administration & dosage , Triazoles/pharmacokinetics , Triazoles/chemistry , Triazoles/pharmacology , Nanoparticles/chemistry , Rats, Wistar , Candida albicans/drug effects , Invasive Fungal Infections/drug therapy , Aspergillus niger/drug effects , Micelles , Seeds/chemistry , Drug Liberation , Male , Drug Carriers/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL