Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters








Publication year range
1.
Life (Basel) ; 13(2)2023 Jan 18.
Article in English | MEDLINE | ID: mdl-36836624

ABSTRACT

In interactions between pathogens and plants, pathogens secrete many molecules that facilitate plant infection, and some of these compounds are recognized by plant pattern recognition receptors (PRRs), which induce immune responses. Molecules in both pathogens and plants that trigger immune responses in plants are termed elicitors. On the basis of their chemical content, elicitors can be classified into carbohydrates, lipopeptides, proteinaceous compounds and other types. Although many studies have focused on the involvement of elicitors in plants, especially on pathophysiological changes induced by elicitors in plants and the mechanisms mediating these changes, there is a lack of up-to-date reviews on the characteristics and functions of proteinaceous elicitors. In this mini-review, we provide an overview of the up-to-date knowledge on several important families of pathogenic proteinaceous elicitors (i.e., harpins, necrosis- and ethylene-inducing peptide 1 (nep1)-like proteins (NLPs) and elicitins), focusing mainly on their structures, characteristics and effects on plants, specifically on their roles in plant immune responses. A solid understanding of elicitors may be helpful to decrease the use of agrochemicals in agriculture and gardening, generate more resistant germplasms and increase crop yields.

2.
J Agric Food Chem ; 70(51): 16135-16145, 2022 Dec 28.
Article in English | MEDLINE | ID: mdl-36528808

ABSTRACT

The mycoparasite Pythium oligandrum is a nonpathogenic oomycete that can boost plant immune responses. Elicitins are microbe-associated molecular patterns (MAMPs) specifically produced by oomycetes that activate plant defense. Here, we identified a novel elicitin, PoEli8, from P. oligandrum that exhibits immunity-inducing activity in plants. In vitro-purified PoEli8 induced strong innate immune responses and enhanced resistance to the oomycete pathogen Phytophthora capsici in Solanaceae plants, including Nicotiana benthamiana, tomato, and pepper. Cell death and reactive oxygen species (ROS) accumulation triggered by the PoEli8 protein were dependent on the plant coreceptors receptor-like kinases (RLKs) BAK1 and SOBIR1. Furthermore, REli from N. benthamiana, a cell surface receptor-like protein (RLP) was implicated in the perception of PoEli8 in N. benthamiana. These results indicate the potential value of PoEli8 as a bioactive formula to protect Solanaceae plants against Phytophthora.


Subject(s)
Phytophthora , Pythium , Solanaceae , Phytophthora/physiology , Pythium/physiology , Disease Resistance , Plants , Nicotiana , Plant Diseases/parasitology
3.
J Exp Bot ; 72(8): 3219-3234, 2021 04 02.
Article in English | MEDLINE | ID: mdl-33475728

ABSTRACT

Successful plant defence against microbial pathogens is based on early recognition and fast activation of inducible responses. Key mechanisms include detection of microbe-associated molecular patterns by membrane-localized pattern recognition receptors that induce a basal resistance response. A well-described model of such responses to pathogens involves the interactions between Solanaceae plants and proteinaceous elicitors secreted by oomycetes, called elicitins. It has been hypothesized that the formation of oligomeric structures by elicitins could be involved in their recognition and activation of defensive transduction cascades. In this study, we tested this hypothesis using several approaches, and we observed differences in tobacco plant responses induced by the elicitin ß-cryptogein (ß-CRY) and its homodimer, ß-CRYDIM. We also found that the C-terminal domain of elicitins of other ELI (true-elicitin) clades plays a significant role in stabilization of their oligomeric structure and restraint in the cell wall. In addition, covalently cross-linking ß-CRYDIM impaired the formation of signalling complexes, thereby reducing its capacity to elicit the hypersensitive response and resistance in the host plant, with no significant changes in pathogenesis-related protein expression. By revealing the details of the effects of ß-CRY dimerization on recognition and defence responses in tobacco, our results shed light on the poorly understood role of elicitins' oligomeric structures in the interactions between oomycetes and plants.


