Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 38
Filter
Add more filters








Publication year range
1.
Eur J Pharmacol ; 944: 175525, 2023 Apr 05.
Article in English | MEDLINE | ID: mdl-36740036

ABSTRACT

17α-ethinylestradiol (EE2), a derivative of 17ß-estradiol (E2), is a potent estrogenic substance that is used as the estrogenic component of oral contraceptives (OCPs). However, women who take OCPs have an increased risk of cardiovascular events. Since few studies have examined EE2 endothelial effects, we explored the effects of EE2 on endothelial function in ovariectomized and isoflavone-free rats. After ovariectomy, 12-week-old female Sprague-Dawley rats were assigned to EE2, E2 or control groups. After 16 weeks, the EE2 and E2 groups were orally administered EE2 (8.3 µg/day) and E2 (12.6 µg/day) for 4 weeks, respectively. At 18 weeks, endothelial denudation of the left common carotid arteries was performed, and they were harvested at 20 weeks. The rats in the EE2 and E2 groups exhibited significantly decreased body weights and significantly increased uterine weights, respectively, but no differences were observed between the EE2 and E2 groups. The EE2 and E2 groups showed significantly enhanced acetylcholine-induced endothelium-dependent relaxation, with apamin plus charybdotoxin inhibiting only the EE2 group. Endothelial nitric oxide (NO) synthase expression was significantly higher in the EE2 group than in the control, but lower than in the E2 group. The intima-to-media ratio of denuded arteries was significantly lower in the E2 group than in the other groups, suggesting that NO decreased in the EE2 group compared to the E2 group. We conclude that EE2 has a weaker ability than E2 to produce NO and, for the first time, we demonstrate the ability of EE2 to enhance the activity of endothelial-derived hyperpolarizing factor.


Subject(s)
Estradiol , Ethinyl Estradiol , Rats , Female , Animals , Ethinyl Estradiol/metabolism , Rats, Sprague-Dawley , Endothelium/metabolism , Carotid Arteries/metabolism
2.
Microcirculation ; 29(4-5): e12774, 2022 07.
Article in English | MEDLINE | ID: mdl-35689491

ABSTRACT

OBJECTIVE: Our previous work demonstrated that endothelial cell (EC) membrane cholesterol is reduced following 48 h of chronic hypoxia (CH). CH couples endothelial transient receptor potential subfamily V member 4 (TRPV4) channels to muscarinic receptor signaling through an endothelium-dependent hyperpolarization (EDH) pathway does not present in control animals. TRVPV4 channel activity has been shown to be regulated by membrane cholesterol. Hence, we hypothesize that acute manipulation of endothelial cell membrane cholesterol inversely determines the contribution of TRPV4 channels to endothelium-dependent vasodilation. METHODS: Male Sprague-Dawley rats were exposed to ambient atmospheric (atm.) pressure or 48-h of hypoxia (0.5 atm). Vasodilation to acetylcholine (ACh) was determined using pressure myography in gracilis arteries. EC membrane cholesterol was depleted using methyl-ß-cyclodextrin (MßCD) and supplemented with MßCD-cholesterol. RESULTS: Inhibiting TRPV4 did not affect ACh-induced vasodilation in normoxic controls. However, TRPV4 inhibition reduced resting diameter in control arteries suggesting basal activity. TRPV4 contributes to ACh-induced vasodilation in these arteries when EC membrane cholesterol is depleted. Inhibiting TRPV4 attenuated ACh-induced vasodilation in arteries from CH animals that exhibit lower EC membrane cholesterol than normoxic controls. EC cholesterol repletion in arteries from CH animals abolished the contribution of TRPV4 to ACh-induced vasodilation. CONCLUSION: Endothelial cell membrane cholesterol impedes the contribution of TRPV4 channels in EDH-mediated dilation. These results provide additional evidence for the importance of plasma membrane cholesterol content in regulating intracellular signaling and vascular function.


Subject(s)
TRPV Cation Channels , Vasodilation , Acetylcholine/pharmacology , Animals , Arteries/metabolism , Cell Membrane/metabolism , Cholesterol , Endothelial Cells/metabolism , Endothelium, Vascular , Hypoxia , Male , Mesenteric Arteries/metabolism , Rats , Rats, Sprague-Dawley
3.
Eur J Cell Biol ; 101(2): 151208, 2022 Apr.
Article in English | MEDLINE | ID: mdl-35151983

ABSTRACT

The vascular endothelium is an important regulator of vascular reactivity and preserves the balance between vasoconstrictor and vasodilator tone during normal physiologic conditions. Example endothelial-derived vasoconstrictors include endothelin-1 and thromboxane A2; example vasodilators include nitric oxide and prostacyclin. A growing body of evidence points to the existence of a non-nitric oxide, non-prostacyclin endothelium-derived vasodilatory factor of currently unclear identity, often referred to as endothelium-derived hyperpolarizing factor (EDHF). Recent research testifies to the significance of EDHF in endothelium-dependent vascular smooth muscle relaxation. Special emphasis has been placed on the role of small conductance calcium-activated potassium channels (SK) in facilitating the endothelial and vascular responses to EDHF across the microcirculation, including coronary, mesenteric, and pulmonary vascular beds. Meanwhile, decreased activity of endothelial SK channel activity has been implicated in the pathology of a variety of disease states that alter the balance between vasodilator and vasoconstrictor tone. Hence the primary goal of this review is to characterize the physiology of endothelial SK channels in the microvasculature under normal and pathological conditions. Themes of regulation and dysregulation of SK channel activity through the action of protein kinases, reactive oxygen species, and byproducts of intermediary metabolism provide unifying principles to tie together vascular pathology in altered metabolic states ranging from hypertension to diabetes, to ischemia-reperfusion. A comprehensive understanding of SK channel pathophysiology may provide a foundation for development of new therapeutics targeting SK channels, particularly SK channel potentiators, that may have widespread application for many chronic disease states.


Subject(s)
Small-Conductance Calcium-Activated Potassium Channels , Vasodilation , Biological Factors , Endothelium, Vascular/physiology , Vasoconstrictor Agents/pharmacology , Vasodilation/physiology , Vasodilator Agents/pharmacology
4.
Mult Scler Relat Disord ; 59: 103557, 2022 Mar.
Article in English | MEDLINE | ID: mdl-35092946

ABSTRACT

Thermoregulation is a homeostatic mechanism that is disrupted in some neurological diseases. Patients with multiple sclerosis (MS) are susceptible to increases in body temperature, especially with more severe neurological signs. This condition can become intolerable when these patients suffer febrile infections such as coronavirus disease-2019 (COVID-19). We review the mechanisms of hyperthermia in patients with MS, and they may encounter when infected with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Finally, the thermoregulatory role and relevant adaptation to regular physical exercise are summarized.


Subject(s)
COVID-19 , Multiple Sclerosis , Nervous System Diseases , Exercise , Humans , Multiple Sclerosis/complications , Multiple Sclerosis/therapy , SARS-CoV-2
5.
Biomedicines ; 9(12)2021 Dec 06.
Article in English | MEDLINE | ID: mdl-34944661

ABSTRACT

Renal hypouricemia (RHUC) is a hereditary disease that presents with increased renal urate clearance and hypouricemia due to genetic mutations in the urate transporter URAT1 or GLUT9 that reabsorbs urates in the renal proximal tubule. Exercise-induced acute kidney injury (EIAKI) is known to be a complication of renal hypouricemia. In the skeletal muscle of RHUC patients during exhaustive exercise, the decreased release of endothelial-derived hyperpolarization factor (EDHF) due to hypouricemia might cause the disturbance of exercise hyperemia, which might increase post-exercise urinary urate excretion. In the kidneys of RHUC patients after exhaustive exercise, an intraluminal high concentration of urates in the proximal straight tubule and/or thick ascending limb of Henle's loop might stimulate the luminal Toll-like receptor 4-myeloid differentiation factor 88-phosphoinositide 3-kinase-mammalian target of rapamycin (luminal TLR4-MyD88-PI3K-mTOR) pathway to activate the nucleotide-binding oligomerization domain-like receptor family pyrin domain-containing 3 (NLRP3) inflammasome and may release interleukin-1ß (IL-1ß), which might cause the symptoms of EIAKI.

6.
Br J Pharmacol ; 178(20): 4155-4175, 2021 10.
Article in English | MEDLINE | ID: mdl-34216027

ABSTRACT

BACKGROUND AND PURPOSE: Endothelium-derived hyperpolarizing factor (EDHF) has been suggested as a therapeutic target for vascular protection against ischaemic brain injury. However, the molecular entity of EDHF and its action on neurons remains unclear. This study was undertaken to demonstrate whether the hydrogen sulfide (H2 S) acts as EDHF and exerts neuroprotective effect via large-conductance Ca2+ -activated K+ (BKCa /KCa 1.1) channels. EXPERIMENTAL APPROACH: The whole-cell patch-clamp technology was used to record the changes of BKCa currents in rat neurons induced by EDHF. The cerebral ischaemia/reperfusion model of mice and oxygen-glucose deprivation/reoxygenation (OGD/R) model of neurons were used to explore the neuroprotection of EDHF by activating BKCa channels in these neurons. KEY RESULTS: Increases of BKCa currents and membrane hyperpolarization in hippocampal neurons induced by EDHF could be markedly inhibited by BKCa channel inhibitor iberiotoxin or endothelial H2 S synthase inhibitor propargylglycine. The H2 S donor, NaHS-induced BKCa current and membrane hyperpolarization in neurons were also inhibited by iberiotoxin, suggesting that H2 S acts as EDHF and activates the neuronal BKCa channels. Besides, we found that the protective effect of endothelium-derived H2 S against mice cerebral ischaemia/reperfusion injury was disrupted by iberiotoxin. Importantly, the inhibitory effect of NaHS or BKCa channel opener on OGD/R-induced neuron injury and the increment of intracellular Ca2+ level could be inhibited by iberiotoxin but enhanced by co-application with L-type but not T-type calcium channel inhibitor. CONCLUSION AND IMPLICATIONS: Endothelium-derived H2 S acts as EDHF and exerts neuroprotective effects via activating the BKCa channels and then inhibiting the T-type calcium channels in hippocampal neurons.


Subject(s)
Hydrogen Sulfide , Neuroprotective Agents , Potassium Channels, Calcium-Activated , Animals , Biological Factors , Endothelium , Hydrogen Sulfide/pharmacology , Mice , Neuroprotective Agents/pharmacology , Rats
7.
Redox Biol ; 37: 101704, 2020 10.
Article in English | MEDLINE | ID: mdl-32942144

ABSTRACT

Diabetes is one of the most prevalent metabolic disorders and is estimated to affect 400 million of 4.4% of population worldwide in the next 20 year. In diabetes, risk to develop vascular diseases is two-to four-fold increased. Ischemic tissue injury, such as refractory wounds and critical ischemic limb (CLI) are major ischemic vascular complications in diabetic patients where oxygen supplement is insufficient due to impaired angiogenesis/neovascularization. In spite of intensive studies, the underlying mechanisms of diabetes-impaired ischemic tissue injury remain incompletely understood. Hydrogen sulfide (H2S) has been considered as a third gasotransmitter regulating angiogenesis under physiological and ischemic conditions. Here, the underlying mechanisms of insufficient H2S-impaired angiogenesis and ischemic tissue repair in diabetes are discussed. We will primarily focuses on the signaling pathways of H2S in controlling endothelial function/biology, angiogenesis and ischemic tissue repair in diabetic animal models. We summarized that H2S plays an important role in maintaining endothelial function/biology and angiogenic property in diabetes. We demonstrated that exogenous H2S may be a theraputic agent for endothelial dysfunction and impaired ischemic tissue repair in diabetes.


Subject(s)
Diabetes Mellitus , Hydrogen Sulfide , Animals , Humans , Ischemia , Neovascularization, Pathologic , Wound Healing
8.
Peptides ; 132: 170350, 2020 10.
Article in English | MEDLINE | ID: mdl-32579899

ABSTRACT

Apelin has complex vasomotor actions inasmuch as the peptide may cause either vasodilation or vasoconstriction depending on the vascular bed and experimental conditions. In cerebral arteries, apelin inhibits endothelium-dependent relaxations mediated by nitric oxide (NO); however, its effects on relaxation to other endothelium-derived substances (e.g. prostacyclin, endothelium-derived hyperpolarizing factors(s) (EDHF)) are unknown. The present study was designed to determine effects of apelin on endothelium-dependent relaxations that are independent of NO in rat cerebral arteries. In arterial rings contracted with 5-HT, A23187 caused endothelium-dependent relaxation that was unaffected by inhibitors of eNOS, guanylyl cyclase or cyclooxygenase, but was attenuated by MS-PPOH, a selective inhibitor of cytochrome P450 catalyzed synthesis of epoxyeicosatrienoic acids (EETs) and by 14,15-EE(Z)E, an EET-receptor antagonist. Apelin inhibited A23187-induced relaxation, as well as relaxations evoked by exogenous 11,12- and 14,15-EET. These effects of apelin were mimicked by the selective BKCa channel blocker, iberiotoxin. The APJ receptor antagonist, F13A abolished the effects of apelin on A23187-induced relaxations. Both 11,12- and 14,15-EET also increased BKCa channel current density in isolated cerebral artery smooth muscle cells, effects that were inhibited in a similar manner by apelin and iberiotoxin. These findings provide evidence that apelin impairs endothelium-dependent relaxation of cerebral arteries by inhibiting an NO-independent pathway (i.e. "EDHF-like") involving activation of smooth muscle cell BKCa channels by endothelium-derived EETs. Inhibition of such pathway may create an environment favoring vasoconstriction in cerebral arteries.


Subject(s)
Apelin/pharmacology , Biological Factors/antagonists & inhibitors , Cerebral Arteries/drug effects , Endothelium, Vascular/drug effects , Potassium Channels, Calcium-Activated/metabolism , Animals , Biological Factors/metabolism , Cerebral Arteries/metabolism , Endothelium, Vascular/metabolism , Male , Models, Animal , Nitric Oxide/metabolism , Rats , Rats, Sprague-Dawley , Vasoconstriction/drug effects , Vasodilation/drug effects
9.
Clin Interv Aging ; 14: 1579-1587, 2019.
Article in English | MEDLINE | ID: mdl-31564840

ABSTRACT

BACKGROUND: Aging leads to structural and functional changes in the vasculature characterized by arterial endothelial dysfunction and stiffening of large elastic arteries and is a predominant risk factor for cardiovascular disease, the leading cause of morbidity and mortality in modern societies. Although exercise reduces the risk of many age-related diseases, including cardiovascular disease, the mechanisms underlying the beneficial effects of exercise on age-related endothelial function fully elucidated. PURPOSE: The present study explored the effects of exercise on the impaired endothelium-derived hyperpolarizing factor (EDHF)-mediated vasodilation in aged arteries and on the involvement of the transient receptor potential vanilloid 4 (TRPV4) channel and the small-conductance calcium-activated potassium (KCa2.3) channel signaling in this process. METHODS: Male Sprague-Dawley rats aged 19-21 months were randomly assigned to a sedentary group or to an exercise group. Two-month-old rats were used as young controls. RESULTS: We found that TRPV4 and KCa2.3 isolated from primary cultured rat aortic endothelial cells pulled each other down in co-immunoprecipitation assays, indicating that the two channels could physically interact. Using ex vivo functional arterial tension assays, we found that EDHF-mediated relaxation induced by acetylcholine or by the TRPV4 activator GSK1016790A was markedly decreased in aged rats compared with that in young rats and was significantly inhibited by TRPV4 or KCa2.3 blockers in both young and aged rats. However, exercise restored both the age-related and the TRPV4-mediated and KCa2.3-mediated EDHF responses. CONCLUSION: These results suggest an important role for the TRPV4-KCa2.3 signaling undergirding the beneficial effect of exercise to ameliorate age-related arterial dysfunction.


Subject(s)
Biological Factors/metabolism , Endothelial Cells/metabolism , Endothelium, Vascular/metabolism , Potassium Channels, Calcium-Activated/metabolism , TRPV Cation Channels/metabolism , Animals , Cardiovascular Diseases/physiopathology , Endothelium, Vascular/physiopathology , Male , Rats , Rats, Sprague-Dawley , Vasodilation/physiology
10.
Front Physiol ; 10: 729, 2019.
Article in English | MEDLINE | ID: mdl-31244683

