Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.194
Filter
1.
Life (Basel) ; 14(9)2024 Sep 11.
Article in English | MEDLINE | ID: mdl-39337931

ABSTRACT

Retinal ischemia-reperfusion (I/R) injury is a critical pathogenic mechanism in various eye diseases, and an effective therapeutic strategy remains unresolved. Natural derivatives have recently reemerged; therefore, in our present study, we examined the potential therapeutic effects of a stilbenoid that is chemically related to resveratrol. Pterostilbene, recognized for its anti-inflammatory, anti-carcinogenic, anti-diabetic, and neuroprotective properties, counteracts oxidative stress during I/R injury through various mechanisms. This study explored pterostilbene as a retinoprotective agent. Male Sprague Dawley rats underwent retinal I/R injury and one-week reperfusion and were treated with either vehicle or pterostilbene. After this functional electroretinographical (ERG) measurement, Western blot and histological analyses were performed. Pterostilbene treatment significantly improved retinal function, as evidenced by increased b-wave amplitude on ERG. Histological studies showed reduced retinal thinning and preserved the retinal structure in the pterostilbene-treated groups. Moreover, Western blot analysis revealed a decreased expression of glial fibrillary acidic protein (GFAP) and heat shock protein 70 (HSP70), indicating reduced glial activation and cellular stress. Additionally, the expression of pro-apoptotic and inflammatory markers, poly(ADP-ribose) polymerase 1 (PARP1) and nuclear factor kappa B (NFκB) was significantly reduced in the pterostilbene-treated group. These findings suggest that pterostilbene offers protective effects on the retina by diminishing oxidative stress, inflammation, and apoptosis, thus preserving retinal function and structure following I/R injury. This study underscores pterostilbene's potential as a neuroprotective therapeutic agent for treating retinal ischemic injury and related disorders.

2.
Mol Plant Pathol ; 25(9): e13498, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39305021

ABSTRACT

We examined the molecular basis of triazole resistance in Blumeria graminis f. sp. tritici (wheat mildew, Bgt), a model organism among powdery mildews. Four genetic models for responses to triazole fungicides were identified among US and UK isolates, involving multiple genetic mechanisms. Firstly, only two amino acid substitutions in CYP51B lanosterol demethylase, the target of triazoles, were associated with resistance, Y136F and S509T (homologous to Y137F and S524T in the reference fungus Zymoseptoria tritici). As sequence variation did not explain the wide range of resistance, we also investigated Cyp51B copy number and expression, the latter using both reverse transcription-quantitative PCR and RNA-seq. The second model for resistance involved higher copy number and expression in isolates with a resistance allele; thirdly, however, moderate resistance was associated with higher copy number of wild-type Cyp51B in some US isolates. A fourth mechanism was heteroallelism with multiple alleles of Cyp51B. UK isolates, with significantly higher mean resistance than their US counterparts, had higher mean copy number, a high frequency of the S509T substitution, which was absent from the United States, and in the most resistant isolates, heteroallelism involving both sensitivity residues Y136+S509 and resistance residues F136+T509. Some US isolates were heteroallelic for Y136+S509 and F136+S509, but this was not associated with higher resistance. The obligate biotrophy of Bgt may constrain the tertiary structure and thus the sequence of CYP51B, so other variation that increases resistance may have a selective advantage. We describe a process by which heteroallelism may be adaptive when Bgt is intermittently exposed to triazoles.


Subject(s)
Ascomycota , Drug Resistance, Fungal , Fungicides, Industrial , Gene Dosage , Drug Resistance, Fungal/genetics , Ascomycota/drug effects , Ascomycota/genetics , Fungicides, Industrial/pharmacology , Fungal Proteins/genetics , Fungal Proteins/metabolism , Triazoles/pharmacology , Plant Diseases/microbiology , Triticum/microbiology , Triticum/genetics , Gene Expression Regulation, Fungal/drug effects , Cytochrome P-450 Enzyme System/genetics , Cytochrome P-450 Enzyme System/metabolism , Sterol 14-Demethylase/genetics , Sterol 14-Demethylase/metabolism
3.
Arch Esp Urol ; 77(7): 718-725, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39238294

ABSTRACT

BACKGROUND: Prostate cancer (PCa) remains a significant global health issue, exhibiting a spectrum of clinical behaviours from indolent to aggressive. Biomarkers are crucial for risk assessment, treatment selection and prognosis prediction. Despite their importance, accurately evaluating PCa aggressiveness and guiding personalised treatment strategies present challenges. This review aims to evaluate biomarkers for assessing recurrence risk following radical prostatectomy, with a focus on personalised follow-up and timely intervention for high-risk patients. This review assesses the clinical significance of immunohistochemical biomarkers, including LIM domain kinase 1 (LIMK1), Antigen Kiel 67 (Ki67), PTEN and ERG, in PCa management. A comprehensive literature review examined the correlation between these biomarkers and biochemical recurrence (BCR) in patients undergoing radical prostatectomy. Our search included articles published between 2019 and 2024, yielding 87 articles, with 7 focused on the correlation between LIMK1 and BCR, 46 on Ki67 and 34 on PTEN/ERG biomarkers. After applying the exclusion criteria, 36 articles were included for review. LIMK1, a serine/threonine kinase, is highly expressed in cancers like PCa. It influences cell survival and motility through actin cytoskeleton reorganisation, correlating with poor prognosis, aggressive tumour behaviour and BCR. Similarly, Ki67, a marker of cell proliferation, predicts high-risk PCa and worse prognosis, particularly in castration-resistant cases, although its association with recurrence risk remains debated. PTEN loss and ERG fusion are prevalent genetic alterations in PCa, with PTEN loss linked to poor prognosis and ERG fusion associated with increased disease progression and BCR post-prostatectomy. Integrating these biomarkers into clinical practice can enhance risk stratification and inform personalised treatment strategies for patients with PCa. Despite promising findings, further validation studies and standardisation of detection methods are needed to ensure the clinical utility of these biomarkers. Continued research is essential to validate and optimise the clinical utility of these biomarkers, paving the way for more effective PCa management strategies and improved patient outcomes and quality of life.


Subject(s)
Biomarkers, Tumor , Immunohistochemistry , Neoplasm Recurrence, Local , Prostatectomy , Prostatic Neoplasms , Humans , Male , Prostatic Neoplasms/surgery , Prostatic Neoplasms/metabolism , Prostatic Neoplasms/diagnosis , Prostatic Neoplasms/pathology , Biomarkers, Tumor/analysis , Biomarkers, Tumor/metabolism , Risk Assessment , Predictive Value of Tests
4.
Cephalalgia ; 44(9): 3331024241276501, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39279320

ABSTRACT

BACKGROUND: It is still debatable whether the mechanisms underlying photophobia are related to altered visual cortex excitability or specific abnormalities of colour-related focal macular retino-thalamic information processing. METHODS: This cross-sectional study examined Ganzfeld blue-red (B-R) and blue-yellow (B-Y) focal macular cone flash ERG (ffERG) and focal-flash visual evoked potentials (ffVEPs) simultaneously in a group of migraine patients with (n = 18) and without (n = 19) aura during the interictal phase, in comparison to a group of healthy volunteers (HVs) (n = 20). We correlate the resulting retinal and cortical electrophysiological responses with subjective discomfort from exposure to bright light verified on a numerical scale. RESULTS: Compared to HVs, the amplitude and phase of the first and second harmonic of ffERG and ffVEPs were non-significantly different in migraine patients without aura and migraine patients with aura for both the B-R and the B-Y focal stimuli. Pearson's correlation test did not disclose correlations between clinical variables, including the photophobia scale and electrophysiological variables. CONCLUSIONS: These results do not favour interictal functional abnormalities in L-M- and S-cone opponent visual pathways in patients with migraine. They also suggest that the discomfort resulting from exposure to bright light is not related to focal macular retinal-to-visual cortex pathway.


Subject(s)
Electroretinography , Evoked Potentials, Visual , Migraine Disorders , Photophobia , Retinal Cone Photoreceptor Cells , Humans , Photophobia/physiopathology , Female , Male , Adult , Evoked Potentials, Visual/physiology , Cross-Sectional Studies , Migraine Disorders/physiopathology , Retinal Cone Photoreceptor Cells/physiology , Middle Aged , Photic Stimulation/methods , Young Adult
5.
Emerg Microbes Infect ; 13(1): 2398596, 2024 Dec.
Article in English | MEDLINE | ID: mdl-39234778

ABSTRACT

The global rate of Amphotericin B (AmB) resistance in Candida auris has surpassed 12%. However, there is limited data on available clinical treatments and microevolutionary analyses concerning reduced AmB sensitivity. In this study, we collected 18 C. auris isolates from five patients between 2019 and 2022. We employed clinical data mining, genomic, and transcriptomic analyses to identify genetic evolutionary features linked to reduced AmB sensitivity in these isolates during clinical treatment. We identified six isolates with a minimum inhibitory concentration (MIC) of AmB below 0.5 µg/mL (AmB0.5) and 12 isolates with an AmB-MIC of 1 µg/mL (AmB1) or ≥ 2 µg/mL (AmB2). All five patients received 24-hour AmB (5 mg/L) bladder irrigation treatment. Evolutionary analyses revealed an ERG3 (c923t) mutation in AmB1 C. auris. Additionally, AmB2 C. auris was found to contain a t2831c mutation in the RAD2 gene. In the AmB1 group, membrane lipid-related gene expression (ERG1, ERG2, ERG13, and ERG24) was upregulated, while in the AmB2 group, expression of DNA-related genes (e.g. DNA2 and PRI1) was up-regulated. In a series of C.auris strains with reduced susceptibility to AmB, five key genes were identified: two upregulated (IFF9 and PGA6) and three downregulated (HGT7, HGT13,and PRI32). In this study, we demonstrate the microevolution of reduced AmB sensitivity in vivo and further elucidate the relationship between reduced AmB sensitivity and low-concentration AmB bladder irrigation. These findings offer new insights into potential antifungal drug targets and clinical markers for the "super fungus", C. auris.