Subject(s)
Nicotiana , Oomycetes/pathogenicity , Plant Diseases , Amino Acid Sequence , Nicotiana/metabolism
4.
Front Plant Sci ; 11: 95, 2020.
Article in English | MEDLINE | ID: mdl-32140166

ABSTRACT

Sporisorium reilianum f. sp. zeae (SRZ) is a biotrophic fungus causing head smut in maize. Maize infection with SRZ leads to very little cell death suggesting the presence of cell-death suppressinpg effectors. Several hundred effector proteins have been predicted based on genome annotation, genome comparison, and bioinformatic analysis. For only very few of these effectors, an involvement in virulence has been shown. In this work, we started to test a considerable subset of these predicted effector proteins for a possible function in suppressing cell death. We generated an expression library of 62 proteins of SRZ under the control of a strong constitutive plant promoter for delivery into plant cells via Agrobacterium tumefaciens-mediated transient transformation. Potential apoplastic effectors with high cysteine content were cloned with signal peptide while potential intracellular effectors were also cloned without signal peptide to ensure proper localization after expression in plant cells. After infiltration of Nicotiana benthamiana leaves, infiltration sites were evaluated for apparent signs of hypersensitive cell death in absence or presence of the elicitin INF1 of Phytophthora infestans. None of the tested candidates was able to induce cell death, and most were unable to suppress INF1-induced cell death. However, the screen revealed one predicted cytoplasmic effector (sr16441) of SRZ that was able to reliably suppress INF1-induced cell death when transiently expressed in N. benthamiana lacking its predicted secretion signal peptide. This way, we discovered a putative function for one new effector of SRZ.

5.
Planta ; 250(4): 1215-1227, 2019 Oct.
Article in English | MEDLINE | ID: mdl-31218413

ABSTRACT

MAIN CONCLUSION: This study revealed novel insights into the function of MSP18 effector during root-knot nematode parasitism in rice roots. MSP18 may modulate host immunity and enhance plant susceptibility to Meloidogyne spp. Rice (Oryza sativa) production is seriously impacted by root-knot nematodes (RKN), including Meloidogyne graminicola, Meloidogyne incognita, and Meloidogyne javanica, in upland and irrigated culture systems. Successful plant infection by RKN is likely achieved by releasing into the host cells some effector proteins to suppress the activation of immune responses. Here, we conducted a series of functional analyses to assess the role of the Meloidogyne-secreted protein (MSP) 18 from M. incognita (Mi-MSP18) during rice infection by RKN. Developmental expression profiles of M. javanica and M. graminicola showed that the MSP18 gene is up-regulated throughout nematode parasitic stages in rice. Reproduction of M. javanica and M. graminicola is enhanced in rice plants overexpressing Mi-MSP18, indicating that the Mi-MSP18 protein facilitates RKN parasitism. Transient expression assays in onion cells suggested that Mi-MSP18 is localized to the cytoplasm of the host cells. In tobacco, Mi-MSP18 suppressed the cell death induced by the INF1 elicitin, suggesting that Mi-MSP18 can interfere with the plant defense pathways. The data obtained in this study highlight Mi-MSP18 as a novel RKN effector able to enhance plant susceptibility and modulate host immunity.


Subject(s)
Helminth Proteins/metabolism , Host-Parasite Interactions , Oryza/parasitology , Plant Diseases/parasitology , Plant Immunity , Tylenchoidea/physiology , Animals , Apoptosis , Cytoplasm/metabolism , Helminth Proteins/genetics , Oryza/immunology , Plant Diseases/immunology , Plant Roots/parasitology , Plant Roots/physiology , Nicotiana/parasitology , Nicotiana/physiology , Tylenchoidea/genetics
6.
New Phytol ; 212(4): 888-895, 2016 Dec.
Article in English | MEDLINE | ID: mdl-27582271

ABSTRACT

888 I. 888 II. 889 III. 889 IV. 889 V. 891 VI. 891 VII. 891 VIII. 892 IX. 892 X. 893 XI. 893 893 References 893 SUMMARY: Elicitins are structurally conserved extracellular proteins in Phytophthora and Pythium oomycete pathogen species. They were first described in the late 1980s as abundant proteins in Phytophthora culture filtrates that have the capacity to elicit hypersensitive (HR) cell death and disease resistance in tobacco. Later, they became well-established as having features of microbe-associated molecular patterns (MAMPs) and to elicit defences in a variety of plant species. Research on elicitins culminated in the recent cloning of the elicitin response (ELR) cell surface receptor-like protein, from the wild potato Solanum microdontum, which mediates response to a broad range of elicitins. In this review, we provide an overview on elicitins and the plant responses they elicit. We summarize the state of the art by describing what we consider to be the nine most important features of elicitin biology.


Subject(s)
Oomycetes/metabolism , Proteins/metabolism , Amino Acid Sequence , Disease Resistance , Plant Diseases/microbiology , Plants/immunology , Plants/microbiology , Proteins/chemistry
7.
Infect Genet Evol ; 35: 127-33, 2015 Oct.
Article in English | MEDLINE | ID: mdl-26254563

ABSTRACT

Oomycetes are fungus-like in appearance, but form a distinct clade within the eukaryotes. While most pathogenic oomycetes infect plants, the understudied oomycete Pythium insidiosum infects humans and animals, and causes a life-threatening infectious disease, called pythiosis. Phylogenetic analyses divide P. insidiosum into 3 groups, according to geographic origins: Clade-I (Americas), Clade-II (Asia and Australia), and Clade-III (Thailand). Surgical removal of the infected organ is the inevitable treatment for patients with pythiosis, but it is often too late or unsuccessful, and many patients die from advanced infection. Understanding P. insidiosum's basic biology could lead to improved infection control. Elicitins, a unique group of proteins found only in oomycetes, are involved in sterol acquisition and stimulation of host responses. Recently, we identified glycosylated and non-glycosylated forms of the elicitin-like protein, ELI025, which is secreted by P. insidiosum, and detected during P. insidiosum infection. In this study, we investigated geographic variation of ELI025 in 24 P. insidiosum strains isolated from humans, animals, and the environment. Genotypes of ELI025, based on 2 sets of PCR primers, correlated well with rDNA-based phylogenetic grouping. Unlike strains in Clade-I and -II, Clade-III strains secreted no glycosylated ELI025. Sera from 17 pythiosis patients yielded a broad range of antibody responses against ELI025, and ∼30% lacked reactivity against the protein. Selective production or secretion of glycosylated ELI025 by different P. insidiosum strains might contribute to the variable host antibody responses. In conclusion, ELI025 was secreted by all P. insidiosum strains isolated from different hosts and geographic origins, but the protein had different biochemical, and immunological characteristics. These finding contribute to the better understanding of the biology and evolution of P. insidiosum, and could lead to appropriate clinical application of the ELI025 protein for diagnosis or treatment of pythiosis.


Subject(s)
Glycoproteins/metabolism , Pythiosis/parasitology , Pythium/isolation & purification , Pythium/metabolism , Animals , DNA, Ribosomal/analysis , Glycoproteins/genetics , Glycoproteins/immunology , Glycosylation , Humans , Phylogeny , Phylogeography , Pythiosis/immunology , Pythiosis/metabolism , Pythium/classification , Pythium/genetics , Sequence Analysis, DNA
8.
J Exp Bot ; 66(13): 3683-98, 2015 Jul.
Article in English | MEDLINE | ID: mdl-25922484

ABSTRACT

Elicitins are elicitors that can trigger hypersensitive cell death in most Nicotiana spp., but their underlying molecular mechanism is not well understood. The gene Phytophthora capsici INF1 (PcINF1) coding for an elicitin from P. capsici was characterized in this study. Transient overexpression of PcINF1 triggered cell death in pepper (Capsicum annuum L.) and was accompanied by upregulation of the hypersensitive response marker, Hypersensitive Induced Reaction gene 1 (HIR1), and the pathogenesis-related genes SAR82, DEF1, BPR1, and PO2. A putative PcINF1-interacting protein, SRC2-1, was isolated from a pepper cDNA library by yeast two-hybrid screening and was observed to target the plasma membrane. The interaction between PcINF1 and SRC2-1 was confirmed by bimolecular fluorescence complementation and co-immunoprecipitation. Simultaneous transient overexpression of SRC2-1 and PcINF1 in pepper plants triggered intensive cell death, whereas silencing of SRC2-1 by virus-induced gene silencing blocked the cell death induction of PcINF1 and increased the susceptibility of pepper plants to P. capsici infection. Additionally, membrane targeting of the PcINF1-SRC2-1 complex was required for cell death induction. The C2 domain of SRC2-1 was crucial for SRC2-1 plasma membrane targeting and the PcINF1-SRC2-1 interaction. These results suggest that SRC2-1 interacts with PcINF1 and is required in PcINF1-induced pepper immunity.