ABSTRACT

Our understanding of the regulation of vascular function, specifically that of vasomotion, has evolved dramatically over the past few decades. The classic conception of a vascular system solely regulated by circulating hormones and sympathetic innervation gave way to a vision of a local regulation. Initially by the so-called, autacoids like prostacyclin, which represented the first endothelium-derived paracrine regulator of smooth muscle. This was the prelude of the EDRF-nitric oxide age that has occupied vascular scientists for nearly 30 years. Endothelial cells revealed to have the ability to generate numerous mediators besides prostacyclin and nitric oxide (NO). The need to classify these substances led to the coining of the terms: endothelium-derived relaxing, hyperpolarizing and contracting factors, which included various prostaglandins, thromboxane A2, endothelin, as well numerous candidates for the hyperpolarizing factor. The opposite layer of the vascular wall, the adventitia, eventually and for a quite short period of time, enjoyed the attention of some vascular physiologists. Adventitial fibroblasts were recognized as paracrine cells to the smooth muscle because of their ability to produce some substances such as superoxide. Remarkably, this took place before our awareness of the functional potential of another adventitial cell, the adipocyte. Possibly, because the perivascular adipose tissue (PVAT) was systematically removed during the experiments as considered a non-vascular artifact tissue, it took quite long to be considered a major source of paracrine substances. These are now being integrated in the vast pool of mediators synthesized by adipocytes, known as adipokines. They include hormones involved in metabolic regulation, like leptin or adiponectin; classic vascular mediators like NO, angiotensin II or catecholamines; and inflammatory mediators or adipocytokines. The first substance studied was an anti-contractile factor named adipose-derived relaxing factor of uncertain chemical nature but possibly, some of the relaxing mediators mentioned above are behind this factor. This manuscript intends to review the vascular regulation from the point of view of the paracrine control exerted by the cells present in the vascular environment, namely, endothelial, adventitial, adipocyte and vascular stromal cells.

11.
Mayo Clin Proc Innov Qual Outcomes ; 3(1): 1-13, 2019 Mar.
Article in English | MEDLINE | ID: mdl-30899903

ABSTRACT

Endothelial dysfunction is characterized by nitric oxide dysregulation and an altered redox state. Oxidative stress and inflammatory markers prevail, thus promoting atherogenesis and hypertension, important risk factors for the development and progression of heart failure. There has been a reemerging interest in the role that endothelial dysfunction plays in the failing circulation. Accordingly, patients with heart failure are being clinically assessed for endothelial dysfunction via various methods, including flow-mediated vasodilation, peripheral arterial tonometry, quantification of circulating endothelial progenitor cells, and early and late endothelial progenitor cell outgrowth measurements. Although the mechanisms underlying endothelial dysfunction are intimately related to cardiovascular disease and heart failure, it remains unclear whether targeting endothelial dysfunction is a feasible strategy for ameliorating heart failure progression. This review focuses on the pathophysiology of endothelial dysfunction, the mechanisms linking endothelial dysfunction and heart failure, and the various diagnostic methods currently used to measure endothelial function, ultimately highlighting the therapeutic implications of targeting endothelial dysfunction for the treatment of heart failure.

12.
Handb Clin Neurol ; 156: 193-209, 2018.
Article in English | MEDLINE | ID: mdl-30454590

ABSTRACT

Human skin is the interface between the human body and the environment. As such, human temperature regulation relies largely on cutaneous vasomotor and sudomotor adjustments to appropriately thermoregulate. In particular, changes in skin blood flow can increase or decrease the convective heat transfer from internal tissues to the periphery where it can increase or prevent heat loss to the environment. Thermoregulatory control of the cutaneous vasculature is largely due to cutaneous sympathetic nerves. Sympathetic adrenergic nerves mediate vasoconstriction of the skin, similar to other vascular beds, whereas active vasodilator nerves in nonglabrous skin respond to changes in internal and peripheral temperatures and can profoundly increase skin blood flow. Activation of these vasodilator nerves is known as cutaneous active vasodilation and has been the subject of much recent research. This research has uncovered a highly complex system that involves the activation of multiple receptors and vasodilator pathways in a synergistic and sometimes redundant manner. This complexity and redundancy has left our understanding of cutaneous active vasodilation incomplete; however, the employment of new techniques and use of new pharmacologic agents have introduced many new insights into cutaneous active vasodilation.


Subject(s)
Body Temperature Regulation/physiology , Skin/innervation , Vasodilation/physiology , Animals , Humans , Thermodynamics
13.
JACC Basic Transl Sci ; 3(3): 366-377, 2018 Jun.
Article in English | MEDLINE | ID: mdl-29963647

ABSTRACT

Reduced nitric oxide (NO) bioavailability correlates with impaired cardiovascular function. NO is extremely labile and has been challenging to develop as a therapeutic agent. However, NO bioavailability could be enhanced by pharmacologically targeting endogenous NO regulatory pathways. Tetrahydrobiopterin, an essential cofactor for NO production, is synthesized by GTP cyclohydrolase-1 (GCH1), which complexes with GCH1 feedback regulatory protein (GFRP). The dietary amino acid l-phenylalanine activates this complex, elevating vascular BH4. Here, the authors demonstrate that l-phenylalanine administration restores vascular function in a rodent model of hypertension, suggesting the GCH1-GFRP complex represents a rational therapeutic target for diseases underpinned by endothelial dysfunction.