Subject(s)
Amphotericin B , Antifungal Agents , Candida auris , Candidiasis , Drug Resistance, Fungal , Microbial Sensitivity Tests , Humans , Amphotericin B/pharmacology , Antifungal Agents/pharmacology , China/epidemiology , Drug Resistance, Fungal/genetics , Candidiasis/microbiology , Candidiasis/drug therapy , Candida auris/genetics , Candida auris/drug effects , Evolution, Molecular , Male , Mutation , Female , Middle Aged , Fungal Proteins/genetics
6.
Doc Ophthalmol ; 149(2): 77-86, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39141280

ABSTRACT

PURPOSE: Our aim was to explore the effect of ambient lighting on the pattern ERG (PERG). METHODS: We compared PERGs recorded in two conditions; room lights on and room lights off. PERGs from 21 adult participants were recorded from each eye to high contrast checks of 50' side width, reversing 3rps in a large (30°) and then standard (15°) field. This was performed first in lights-ON conditions, then 2 min after the room lights were switched off. A minimum of 2 averages of 300 trials were acquired for each condition. A subset of 10 participants had PERGs recorded to a 50' check width with a range of stimulus contrasts (96-18%), also to a range of different check widths (100'-12') at high contrast in both ambient lighting conditions in a 30° field. RESULTS: The lights-ON P50 median peak time (PT) was 3 ms earlier than the lights-OFF P50 from the 30° field (range 0-5 ms) and 15° field (range 0-6 ms). The earlier lights-ON P50 PT was evident at different stimulus contrasts, even after accounting for stimulus contrast reductions associated with stray ambient lighting in lights-ON conditions. Lights-OFF and lights-ON P50 PT were similar to different check widths; the lights-OFF P50 PT to a 50' check width matched the lights-ON P50 PT to a 25' check width. CONCLUSION: PERG P50 PT in lights-ON ambient light conditions can be earlier than in lights-OFF ambient light conditions. The difference in P50 PT with ambient light may reflect alterations in spatial sensitivity associated with retinal adaptation. These results emphasise the clinical importance of consistent ambient lighting for PERG recording and calibration.


Subject(s)
Electroretinography , Lighting , Photic Stimulation , Retina , Humans , Adult , Male , Female , Young Adult , Retina/physiology , Contrast Sensitivity/physiology , Middle Aged
7.
Am J Ophthalmol Case Rep ; 36: 102094, 2024 Dec.
Article in English | MEDLINE | ID: mdl-39100576

ABSTRACT

Purpose: Cone-rod dystrophies (CORD) are inherited retinal dystrophies characterized by primary cone degeneration with secondary rod involvement. We report two patients from the same family with a dominant variant in the guanylate cyclase 2D (GUCY2D) gene with different phenotypes in the electroretinogram (ERG). Observations: A 21-year-old lady (Patient 1) was referred due to experiencing blurry vision and color vision impairment. Visual field testing revealed a central scotoma. Spectral-domain optical coherence tomography (SD-OCT) and fundus autofluorescence (FAF) documented macula dysfunction. Reduced amplitude was observed in the photopic responses of ERG. Her 54-year-old father (Patient 2) had similar issues with blurry vision. A dilated fundus examination displayed bilateral macular atrophy. Loss of the ellipsoid zone line and collapse of the outer nuclear segment were noted on the SD-OCT. Photopic ERG responses were extinguished, and an electronegative ERG was observed in the dark-adapted 3.0 ERG. The gene report revealed a c.2512C > T (p.Arg838Cys) variant in GUCY2D for both patients. They were respectively diagnosed as cone dystrophy (COD) and cone-rod dystrophy (CORD). Conclusions: We report two different clinical phenotypes in GUCY2D-associated COD despite sharing the same variant. A dysfunction in the synaptic junction between the photoreceptor and the secondary neuron was proposed to explain the electronegative ERG. This explanation might extend to other gene-related cases of CORD with electronegative ERG.

8.
Microorganisms ; 12(8)2024 Jul 25.
Article in English | MEDLINE | ID: mdl-39203367

ABSTRACT

Fungal resistance is a public health concern due to the limited availability of antifungal resources and the complexities associated with treating persistent fungal infections. Azoles are thus far the primary line of defense against fungi. Specifically, azoles inhibit the conversion of lanosterol to ergosterol, producing defective sterols and impairing fluidity in fungal plasmatic membranes. Studies on azole resistance have emphasized specific point mutations in CYP51/ERG11 proteins linked to resistance. Although very insightful, the traditional approach to studying azole resistance is time-consuming and prone to errors during meticulous alignment evaluation. It relies on a reference-based method using a specific protein sequence obtained from a wild-type (WT) phenotype. Therefore, this study introduces a machine learning (ML)-based approach utilizing molecular descriptors representing the physiochemical attributes of CYP51/ERG11 protein isoforms. This approach aims to unravel hidden patterns associated with azole resistance. The results highlight that descriptors related to amino acid composition and their combination of hydrophobicity and hydrophilicity effectively explain the slight differences between the resistant non-wild-type (NWT) and WT (nonresistant) protein sequences. This study underscores the potential of ML to unravel nuanced patterns in CYP51/ERG11 sequences, providing valuable molecular signatures that could inform future endeavors in drug development and computational screening of resistant and nonresistant fungal lineages.