Subject(s)
Capsicum/immunology , Capsicum/microbiology , Phytophthora/metabolism , Plant Immunity , Plant Proteins/metabolism , Proteins/metabolism , Cell Death , Cell Membrane/metabolism , Cytoplasm/metabolism , Disease Susceptibility , Gene Expression Regulation, Plant , Gene Silencing , Immunoprecipitation , Plant Diseases/immunology , Plant Diseases/microbiology , Plant Leaves/cytology , Plant Proteins/chemistry , Protein Binding , Protein Structure, Tertiary , Saccharomyces cerevisiae/metabolism , Sequence Analysis, DNA
9.
FEMS Microbiol Ecol ; 90(1): 153-67, 2014 Oct.
Article in English | MEDLINE | ID: mdl-25041717

ABSTRACT

This study focused on one oomycete, Pythium oligandrum, well-known for its plant protection abilities, which thrives in microbial environment where bacteria and fungal communities are also present. The genetic structures and dynamics of fungal and bacterial communities were studied in three Bordeaux subregions with various types of soil, using single-strand conformation polymorphism. The structure of the fungal communities colonizing the rhizosphere of vines planted in sandy-stony soils was markedly different from that those planted in silty and sandy soils; such differences were not observed for bacteria. In our 2-year experiment, the roots of all the vine samples were also colonized by echinulated oospore Pythium species, with P. oligandrum predominating. Cytochrome oxidase I and tubulin gene sequencings showed that P. oligandrum strains clustered into three groups. Based on elicitin-like genes coding for proteins able to induce plant resistance, six populations were identified. However, none of these groups was assigned to a particular subregion of Bordeaux vineyards, suggesting that these factors do not shape the genetic structure of P. oligandrum populations. Results showed that different types of rootstock and weeding management both influence root colonization by P. oligandrum. These results should prove particularly useful in improving the management of potentially plant-protective microorganisms.


Subject(s)
Pythium/classification , Rhizosphere , Vitis , Bacteria/classification , Bacteria/genetics , Bacteria/isolation & purification , Biodiversity , Carrier Proteins/biosynthesis , France , Fungal Proteins/biosynthesis , Fungi/classification , Fungi/genetics , Fungi/isolation & purification , Intercellular Signaling Peptides and Proteins , Plant Leaves/microbiology , Plant Roots/microbiology , Polymorphism, Single-Stranded Conformational , Pythium/genetics , Pythium/isolation & purification , Pythium/physiology , Soil Microbiology
10.
Plant Cell Environ ; 37(7): 1614-25, 2014 Jul.
Article in English | MEDLINE | ID: mdl-24392654

ABSTRACT

Plant mitogen-activated protein kinases represented by tobacco WIPK (wounding-induced protein kinase) and its orthologs in other species are unique in their regulation at transcriptional level in response to stress and pathogen infection. We previously demonstrated that transcriptional activation of WIPK is essential for induced WIPK activity, and activation of salicylic acid-induced protein kinase (SIPK) by the constitutively active NtMEK2(DD) is sufficient to induce WIPK gene expression. Here, we report that the effect of SIPK on WIPK gene expression is mediated by reactive oxygen species (ROS). Using a combination of pharmacological and gain-of-function transgenic approaches, we studied the relationship among SIPK activation, WIPK gene activation in response to fungal cryptogein, light-dependent ROS generation in chloroplasts, and ROS generated via NADPH oxidase. In the conditional gain-of-function GVG-NtMEK2(DD) transgenic tobacco, induction of WIPK expression is dependent on the ROS generation in chloroplasts. Consistently, methyl viologen, an inducer of ROS generation in chloroplasts, highly activated WIPK expression. In addition to chloroplast-originated ROS, H(2)O(2) generated from the cell-surface NADPH oxidase could also activate WIPK gene expression, and inhibition of cryptogein-induced ROS generation also abolished WIPK gene activation. Our data demonstrate that WIPK gene activation is mediated by ROS, which provides a mechanism by which ROS influence cellular signalling processes in plant stress/defence response.


Subject(s)
Gene Expression Regulation, Plant , Mitogen-Activated Protein Kinases/genetics , Nicotiana/enzymology , Nicotiana/genetics , Plant Proteins/genetics , Reactive Oxygen Species/metabolism , Signal Transduction/genetics , Transcriptional Activation/genetics , Chloroplasts/drug effects , Chloroplasts/metabolism , Dexamethasone/pharmacology , Enzyme Activation/drug effects , Gene Expression Regulation, Plant/drug effects , Gene Expression Regulation, Plant/radiation effects , Hydrogen Peroxide/pharmacology , Light , Mitogen-Activated Protein Kinases/metabolism , Models, Biological , Photosynthesis/drug effects , Photosynthesis/radiation effects , Plant Proteins/metabolism , Proteins/pharmacology , Signal Transduction/drug effects , Signal Transduction/radiation effects , Nicotiana/drug effects , Nicotiana/radiation effects , Transcriptional Activation/drug effects , Transcriptional Activation/radiation effects
SELECTION OF CITATIONS
SEARCH DETAIL