14.
Eur J Pharmacol ; 822: 59-68, 2018 Mar 05.
Article in English | MEDLINE | ID: mdl-29355555

ABSTRACT

Ageing impairs endothelial function, which is considered a hallmark of the development of cardiovascular diseases in elderly. Cilostazol, a phosphodiesterase-3 inhibitor, has antiplatelet, antithrombotic and protective effects on endothelial cells. Here, we hypothesized that cilostazol could improve endothelial function in mesenteric resistance arteries (MRA) from old rats. Using eight-week cilostazol-treated (100mg/kg/day) or untreated 72-week-old Wistar rats, we evaluate the relaxation to acetylcholine, sodium nitroprusside (SNP), forskolin and isoproterenol and the noradrenaline-induced contraction in MRA. Superoxide anion and nitric oxide (NO) was measured by dihydroethidium- and diaminofluorescein-2-emitted fluorescence, respectively. Normotensive old rats had impaired acetylcholine-induced NO- and EDHF-mediated relaxation and increased noradrenaline vasoconstriction than young rats. This age-associated endothelial dysfunction was restored by cilostazol treatment. Relaxation to SNP, forskolin or isoproterenol remained unmodified by cilostazol. Diaminofluorescein-2-emitted fluorescence was increased while dihydroethidium-emitted was decreased by cilostazol, indicating increased NO and reduced superoxide generation, respectively. Cilostazol improves endothelial function in old MRA without affecting blood pressure. This protective effect of cilostazol could be attributed to reduced oxidative stress, increased NO bioavailability and EDHF-type relaxation. Although these results are preliminary, we believe that should stimulate further interest in cilostazol as an alternative for the treatment of age-related vascular disorders.


Subject(s)
Aging/metabolism , Cyclic Nucleotide Phosphodiesterases, Type 3/metabolism , Endothelium, Vascular/drug effects , Mesenteric Arteries/drug effects , Mesenteric Arteries/physiology , Phosphodiesterase 3 Inhibitors/pharmacology , Tetrazoles/pharmacology , Animals , Arterial Pressure/drug effects , Cilostazol , Endothelium, Vascular/metabolism , Male , Mesenteric Arteries/cytology , Nitric Oxide/metabolism , Nitric Oxide Synthase Type III/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Rats , Rats, Wistar , Superoxides/metabolism , Vasoconstriction/drug effects , Vasodilation/drug effects
15.
Biochem Biophys Rep ; 12: 220-227, 2017 Dec.
Article in English | MEDLINE | ID: mdl-29159314

ABSTRACT

OBJECTIVES: This study examined the dose-dependent actions of hydrogen sulfide donor sodium hydrosulphide (NaHS) on isometric contractions and ion transport in rat aorta smooth muscle cells (SMC). METHODS: Isometric contraction was measured in ring aortas segments from male Wistar rats. Activity of Na+/K+-pump and Na+,K+,2Cl-cotransport was measured in cultured endothelial and smooth muscle cells from the rat aorta as ouabain-sensitive and ouabain-resistant, bumetanide-sensitive components of the 86Rb influx, respectively. RESULTS: NaHS exhibited the bimodal action on contractions triggered by modest depolarization ([K+]o=30 mM). At 10-4 M, NaHS augmented contractions of intact and endothelium-denuded strips by ~ 15% and 25%, respectively, whereas at concentration of 10-3 M it decreased contractile responses by more than two-fold. Contractions evoked by 10-4 M NaHS were completely abolished by bumetanide, a potent inhibitor of Na+,K+,2Cl-cotransport, whereas the inhibition seen at 10-3 M NaHS was suppressed in the presence of K+ channel blocker TEA. In cultured SMC, 5×10-5 M NaHS increased Na+,K+,2Cl- - cotransport without any effect on the activity of this carrier in endothelial cells. In depolarized SMC, 45Ca influx was enhanced in the presence of 10-4 M NaHS and suppressed under elevation of [NaHS] up to 10-3 M. 45Ca influx triggered by 10-4 M NaHS was abolished by bumetanide and L-type Ca2+ channel blocker nicardipine. CONCLUSIONS: Our results strongly suggest that contractions of rat aortic rings triggered by low doses of NaHS are mediated by activation of Na+,K+,2Cl-cotransport and Ca2+ influx via L-type channels.