9.
J Transl Med ; 22(1): 727, 2024 Aug 05.
Article in English | MEDLINE | ID: mdl-39103918

ABSTRACT

BACKGROUND: Vascular dysregulation is one of the major risk factors of glaucoma, and endothelin-1 (ET-1) may have a role in the pathogenesis of vascular-related glaucoma. Fruit extract from Lycium Barbarum (LB) exhibits anti-ageing and multitarget mechanisms in protecting retinal ganglion cells (RGC) in various animal models. To investigate the therapeutic efficacy of LB glycoproteins (LbGP) in ET-1 induced RGC degeneration, LbGP was applied under pre- and posttreatment conditions to an ET-1 mouse model. Retina structural and functional outcomes were characterised using clinical-based techniques. METHODS: Adult C57BL/6 mice were randomly allocated into four experimental groups, namely vehicle control (n = 9), LbGP-Pretreatment (n = 8), LbGP-Posttreatment (day 1) (n = 8) and LbGP-Posttreatment (day 5) (n = 7). Oral administration of LbGP 1 mg/Kg or PBS for vehicle control was given once daily. Pre- and posttreatment (day 1 or 5) were commenced at 1 week before and 1 or 5 days after intravitreal injections, respectively, and were continued until postinjection day 28. Effects of treatment on retinal structure and functions were evaluated using optical coherence tomography (OCT), doppler OCT and electroretinogram measurements at baseline, post-injection days 10 and 28. RGC survival was evaluated by using RBPMS immunostaining on retinal wholemounts. RESULTS: ET-1 injection in vehicle control induced transient reductions in arterial flow and retinal functions, leading to significant RNFL thinning and RGC loss at day 28. Although ET-1 induced a transient loss in blood flow or retinal functions in all LbGP groups, LbGP treatments facilitated better restoration of retinal flow and retinal functions as compared with the vehicle control. Also, all three LbGP treatment groups (i.e. pre- and posttreatments from days 1 or 5) significantly preserved thRNFL thickness and RGC densities. No significant difference in protective effects was observed among the three LbGP treatment groups. CONCLUSION: LbGP demonstrated neuroprotective effects in a mouse model of ET-1 induced RGC degeneration, with treatment applied either as a pretreatment, immediate or delayed posttreatment. LbGP treatment promoted a better restoration of retinal blood flow, and protected the RNFL, RGC density and retinal functions. This study showed the translational potential of LB as complementary treatment for glaucoma management.


Subject(s)
Endothelin-1 , Mice, Inbred C57BL , Neuroprotection , Retinal Ganglion Cells , Animals , Retinal Ganglion Cells/drug effects , Retinal Ganglion Cells/pathology , Retinal Ganglion Cells/metabolism , Endothelin-1/metabolism , Neuroprotection/drug effects , Electroretinography , Lycium/chemistry , Drugs, Chinese Herbal/pharmacology , Drugs, Chinese Herbal/therapeutic use , Neuroprotective Agents/pharmacology , Neuroprotective Agents/therapeutic use , Retinal Degeneration/drug therapy , Retinal Degeneration/pathology , Tomography, Optical Coherence , Male , Mice , Nerve Degeneration/pathology , Nerve Degeneration/drug therapy
10.
Int J Mol Sci ; 25(15)2024 Jul 25.
Article in English | MEDLINE | ID: mdl-39125671

ABSTRACT

Late endosomal/lysosomal adaptor, MAPK and mTOR, or LAMTOR, is a scaffold protein complex that senses nutrients and integrates growth factor signaling. The role of LAMTOR4 in tumorigenesis is still unknown. However, there is a considerable possibility that LAMTOR4 is directly involved in tumor cell proliferation and metastasis. In the current study, we investigated the protein expression of LAMTOR4 in a cohort of 314 men who were undergoing transurethral resection of prostate (TURP) consisting of incidental, advanced and castration-resistant cases. We also correlated the data with ERG and PTEN genomic status and clinicopathological features including Gleason score and patients' outcome. Additionally, we performed in vitro experiments utilizing knockdown of LAMTOR4 in prostate cell lines, and we performed mRNA expression assessment using TCGA prostate adenocarcinoma (TCGA-PRAD) to explore the potential differentially expressed genes and pathways associated with LAMTOR4 overexpression in PCa patients. Our data indicate that high LAMTOR4 protein expression was significantly associated with poor overall survival (OS) (HR: 1.44, CI: 1.01-2.05, p = 0.047) and unfavorable cause-specific survival (CSS) (HR: 1.71, CI: 1.06-2.77, p = 0.028). Additionally, when high LAMTOR4 expression was combined with PTEN-negative cases (score 0), we found significantly poorer OS (HR: 2.22, CI: 1.37-3.59, p = 0.001) and CSS (HR: 3.46, CI: 1.86-6.46, p < 0.0001). Furthermore, ERG-positive cases with high LAMTOR4 exhibited lower OS (HR: 1.98, CI: 1.18-3.31, p = 0.01) and CSS (HR: 2.54, CI: 1.32-4.87, p = 0.005). In vitro assessment showed that knockdown of LAMTOR4 decreases PCa cell proliferation, migration, and invasion. Our data further showed that knockdown of LAMTOR4 in the LNCaP cell line significantly dysregulated the ß catenin/mTOR pathway and tumorigenesis associated pathways. Inhibiting components of the mTOR pathway, including LAMTOR4, might offer a strategy to inhibit tumor progression and metastasis in prostate cancer.


Subject(s)
Adaptor Proteins, Signal Transducing , Cell Movement , Cell Proliferation , Gene Expression Regulation, Neoplastic , Prostatic Neoplasms , Aged , Humans , Male , Middle Aged , Adaptor Proteins, Signal Transducing/genetics , Adaptor Proteins, Signal Transducing/metabolism , Cell Line, Tumor , Cell Movement/genetics , Cell Proliferation/genetics , Gene Knockdown Techniques , Neoplasm Invasiveness , Prognosis , Prostatic Neoplasms/pathology , Prostatic Neoplasms/genetics , Prostatic Neoplasms/metabolism , PTEN Phosphohydrolase/genetics , PTEN Phosphohydrolase/metabolism , Guanine Nucleotide Exchange Factors/genetics , Guanine Nucleotide Exchange Factors/metabolism
11.
Iran J Pathol ; 19(2): 225-235, 2024.
Article in English | MEDLINE | ID: mdl-39118797

ABSTRACT

Background & Objective: Prostatic adenocarcinoma (PAC) is the second most prevalent cancer and the fifth leading cause of cancer death in men worldwide. Additionally, pathologists may face problems diagnosing it reliably and may need more than one marker. Thus, the search for new immunohistochemical biomarkers becomes mandatory. This study aims to investigate P4HB and SOX4 expression in prostatic carcinoma, their possible roles, and clinical significance. Methods: This retrospective study included fifty-six cases of PAC and an equal number of nodular prostatic hyperplasia (NPH) that were immunohistochemically stained by P4HB and SOX4. The results of expression were compared between PAC and NPH cases, followed by correlations with available clinicopathological parameters. Results: There was a highly significant difference between PAC and NPH regarding P4HB and SOX4 expressions in favor of PAC (both P<0.001). ROC curve analysis of the diagnostic power of P4HB showed 79% sensitivity, 76% specificity, and an area under the ROC curve of 0.845, while SOX4 showed (89%, 100%, and 0.946, respectively). P4HB and SOX4 expression showed a direct correlation (P<0.001). Moreover, the H-score of SOX4 expression showed a significant inverse relation with ERG expression (P=0.047). There was a significant correlation between P4HB and SOX4 and Gleason score (P<0.001). Moreover, P4HB expression was significantly associated with lymphovascular invasion (P=0.013), while SOX4 expression showed a significant association with perineural invasion (P=0.05). Conclusion: SOX4 and P4HB seem to have diagnostic and prognostic value in PAC. While there was a direct correlation between SOX4 and P4HB, an inverse relationship between SOX4 and ERG was detected.

12.
Braz J Microbiol ; 55(3): 2569-2579, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38980650

ABSTRACT

Candida species are amongst the commensals of the mucosal surfaces of the human body which include the oral cavity, vagina, and intestinal mucosa. Fungal infections are on the rise worldwide. The overall burden of infections due to fungi is difficult to estimate because the majority of them remain undiagnosed. The present study aims to determine the burden of antifungal resistance in low socioeconomic country, Pakistan and the frequency of ERG11 and MDR1 genes involved. A total of 636 Candida isolates were obtained from various tertiary care institutions in Lahore in the form of culture on various culture plates. Sabouraud agar culture plates were used to culture the Candida spp. Antifungal resistance was determined against Fluconazole, Itraconazole, Ketoconazole, and Nystatin via disk diffusion technique. Most resistance was observed against Fluconazole followed by Itraconazole, Ketoconazole, and Nystatin. The Candida isolates recovering from CVP tip and tissue have a high resistance profile. Candida species resistant to at least two antifungals were chosen for further ERG11 and MDR1 detection through real-time PCR. Among 255 Candida isolates, 240 contained ERG11 gene while MDR1 gene is present in 149 Candida isolates. The isolates carrying both genes were tested by the broth microdilution technique for the susceptibility against cycloheximide, all of them were able to grow in cycloheximide. The genetic determinants of antifungal resistance such as ERG11 and MDR1 are as important in the multidrug resistance against a variety of compounds and antifungal drugs.


Subject(s)
Antifungal Agents , Candida , Cycloheximide , Microbial Sensitivity Tests , Antifungal Agents/pharmacology , Humans , Candida/drug effects , Candida/genetics , Candida/classification , Candida/isolation & purification , Cycloheximide/pharmacology , Pakistan , Candidiasis/microbiology , Fungal Proteins/genetics , Fungal Proteins/metabolism , Drug Resistance, Multiple, Fungal/genetics , ATP Binding Cassette Transporter, Subfamily B/genetics , ATP Binding Cassette Transporter, Subfamily B/metabolism
13.
Cureus ; 16(6): e62738, 2024 Jun.
Article in English | MEDLINE | ID: mdl-39036167

ABSTRACT

The hospital environment is often quite complicated due to interdisciplinary workflow procedures and multitasking staff, which are exacerbated during periods of economic crisis. This study aimed to examine the motivation and job satisfaction factors of Greek National Healthcare Service (NHS) employees in relation to the Existence-Relatedness-Growth (ERG) theory of motivation during a period of severe financial constraints. A cross-sectional study was conducted in three public hospitals in Greece from 2018 to 2019, utilizing a survey tool to measure the factors of motivation and job satisfaction among Greek NHS employees. The study also aimed to identify the most relevant motivational theory applicable to the complex Greek hospital environment. Exploratory factor analysis (EFA) was employed to extract the structural factors of the survey tool, and analysis of variance (ANOVA) was used to identify statistical differences between the means of three or more independent groups. A sample of 363 Greek NHS employees participated in this study. Statistically significant differences were detected between hospital units and job satisfaction factors, as well as between the functions of hospital clusters and job positions. Specifically, managerial staff presented higher levels of job satisfaction, while nursing staff had the lowest scores in terms of psychological contracts when compared to medical and administrative staff. This study demonstrated that job satisfaction in Greek public hospitals, in a context of severe financial constraints, was mainly driven by strong interpersonal connections and employee trust in management, despite significant cuts in salaries, staff numbers, and hospital budgets.

14.
Eur Urol Oncol ; 2024 Jul 20.
Article in English | MEDLINE | ID: mdl-39034169

ABSTRACT

BACKGROUND AND OBJECTIVE: Docetaxel has become a standard component of care for advanced prostate cancer (PC); however, its benefits are not universal among patients. A subset of PC cases exhibit TMPRSS2-ERG gene fusion, resulting in ERG overexpression in tumors. Our aim was to assess biomarkers for docetaxel efficacy in men with hormone-sensitive PC (HSPC). METHODS: Pretreatment prostate biopsies were obtained from participants in two randomized phase 3 clinical trials investigating docetaxel in high-risk localized PC (GETUG 12) and metastatic HSPC (GETUG 15). Immunohistochemistry staining for Ki67, PTEN, RB, and phosphorylated RB was conducted for GETUG 12 samples, and ERG staining for GETUG 12 and GETUG 15 samples. We examined biomarker association with outcomes using univariate and multivariable analyses adjusted for other validated prognostic factors. KEY FINDINGS AND LIMITATIONS: Among GETUG 12 patients, Ki67 was associated with a worse relapse-free survival (RFS; hazard ratio [HR] 1.72; p = 0.0092). A pooled analysis for the two trials (pinteraction = 0.056) revealed that docetaxel-based chemotherapy improved failure-free survival for patients with ERG-positive cancer (HR 0.58; p = 0.03), but not patients with ERG-negative cancer (HR 1.08; p = 0.72). In the ERG-positive subgroup in GETUG 12 (high-risk localized PC), median RFS was 7.79 yr with androgen deprivation therapy (ADT) alone, and was not reached with ADT + docetaxel. In the ERG-negative subgroup, median progression-free survival (mPFS) was 7.79 yr with ADT alone versus 7.08 yr with ADT + docetaxel. In the ERG-positive subgroup in GETUG 15 (metastatic HSPC), mPFS was 10.7 mo with ADT alone versus 18.8 mo with ADT + docetaxel. In the ERG-negative subgroup, mPFS was 10.6 mo with ADT alone versus 13.2 mo with ADT + docetaxel. CONCLUSIONS AND CLINICAL IMPLICATIONS: Ki67 may serve as a prognostic factor in HSPC, while ERG expression appears to predict a response to docetaxel in both high-risk localized and metastatic HSPC. PATIENT SUMMARY: We assessed factors that could predict outcomes after docetaxel chemotherapy in patients with advanced prostate cancer. We found that expression of a protein called ERG can predict a good response to docetaxel in these patients.

15.
Pediatr Blood Cancer ; 71(9): e31151, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38953149

ABSTRACT

BACKGROUND: The molecular pathogenesis of acute myeloid leukemia (AML) was dramatically clarified over the latest two decades. Several important molecular markers were discovered in patients with AML that have helped to improve the risk stratification. However, developing new treatment strategies for relapsed/refractory acute myeloid leukemia (AML) is crucial due to its poor prognosis. PROCEDURE: To overcome this difficulty, we performed an assay for transposase-accessible chromatin with sequencing (ATAC-seq) in 10 AML patients with various gene alterations. ATAC-seq is based on direct in vitro sequencing adaptor transposition into native chromatin, and is a rapid and sensitive method for integrative epigenomic analysis. ATAC-seq analysis revealed increased accessibility of the DOCK1 gene in patients with AML harboring poor prognostic factors. Following the ATAC-seq results, quantitative reverse transcription polymerase chain reaction was used to measure DOCK1 gene expression levels in 369 pediatric patients with de novo AML. RESULTS: High DOCK1 expression was detected in 132 (37%) patients. The overall survival (OS) and event-free survival (EFS) among patients with high DOCK1 expression were significantly worse than those patients with low DOCK1 expression (3-year EFS: 34% vs. 60%, p < .001 and 3-year OS: 60% vs. 80%, p < .001). To investigate the significance of high DOCK1 gene expression, we transduced DOCK1 into MOLM14 cells, and revealed that cytarabine in combination with DOCK1 inhibitor reduced the viability of these leukemic cells. CONCLUSIONS: Our results indicate that a DOCK1 inhibitor might reinforce the effects of cytarabine and other anti-cancer agents in patients with AML with high DOCK1 expression.


Subject(s)
Biomarkers, Tumor , Leukemia, Myeloid, Acute , Humans , Leukemia, Myeloid, Acute/genetics , Leukemia, Myeloid, Acute/drug therapy , Leukemia, Myeloid, Acute/mortality , Leukemia, Myeloid, Acute/pathology , Child , Male , Female , Prognosis , Child, Preschool , Adolescent , Biomarkers, Tumor/genetics , Biomarkers, Tumor/metabolism , Infant , Survival Rate , Follow-Up Studies , East Asian People , rac GTP-Binding Proteins
16.
mBio ; 15(8): e0166124, 2024 Aug 14.
Article in English | MEDLINE | ID: mdl-38980037

ABSTRACT

Mucormycoses are emerging fungal infections caused by a variety of heterogeneous species within the Mucorales order. Among the Mucor species complex, Mucor circinelloides is the most frequently isolated pathogen in mucormycosis patients and despite its clinical significance, there is an absence of established genome manipulation techniques to conduct molecular pathogenesis studies. In this study, we generated a spontaneous uracil auxotrophic strain and developed a genetic transformation procedure to analyze molecular mechanisms conferring antifungal drug resistance. With this new model, phenotypic analyses of gene deletion mutants were conducted to define Erg3 and Erg6a as key biosynthetic enzymes in the M. circinelloides ergosterol pathway. Erg3 is a C-5 sterol desaturase involved in growth, sporulation, virulence, and azole susceptibility. In other fungal pathogens, erg3 mutations confer azole resistance because Erg3 catalyzes the production of a toxic diol upon azole exposure. Surprisingly, M. circinelloides produces only trace amounts of this toxic diol and yet, it is still susceptible to posaconazole and isavuconazole due to alterations in membrane sterol composition. These alterations are severely aggravated by erg3Δ mutations, resulting in ergosterol depletion and, consequently, hypersusceptibility to azoles. We also identified Erg6a as the main C-24 sterol methyltransferase, whose activity may be partially rescued by the paralogs Erg6b and Erg6c. Loss of Erg6a function diverts ergosterol synthesis to the production of cholesta-type sterols, resulting in resistance to amphotericin B. Our findings suggest that mutations or epimutations causing loss of Erg6 function may arise during human infections, resulting in antifungal drug resistance to first-line treatments against mucormycosis. IMPORTANCE: The Mucor species complex comprises a variety of opportunistic pathogens known to cause mucormycosis, a potentially lethal fungal infection with limited therapeutic options. The only effective first-line treatments against mucormycosis consist of liposomal formulations of amphotericin B and the triazoles posaconazole and isavuconazole, all of which target components within the ergosterol biosynthetic pathway. This study uncovered M. circinelloides Erg3 and Erg6a as key enzymes to produce ergosterol, a vital constituent of fungal membranes. Absence of any of those enzymes leads to decreased ergosterol and consequently, resistance to ergosterol-binding polyenes such as amphotericin B. Particularly, losing Erg6a function poses a higher threat as the ergosterol pathway is channeled into alternative sterols similar to cholesterol, which maintain membrane permeability. As a result, erg6a mutants survive within the host and disseminate the infection, indicating that Erg6a deficiency may arise during human infections and confer resistance to the most effective treatment against mucormycoses.


Subject(s)
Antifungal Agents , Biosynthetic Pathways , Drug Resistance, Fungal , Ergosterol , Mucor , Ergosterol/biosynthesis , Ergosterol/metabolism , Antifungal Agents/pharmacology , Drug Resistance, Fungal/genetics , Biosynthetic Pathways/genetics , Humans , Mucor/genetics , Mucor/drug effects , Mucor/metabolism , Mucormycosis/microbiology , Mucormycosis/drug therapy , Microbial Sensitivity Tests , Triazoles/pharmacology , Fungal Proteins/genetics , Fungal Proteins/metabolism , Gene Deletion , Nitriles/pharmacology , Pyridines/pharmacology , Oxidoreductases
17.
Article in English | MEDLINE | ID: mdl-39083067

ABSTRACT

PURPOSE: TMPRSS2:ERG gene fusion negatively regulates PSMA expression in prostate adenocarcinoma (PCa) cell lines. Therefore, immunohistochemical (IHC) ERG expression, a surrogate for an underlying ERG rearrangement, and PSMA expression patterns in radical prostatectomy (RPE) specimens of primary PCa, including corresponding PSMA-PET scans were investigated. METHODS: Two cohorts of RPE samples (total n=148): In cohort #1 (n=62 patients) with available RPE and preoperative [68Ga]Ga-PSMA-11 PET, WHO/ISUP grade groups, IHC-ERG (positive vs. negative) and IHC-PSMA expression (% PSMA-negative tumour area, PSMA%neg) were correlated with the corresponding SUVmax. In the second cohort #2 (n=86 patients) including RPE only, same histopathological parameters were evaluated. RESULTS: Cohort #1: PCa with IHC-ERG expression (35.5%) showed significantly lower IHC-PSMA expression and lower SUVmax values on the corresponding PET scans. Eight of 9 PCa with negative PSMA-PET scans had IHC-ERG positivity, and confirmed TMPRSS2::ERG rearrangement. In IHC-PSMA positive PCa, IHC-ERG positivity was significantly associated with lower SUVmax values. In cohort #2, findings of higher IHC-PSMA%neg and IHC-ERG expression was confirmed with only 0-10% PSMA%neg tumour areas in IHC-ERG-negative PCa. CONCLUSION: IHC-ERG expression is significantly associated with more heterogeneous and lower IHC-PSMA tissue expression in two independent RPE cohorts. There is a strong association of ERG positivity in RPE tissue with lower [68Ga]Ga-PSMA-11 uptake on corresponding PET scans. Results may serve as a base for future biomarker development to enable tumour-tailored, individualized imaging approaches.