16.
Biol Reprod ; 96(6): 1221-1230, 2017 Jun 01.
Article in English | MEDLINE | ID: mdl-28486649

ABSTRACT

Women with polycystic ovary syndrome (PCOS) are often presented with hyperandrogenemia along with vascular dysfunction and elevated blood pressure. In animal models of PCOS, anti-androgen treatment decreased blood pressure, indicating a key role for androgens in the development of hypertension. However, the underlying androgen-mediated mechanism that contributes to increased blood pressure is not known. This study determined whether elevated androgens affect endothelium-derived hyperpolarizing factor (EDHF)-mediated vascular relaxation responses through alteration in function of gap junctional proteins. Female rats were implanted with placebo or dihydrotestosterone (DHT) pellets (7.5 mg, 90-day release). After 12 weeks of DHT exposure, blood pressure was assessed through carotid arterial catheter and endothelium-dependent mesenteric arterial EDHF relaxation using wire myograph. Connexin expression in mesenteric arteries was also examined. Elevated DHT significantly increased mean arterial pressure and decreased endothelium-dependent EDHF-mediated acetylcholine relaxation. Inhibition of Cx40 did not have any effect, while inhibition of Cx37 decreased EDHF relaxation to a similar magnitude in both controls and DHT females. On the other hand, inhibition of Cx43 significantly attenuated EDHF relaxation in mesenteric arteries of controls but not DHT females. Elevated DHT did not alter Cx37 or Cx40, but decreased Cx43 mRNA and protein levels in mesenteric arteries. In vitro exposure of DHT to cultured mesenteric artery smooth muscle cells dose-dependently downregulated Cx43 expression. In conclusion, increased blood pressure in hyperandrogenic females is due, at least in part, to decreased EDHF-mediated vascular relaxation responses. Decreased Cx43 expression and activity may play a role in contributing to androgen-induced decrease in EDHF function.


Subject(s)
Biological Factors/physiology , Blood Pressure/drug effects , Dihydrotestosterone/pharmacology , Mesenteric Arteries/physiology , Vasodilation/drug effects , Animals , Connexin 43/physiology , Dihydrotestosterone/administration & dosage , Drug Implants , Endothelium, Vascular , Female , Hypertension/chemically induced , Rats , Rats, Sprague-Dawley , Vasodilation/physiology
17.
Temperature (Austin) ; 4(1): 41-59, 2017.
Article in English | MEDLINE | ID: mdl-28349094

ABSTRACT

In humans, an increase in internal core temperature elicits large increases in skin blood flow and sweating. The increase in skin blood flow serves to transfer heat via convection from the body core to the skin surface while sweating results in evaporative cooling of the skin. Cutaneous vasodilation and sudomotor activity are controlled by a sympathetic cholinergic active vasodilator system that is hypothesized to operate through a co-transmission mechanism. To date, mechanisms of cutaneous active vasodilation remain equivocal despite many years of research by several productive laboratory groups. The purpose of this review is to highlight recent advancements in the field of cutaneous active vasodilation framed in the context of some of the historical findings that laid the groundwork for our current understanding of cutaneous active vasodilation.

18.
Acta Physiol (Oxf) ; 219(1): 324-334, 2017 01.
Article in English | MEDLINE | ID: mdl-27639255

ABSTRACT

In a number of published studies on endothelium-dependent hyperpolarization and relaxation, the results of the effects of K+ blockers have been difficult to interpret. When the effects of two blockers have been studied, often either blocker by itself had little effect, whereas the two blockers combined tended to abolish the responses. Explanations suggested in the literature include an unusual pharmacology of the K+ channels, and possible blocker binding interactions. In contrast, when we applied the same blockers to segments of small blood vessels under voltage clamp, the blockers reduced the endothelium-dependent K+ current in a linearly additive manner. Resolution of these contrasting results is important as endothelium-derived hyperpolarization (EDH) makes its greatest contribution to vasorelaxation in arterioles and small resistance arteries, where it can exert a significant role in tissue perfusion and blood pressure regulation. Furthermore, EDH is impaired in various diseases. Here, we consider why the voltage-clamp results differ from earlier free-running membrane potential and contractility studies. We fitted voltage-clamp-derived current-voltage relationships with mathematical functions and considered theoretically the effects of partial and total block of endothelium-derived K+ -currents on the membrane potential of small blood vessels. When the K+ -conductance was partially reduced, equivalent to applying a single blocker, the effect on EDH was small. Total block of the endothelium-dependent K+ conductance abolished the hyperpolarization, in agreement with various published studies. We conclude that nonlinear summation of the hyperpolarizing response evoked by endothelial stimulation can explain the variable effectiveness of individual K+ channel blockers on endothelium-dependent hyperpolarization and resulting relaxation.