18.
Eur Urol Oncol ; 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38964997

ABSTRACT

BACKGROUND: Salvage radiation therapy (SRT) is a mainstay of treatment for biochemical relapse following radical prostatectomy; however, few studies have examined genomic biomarkers in this context. OBJECTIVE: We characterized the prognostic impact of previously identified deleterious molecular phenotypes-loss of PTEN, ERG expression, and TP53 mutation-for patients undergoing SRT. DESIGN, SETTING, AND PARTICIPANTS: We leveraged an institutional database of 320 SRT patients with available tissue and follow-up. Tissue microarrays were used for genetically validated immunohistochemistry assays. INTERVENTION: All men underwent SRT with or without androgen deprivation therapy OUTCOME MEASUREMENTS AND STATISTICAL ANALYSIS: Univariable and multivariable Cox-proportional hazard models assessed the association of molecular phenotypes with biochemical recurrence-free (bRFS) and metastasis-free (MFS) survival after SRT. RESULTS AND LIMITATIONS: Loss of PTEN (n = 123, 43%) and ERG expression (n = 118, 39%) were common in this cohort, while p53 overexpression (signifying TP53 missense mutation) was infrequent (n = 21, 7%). In univariable analyses, any loss of PTEN portended worse bRFS (hazard ratio [HR] 1.86; 95% confidence interval 1.36-2.57) and MFS (HR 1.89; 1.21-2.94), with homogeneous PTEN loss being associated with the highest risk of MFS (HR 2.47; 1.54-3.95). Similarly, p53 overexpression predicted worse bRFS (HR 1.95; 1.14-3.32) and MFS (HR 2.79; 1.50-5.19). ERG expression was associated with worse MFS only (HR 1.6; 1.03-2.48). On the multivariable analysis adjusting for known prognostic features, homogeneous PTEN loss remained predictive of adverse bRFS (HR 1.82; 1.12-2.96) and MFS (HR 2.08; 1.06-4.86). The study is limited by its retrospective and single-institution design. CONCLUSIONS: PTEN loss by immunohistochemistry is an independent adverse prognostic factor for bRFS and MFS in prostate cancer patients treated with SRT. Future trials will determine the optimal approach to treating SRT patients with adverse molecular prognostic features. PATIENT SUMMARY: Loss of the PTEN tumor suppressor protein is associated with worse outcomes after salvage radiotherapy, independent of other clinical or pathologic patient characteristics.

19.
bioRxiv ; 2024 Jun 24.
Article in English | MEDLINE | ID: mdl-38979343

ABSTRACT

Candida glabrata exhibits innate resistance to azole antifungal drugs but also has the propensity to rapidly develop clinical drug resistance. Azole drugs, which target Erg11, is one of the three major classes of antifungals used to treat Candida infections. Despite their widespread use, the mechanism controlling azole-induced ERG gene expression and drug resistance in C. glabrata has primarily revolved around Upc2 and/or Pdr1. In this study, we determined the function of two zinc cluster transcription factors, Zcf27 and Zcf4, as direct but distinct regulators of ERG genes. Our phylogenetic analysis revealed C. glabrata Zcf27 and Zcf4 as the closest homologs to Saccharomyces cerevisiae Hap1. Hap1 is a known zinc cluster transcription factor in S. cerevisiae in controlling ERG gene expression under aerobic and hypoxic conditions. Interestingly, when we deleted HAP1 or ZCF27 in either S. cerevisiae or C. glabrata, respectively, both deletion strains showed altered susceptibility to azole drugs, whereas the strain deleted for ZCF4 did not exhibit azole susceptibility. We also determined that the increased azole susceptibility in a zcf27Δ strain is attributed to decreased azole-induced expression of ERG genes, resulting in decreased levels of total ergosterol. Surprisingly, Zcf4 protein expression is barely detected under aerobic conditions but is specifically induced under hypoxic conditions. However, under hypoxic conditions, Zcf4 but not Zcf27 was directly required for the repression of ERG genes. This study provides the first demonstration that Zcf27 and Zcf4 have evolved to serve distinct roles allowing C. glabrata to adapt to specific host and environmental conditions.

20.
Doc Ophthalmol ; 149(1): 1-10, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38955959

ABSTRACT

PURPOSE: The electroretinogram (ERG) is the summed response from all levels of the retinal processing of light, and exhibits several profound nonlinearities in the underlying processing pathways. Accurate computational models of the ERG are important, both for understanding the multifold processes of light transduction to ecologically useful signals by the retina, and for their diagnostic capabilities for the identification and characterization of retinal disease mechanisms. There are, however, very few computational models of the ERG waveform, and none that account for the full extent of its features over time. METHODS: This study takes the neuroanalytic approach to modeling the ERG waveform, defined as a computational model based on the main features of the transmitter kinetics of the retinal neurons. RESULTS: The present neuroanalytic model of the human rod ERG is elaborated from the same general principles as that of Hood and Birch (Vis Neurosci 8(2):107-126, 1992), but incorporates the more recent understanding of the early nonlinear stages of ERG generation by Robson and Frishman (Prog Retinal Eye Res 39:1-22, 2014). As a result, it provides a substantially better match than previous models of rod responses in six different waveform features of the ERG flash intensity series on which the Hood and Birch model was based. CONCLUSION: The neuroanalytic approach extends previous models of the component waves of the ERG, and can be structured to provide an accurate characterization of the full timecourse of the ERG waveform. The approach thus holds promise for advancing the theoretical understanding of the retinal kinetics of the light response.


Subject(s)
Computer Simulation , Electroretinography , Retinal Rod Photoreceptor Cells , Humans , Kinetics , Photic Stimulation , Retinal Rod Photoreceptor Cells/physiology
SELECTION OF CITATIONS
SEARCH DETAIL