Subject(s)
Endothelium, Vascular/drug effects , Membrane Potentials/drug effects , Potassium Channel Blockers/pharmacology , Vasodilator Agents/pharmacology , Animals
19.
Nanomedicine (Lond) ; 11(16): 2131-46, 2016 08.
Article in English | MEDLINE | ID: mdl-27480920

ABSTRACT

AIM: To determine the influence of silica nanoparticles (SiNPs) on small arterial function; both ex vivo and in vivo. METHODS: Mono-dispersed dye-encapsulated SiNPs (97.85 ± 2.26 nm) were fabricated and vasoconstrictor and vasodilator responses of mesenteric arteries assessed. RESULTS: We show that while exposure to SiNPs under static conditions, attenuated endothelial dependent dilator responses ex vivo, attenuation was only evident at lower agonist concentrations, when exposed under flow conditions or after intravenous administration in vivo. Pharmacological inhibition studies suggest that SiNPs may interfere with the endothelial dependent hyperpolarizing factor vasodilator pathway. CONCLUSION: The dosage dependent influence of SiNPs on arterial function will help identify strategies for their safe clinical administration.


Subject(s)
Mesenteric Arteries/drug effects , Nanoparticles/metabolism , Silicon Dioxide/metabolism , Vasoconstriction/drug effects , Vasodilation/drug effects , Animals , Biological Factors/metabolism , Endothelial Cells/drug effects , Endothelial Cells/metabolism , Male , Mesenteric Arteries/cytology , Mesenteric Arteries/physiology , Nanoparticles/chemistry , Rats, Wistar , Silicon Dioxide/chemistry , Silicon Dioxide/pharmacokinetics
20.
Pharmacol Res ; 113(Pt A): 125-145, 2016 11.
Article in English | MEDLINE | ID: mdl-27530204

ABSTRACT

During the last quarter of the past century, the leading role the endocrine and nervous systems had on the regulation of vasomotion, shifted towards a more paracrine-based regulation. This begun with the recognition of endothelial cells as active players of vascular control, when the vessel's intimal layer was identified as the main source of prostacyclin and was followed by the discovery of an endothelium-derived smooth muscle cell relaxing factor (EDRF). The new position acquired by endothelial cells prompted the discovery of other endothelium-derived regulatory products: vasoconstrictors, generally known as EDCFs, endothelin, and other vasodilators with hyperpolarizing properties (EDHFs). While this research was taking place, a quest for the discovery of the nature of EDRF carried back to a research line commenced a decade earlier: the recently found intracellular messenger cGMP and nitrovasodilators. Both were smooth muscle relaxants and appeared to interact in a hormonal fashion. Prejudice against an unconventional gaseous molecule delayed the acceptance that EDRF was nitric oxide (NO). When this happened, a new era of research that exceeded the vascular field commenced. The discovery of the pathway for NO synthesis from L-arginine involved the clever assembling of numerous unrelated observations of different areas of knowledge. The last ten years of research on the paracrine regulation of the vascular wall has shifted to perivascular fat (PVAT), which is beginning to be regarded as the fourth layer of the vascular wall. Starting with the discovery of an adipose-derived relaxing substance (ADRF), the role that different adipokines have on the paracrine control of vasomotion is now filling the research activity of many vascular pharmacology labs, and surprising interactions between the endothelium, PVAT and smooth muscle are being unveiled.


Subject(s)
Endothelium, Vascular/physiology , Muscle, Smooth, Vascular/physiology , Myocytes, Smooth Muscle/physiology , Paracrine Communication/physiology , Vasomotor System/physiology , Adipokines/metabolism , Animals , Endothelium, Vascular/metabolism , Humans , Muscle, Smooth, Vascular/metabolism , Myocytes, Smooth Muscle/metabolism , Vasomotor System/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL