Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.154
Filter
1.
Pharmacotherapy ; 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38949413

ABSTRACT

Antibiotic resistance has become a global threat as it is continuously growing due to the evolution of ß-lactamases diminishing the activity of classic ß-lactam (BL) antibiotics. Recent antibiotic discovery and development efforts have led to the availability of ß-lactamase inhibitors (BLIs) with activity against extended-spectrum ß-lactamases as well as Klebsiella pneumoniae carbapenemase (KPC)-producing carbapenem-resistant organisms (CRO). Nevertheless, there is still a lack of drugs that target metallo-ß-lactamases (MBL), which hydrolyze carbapenems efficiently, and oxacillinases (OXA) often present in carbapenem-resistant Acinetobacter baumannii. This review aims to provide a snapshot of microbiology, pharmacology, and clinical data for currently available BL/BLI treatment options as well as agents in late stage development for CRO harboring various ß-lactamases including MBL and OXA-enzymes.

2.
J Infect ; 89(2): 106216, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38964511

ABSTRACT

OBJECTIVES: We evaluated the effect of fecal microbiota transplantation (FMT) on the clearance of carbapenemase-producing Enterobacterales (CPE) carriage. METHODS: We performed a prospective, multi-center study, conducted among patients who received a single dose of FMT from one of four healthy donors. The primary endpoint was complete clearance of CPE carriage two weeks after FMT with a secondary endpoint at three months. Shotgun metagenomic sequencing was performed to assess gut microbiota composition of donors and recipients before and after FMT. RESULTS: Twenty CPE-colonized patients were included in the study, where post-FMT 20% (n = 4/20) of patients met the primary endpoint and 40% (n = 8/20) of patients met the secondary endpoint. Kaplan-Meier curves between patients with FMT intervention and the control group (n = 82) revealed a similar rate of decolonization between groups. Microbiota composition analyses revealed that response to FMT was not donor-dependent. Responders had a significantly lower relative abundance of CPE species pre-FMT than non-responders, and 14 days post-FMT responders had significantly higher bacterial species richness and alpha diversity compared to non-responders (p < 0.05). Responder fecal samples were also enriched in specific species, with significantly higher relative abundances of Faecalibacterium prausnitzii, Parabacteroides distasonis, Collinsella aerofaciens, Alistipes finegoldii and Blautia_A sp900066335 (q<0.01) compared to non-responders. CONCLUSION: FMT administration using the proposed regimen did not achieve statistical significance for complete CPE decolonization but was correlated with the relative abundance of specific bacterial taxa, including CPE species.

3.
Microbiol Spectr ; : e0040224, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38953323

ABSTRACT

Delayed time to antimicrobial susceptibility results can impact patients' outcomes. Our study evaluated the impact of susceptibility turnaround time (TAT) and inadequate empiric antibacterial therapy (IET) in patients with bloodstream infections (BSI) caused by Enterobacterales (ENT) species on in-hospital mortality and length of stay (LOS). This retrospective, multicenter investigation which included 29,570 blood ENT-positive admissions across 161 US healthcare facilities evaluated the association between antimicrobial susceptibility testing (AST) TAT, carbapenem susceptibility, and empiric therapy on post-BSI in-hospital mortality and LOS following an ENT BSI event in adult patients. After adjusting for outcomes covariates, post-BSI in-hospital mortality was significantly higher for patients in the IET vs adequate empiric therapy (AET) group [odds ratio (OR): 1.61 (95% CI: 1.32, 1.98); P < 0.0001], and when AST TAT was >63 h [OR:1.48 (95% CI: 1.16, 1.90); P = 0.0017]. Patients with carbapenem non-susceptible (carb-NS) ENT BSI had significantly higher LOS (16.6 days, 95% CI: 15.6, 17.8) compared to carbapenem susceptible (carb-S, 12.2 days, 95% CI: 11.8, 12.6), (P < 0.0001). Extended AST TAT was significantly associated with longer LOS for TAT of 57-65 h and >65 h (P = 0.005 and P< 0.0001, respectively) compared to TAT ≤42 h (reference). Inadequate empiric therapy (IET), carb-NS, and delayed AST TAT are significantly associated with adverse hospital outcomes in ENT BSI. Workflows that accelerate AST TAT for ENT BSIs and facilitate timely and adequate therapy may reduce post-BSI in-hospital mortality rate and LOS.IMPORTANCEFor patients diagnosed with bloodstream infections (BSI) caused by Enterobacterales (ENT), delayed time to antimicrobial susceptibility (AST) results can significantly impact in-hospital mortality and hospital length of stay. However, this relationship between time elapsed from blood culture collection to AST results has only been assessed, to date, in a limited number of publications. Our study focuses on this important gap using retrospective data from 29,570 blood ENT-positive admissions across 161 healthcare facilities in the US as we believe that a thorough understanding of the dynamic between AST turnaround time, adequacy of empiric therapy, post-BSI event mortality, and hospital length of stay will help guide effective clinical management and optimize outcomes of patients with ENT infections.

4.
Cureus ; 16(6): e61538, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38957246

ABSTRACT

Background The escalating global rise in multidrug-resistant gram-negative bacteria presents an increasingly substantial threat to patient safety. Over the past decade, carbapenem-resistant Enterobacterales (CRE) have emerged as one of the most critical pathogens in hospital-acquired infections, notably within intensive care units. Colistin has become one of the last-resort antimicrobial agents utilized to combat infections caused by CRE. However, the use of colistin has been accompanied by a notable increase in the prevalence of colistin-resistant bacteria. This study aimed to investigate plasmid-mediated colistin resistance genes ranging from mcr-1 to mcr-8 among members of the Enterobacterales order. Materials and methods This prospective study was conducted in the microbiology laboratory of Afyonkarahisar Health Sciences University Health Research and Practice Center between May 1, 2021 and July 31, 2022. A total of 2,646 Enterobacterales isolates were obtained from all culture-positive clinical samples sent from various clinics. Of these, 79 isolates exhibiting resistance to carbapenem antibiotics were included in the study. Among the 79 isolates, the presence of mcr-1 to mcr-8 genes was investigated in 27 isolates that were shown to be resistant to colistin. The identification of bacteria at the species level and antibiotic susceptibility tests were conducted using the VITEK 2 automated system (bioMérieux, USA). Colistin resistance among Enterobacterales strains exhibiting carbapenem resistance was evaluated using the broth microdilution technique (ComASP™ Colistin, Liofilchem, Italy), in accordance with the manufacturer's instructions. Results In our in vitro investigations, the minimum inhibitory concentration (MIC) values for meropenem were determined to be >8 µg/ml, whereas for colistin, the MIC50 value was >16 µg/ml and the MIC90 value was 8 µg/ml. A total of 27 colistin-resistant strains were identified among the 79 carbapenem-resistant Enterobacterales strains analyzed. The most prevalent agent among colistin-resistant strains was Klebsiella pneumoniae (K. pneumoniae), representing 66.7% of the isolates. This was followed by Proteus mirabilis (P. mirabilis) with 29.6% and Escherichia coli (E. coli) with 3.7%. The colistin resistance rate among carbapenem-resistant strains was found to be 34.2%, with colistin MIC values in strains tested by the broth microdilution method ranging from 4 to >16 µg/ml concentrations. In polymerase chain reaction (PCR) studies, the mcr-1 gene region was successfully detected by real-time PCR in the positive control isolate. Nevertheless, none of the gene regions from mcr-1 to mcr-8 were identified in our study investigating the presence of plasmid-mediated genes using a multiplex PCR kit. Conclusion Although our study demonstrated the presence of increased colistin resistance rates in carbapenem-resistant Enterobacterales isolates, it resulted in the failure to detect genes from mcr-1 to mcr-8 by the multiplex PCR method. Therefore, it is concluded that the colistin resistance observed in Enterobacteriaceae isolates in our region is not due to the mcr genes screened, but to different resistance development mechanisms.

5.
Article in English | MEDLINE | ID: mdl-38876942

ABSTRACT

BACKGROUND: This study aimed to assess the performance of three commercial panels, the ERIC Carbapenem-Resistant Enterobacteriaceae Test (ERIC CRE test), the NG-Test CARBA 5 (NG CARBA 5), and the BD Phoenix CPO Detect Panel (CPO panel), for the detection of main types of carbapenemases among carbapenem-resistant Enterobacterales (CRE). METHODS: We collected 502 isolates of carbapenem-resistant Enterobacterales (CRE) demonstrating intermediate or resistant profiles to at least one carbapenem antibiotic (ertapenem, imipenem, meropenem, or doripenem). Carbapenemase genes and their specific types were identified through multiplex PCR and sequencing methods. Subsequently, the ERIC CRE test, CPO panel, and NG CARBA 5 assay were conducted on these isolates, and the results were compared with those obtained from multiplex PCR. RESULTS: The results indicated that the ERIC CRE test exhibited an overall sensitivity and specificity of 98.1% and 93.6%, respectively, which were comparable to 99.1% and 90.6% for the NG CARBA 5. However, the CPO panel demonstrated a sensitivity of only 56.2% in identifying Ambler classes, exhibiting the poorest sensitivity for class A. Moreover, while the ERIC CRE test outperformed the NG CARBA 5 in identifying multi-gene isolates with multiple carbapenemase-encoding genes, the CPO panel failed to accurately classify these isolates. CONCLUSIONS: Our findings support the utilization of the ERIC CRE test as one of the methods for detecting carbapenemases in clinical laboratories. Nonetheless, further optimization is imperative for the CPO panel to enhance its accuracy in determining carbapenemase classification and address limitations in detecting multi-gene isolates.

6.
Front Vet Sci ; 11: 1294575, 2024.
Article in English | MEDLINE | ID: mdl-38933698

ABSTRACT

Introduction: Raw diets have become popular in companion animal nutrition, but these diets may be contaminated with harmful bacteria because heat processing is not utilized to mitigate pathogens during the production process. We analyzed 24 commercially available frozen raw canine and feline diets for extended-spectrum beta-lactamase-producing Enterobacterales (ESBL-E). Methods: Samples were incubated in tryptic soy broth augmented with 50 µg/mL ampicillin to enrich for ESBL-E. ESBL-E were isolated using CHROMagar ESBL plates and isolate identification and antibiotic susceptibility testing were confirmed using the VITEK®2 instrument. Results: ESBL-E were isolated from 42% (10/24) of raw diets, with E. coli, Enterobacter cloacae complex and Klebsiella pneumoniae predominating. Most ESBL-E isolates (71%, 32/45) were multidrug-resistant. Direct plating of samples onto tryptic soy agar yielded bacterial counts >6 log10 for 2 samples from two different manufacturers. Conclusion: This preliminary study justifies further investigation into the potential contribution of raw diets to the dissemination of antibiotic resistant bacteria in companion animals and domestic living spaces.

7.
Infect Drug Resist ; 17: 2541-2554, 2024.
Article in English | MEDLINE | ID: mdl-38933778

ABSTRACT

Background: Carbapenem-resistant Klebsiella pneumoniae (CRKP) infections are a great threat to public health worldwide. Ceftazidime-avibactam (CZA) is an effective ß-lactam/ß-lactamase inhibitors against CRKP. However, reports of resistance to CZA, mainly caused by Klebsiella pneumoniae carbapenemase (KPC) variants, have increased in recent years. In this study, we aimed to describe the resistance characteristics of KPC-12, a novel KPC variant identified from a CZA resistant K. pneumoniae. Methods: The K. pneumoniae YFKP-97 collected from a patient with respiratory tract infection was performed whole-genome sequencing (WGS) on the Illumina NovaSeq 6000 platform. Genomic characteristics were analyzed using bioinformatics methods. Antimicrobial susceptibility testing was conducted by the broth microdilution method. Induction of resistant strain was carried out in vitro as previously described. The G. mellonella killing assay was used to evaluate the pathogenicity of strains, and the conjugation experiment was performed to evaluate plasmid transfer ability. Results: Strain YFKP-97 was a multidrug-resistant clinical ST11-KL47 K. pneumoniae confers high-level resistance to CZA (16/4 µg/mL). WGS revealed that a KPC variant, KPC-12, was carried by the IncFII (pHN7A8) plasmids (pYFKP-97_a and pYFKP-97_b) and showed significantly decreased activity against carbapenems. In addition, there was a dose-dependent effect of bla KPC-12 on its activity against ceftazidime. In vitro inducible resistance assay results demonstrated that the KPC-12 variant was more likely to confer resistance to CZA than the KPC-2 and KPC-3 variants. Discussion: Our study revealed that patients who was not treated with CZA are also possible to be infected with CZA-resistant strains harbored a novel KPC variant. Given that the transformant carrying bla KPC-12 was more likely to exhibit a CZA-resistance phenotype. Therefore, it is important to accurately identify the KPC variants as early as possible.

8.
J Water Health ; 22(6): 1053-1063, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38935456

ABSTRACT

The carbapenem-resistant Enterobacterales (CRE) pose a pressing public health concern. Here, we investigated the frequency of CRE bacteria, carbapenemase-encoding genes, and the molecular epidemiology of carbapenemase-resistant Escherichia coli in wastewater resources and healthy carriers in Iran. Out of 617 Enterobacterales bacteria, 24% were carbapenem-resistant. The prevalence of CRE bacteria in livestock and poultry wastewater at 34% and hospital wastewater at 33% was significantly higher (P ≤ 0.05) than those in healthy carriers and municipal wastewater at 22 and 17%, respectively. The overall colonization rate of CRE in healthy individuals was 22%. Regarding individual Enterobacterales species, the following percentages of isolates were found to be CRE: E. coli (18%), Citrobacter spp. (24%), Klebsiella pneumoniae (28%), Proteus spp. (40%), Enterobacter spp. (25%), Yersinia spp. (17%), Hafnia spp. (31%), Providencia spp. (21%), and Serratia spp. (36%). The blaOXA-48 gene was detected in 97% of CRE isolates, while the blaNDM and blaVIM genes were detected in 24 and 3% of isolates, respectively. The B2 phylogroup was the most prominent group identified in carbapenem-resistant E. coli isolates, accounting for 80% of isolates. High prevalence of CRE with transmissible carbapenemase genes among healthy people and wastewater in Iran underscores the need for assertive measures to prevent further dissemination.


Subject(s)
Carbapenems , Wastewater , Wastewater/microbiology , Iran/epidemiology , Carbapenems/pharmacology , Carbapenem-Resistant Enterobacteriaceae/isolation & purification , Humans , Bacterial Proteins/genetics , beta-Lactamases/genetics , Anti-Bacterial Agents/pharmacology , Enterobacteriaceae/drug effects , Enterobacteriaceae/isolation & purification , Enterobacteriaceae/genetics , Animals
9.
Diagnostics (Basel) ; 14(12)2024 Jun 17.
Article in English | MEDLINE | ID: mdl-38928689

ABSTRACT

The NG-Test CARBA 5 and Carbapenem-resistant K.N.I.V.O. Detection K-Set are lateral flow assays (LFAs) that rapidly detect five carbapenemases (KPC, NDM, IMP, VIM and OXA-48-like). We evaluated the effect of inoculum size on the performance of these two assays using 27 Enterobacterales isolates. Whole-genome sequencing (WGS) was used as the reference method. Using the NG-Test CARBA 5, eight Serratia spp. and six M. morganii isolates showed false-positive NDM results with a high inoculum. Using the Carbapenem-resistant K.N.I.V.O. Detection K-Set, eight M. morganii, four Serratia spp. and one K. pneumoniae isolates showed false-positive NDM and/or OXA-48-like bands at large inoculum sizes, while the other two M. morganii isolates demonstrated false-positive NDM and OXA-48-like results at all inoculum sizes. The false-positive bands varied in intensity. WGS confirmed that no carbapenemase gene was present. No protein sequence with a ≥50% identity to NDM or OXA-48-like enzymes was found. This study emphasizes the importance of assessing inoculum size in the diagnostic evaluation of LFAs.

10.
Open Forum Infect Dis ; 11(6): ofae296, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38868308

ABSTRACT

Antimicrobial resistance in uropathogens commonly causing urinary tract infections (UTIs) is a growing problem internationally. Pivmecillinam, the oral prodrug of mecillinam, has been used for over 40 years, primarily in Northern Europe and Canada. It is recommended in several countries as a first-line agent for the treatment of uncomplicated UTIs (uUTIs) and is now approved in the United States. We performed a structured literature search to review the available evidence on susceptibility of common uUTI-causing uropathogens to mecillinam. Among 38 studies included in this literature review, susceptibility rates for Escherichia coli to mecillinam-including resistant phenotypes such as extended-spectrum ß-lactamase-producing E. coli-exceed 90% in most studies. High rates of susceptibility were also reported among many other uropathogens including Klebsiella spp., Enterobacter spp., and Citrobacter spp. In the current prescribing climate within the United States, pivmecillinam represents a viable first-line treatment option for patients with uUTI.

11.
12.
SAGE Open Med ; 12: 20503121241259993, 2024.
Article in English | MEDLINE | ID: mdl-38881595

ABSTRACT

Background: Urinary tract infections caused by extended-spectrum beta-lactamase organisms pose a significant concern worldwide. Given the escalating prevalence of drug resistance and the limited data on the effectiveness of oral antibiotics in treating these infections, this study aimed to assess the clinical outcomes in adult patients with extended-spectrum beta-lactamase urinary tract infections treated with oral antibiotics. Methods: A retrospective observational cohort study was conducted at King Abdulaziz Medical City, Saudi Arabia, from January 2018 to December 2021. It included patients ⩾18 years with complicated or uncomplicated urinary tract infections from extended-spectrum beta-lactamase Enterobacterales and treated with oral antibiotics as step-down or mainstay therapy. All-cause clinical failure within 30 days post-discharge was evaluated as the efficacy outcome. Statistical analyses were performed using SPSS software. Results: Out of 643 screened patients, 152 patients met the inclusion criteria. The patients were divided into oral step-down therapy (51.3%) and oral-only (48.7%) groups. The majority (69.1%) were females, with a mean age of 62 years. Complicated urinary tract infections were diagnosed in (75.5%) of cases, and the predominant pathogen was E. coli (79.6%). Clinical failure was observed in 23.1% in the oral step-down group and 13.5% in the oral-only group, with no significant difference (p = 0.128). Total antibiotics duration was significantly lower in the oral-only group (8 days vs. 12.2 days; p < 0.001). Binary logistic regression identified elder age, diabetes mellitus history, and prior extended-spectrum beta-lactamase infection as predictors of clinical failure. Conclusion: This study suggests that both step-down or primary oral antibiotic treatment yielded similar clinical outcomes in managing patients with extended-spectrum beta-lactamase urinary tract infections. Further prospective studies are required to validate these findings.

13.
BMC Infect Dis ; 24(1): 561, 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38840122

ABSTRACT

BACKGROUND: Treatment of carbapenem-resistant Enterobacterales (CRE) infections in low-resource settings is challenging particularly due to limited treatment options. Colistin is the mainstay drug for treatment; however, nephrotoxicity and neurotoxicity make this drug less desirable. Thus, mortality may be higher among patients treated with alternative antimicrobials that are potentially less efficacious than colistin. We assessed mortality in patients with CRE bacteremia treated with colistin-based therapy compared to colistin-sparing therapy. METHODS: We conducted a cross-sectional study using secondary data from a South African national laboratory-based CRE bacteremia surveillance system from January 2015 to December 2020. Patients hospitalized at surveillance sentinel sites with CRE isolated from blood cultures were included. Multivariable logistic regression modeling, with multiple imputations to account for missing data, was conducted to determine the association between in-hospital mortality and colistin-based therapy versus colistin-sparing therapy. RESULTS: We included 1 607 case-patients with a median age of 29 years (interquartile range [IQR], 0-52 years) and 53% (857/1 607) male. Klebsiella pneumoniae caused most of the infections (82%, n=1 247), and the most common carbapenemase genes detected were blaOXA-48-like (61%, n=551), and blaNDM (37%, n=333). The overall in-hospital mortality was 31% (504/1 607). Patients treated with colistin-based combination therapy had a lower case fatality ratio (29% [152/521]) compared to those treated with colistin-sparing therapy 32% [352/1 086]) (p=0.18). In our imputed model, compared to colistin-sparing therapy, colistin-based therapy was associated with similar odds of mortality (adjusted odds ratio [aOR] 1.02; 95% confidence interval [CI] 0.78-1.33, p=0.873). CONCLUSION: In our resource-limited setting, the mortality risk in patients treated with colistin-based therapy was comparable to that of patients treated with colistin-sparing therapy. Given the challenges with colistin treatment and the increasing resistance to alternative agents, further investigations into the benefit of newer antimicrobials for managing CRE infections are needed.


Subject(s)
Anti-Bacterial Agents , Bacteremia , Carbapenem-Resistant Enterobacteriaceae , Colistin , Enterobacteriaceae Infections , Humans , Colistin/therapeutic use , Colistin/pharmacology , Cross-Sectional Studies , Male , South Africa/epidemiology , Female , Middle Aged , Adult , Anti-Bacterial Agents/therapeutic use , Anti-Bacterial Agents/pharmacology , Carbapenem-Resistant Enterobacteriaceae/drug effects , Bacteremia/drug therapy , Bacteremia/mortality , Bacteremia/microbiology , Young Adult , Adolescent , Enterobacteriaceae Infections/drug therapy , Enterobacteriaceae Infections/mortality , Enterobacteriaceae Infections/microbiology , Child, Preschool , Infant , Child , Infant, Newborn , Hospital Mortality , Carbapenems/therapeutic use , Carbapenems/pharmacology , Hospitals
14.
Ther Adv Med Oncol ; 16: 17588359241258440, 2024.
Article in English | MEDLINE | ID: mdl-38845791

ABSTRACT

Background: Bacterial peritonitis (BP) in patients with gastrointestinal (GI) cancer has been poorly described, and its prevalence is unknown. Objectives: This study aimed to evaluate in patients with both GI cancer and ascites the prevalence of BP, associated features, mechanisms, prognosis, and the diagnostic performance of neutrophil count in ascites. Design: A retrospective, multicenter, observational study. Methods: All patients with GI cancer and ascites who underwent at least one paracentesis sample analyzed for bacteriology over a 1-year period were included. BP was defined by a positive ascites culture combined with clinical and/or biological signs compatible with infection. Secondary BP was defined as BP related to a direct intra-abdominal infectious source. Results: Five hundred fifty-seven ascites from 208 patients included were analyzed. Twenty-eight patients had at least one episode of BP and the annual prevalence rate of BP was 14%. Among the 28 patients with BP, 19 (65%) patients had proven secondary BP and 17 (59%) patients had multi-microbial BP, mainly due to Enterobacterales. A neutrophil count greater than 110/mm3 in ascites had negative and positive predictive values of 96% and 39%, respectively, for the diagnosis of BP. The median survival of patients with BP was 10 days (interquartile range 6-40) after the diagnosis. Conclusion: BP is not rare in patients with GI cancer and is associated with a poor short-term prognosis. When a patient with GI cancer is diagnosed with BP, a secondary cause should be sought. Further studies are needed to better define the best management of these patients.

15.
Microbiol Spectr ; : e0029224, 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38916331

ABSTRACT

Two Enterobacter strains 170198T and 170250T were isolated from clinical blood samples from distinct patients in a hospital in Chengdu, China, in 2022. These isolates were subjected to whole-genome sequencing. A phylogenomic tree based on 2,096 concatenated core genes showed that the two strains were clustered within the genus Enterobacter. The average nucleotide identity (ANI) and in silico DNA-DNA hybridization (isDDH) values between each of the two strains and type strains of all currently known Enterobacter species were determined. The two strains belonged to two novel species as the highest ANI and isDDH values with type strains of all currently known Enterobacter species below the cutoff for species demarcation (96% for ANI and 70% for isDDH). Then the physiological and biochemical studies demonstrated that biochemical features and the profile of whole fatty acids of strains 170198T and 170250T were largely consistent with those known Enterobacter species. Nevertheless, the two novel species can be differentiated from all other Enterobacter species by certain biochemical characteristics. In conclusion, 170198T and 170250T represent two novel species of the genus Enterobacter, for which we propose Enterobacter chinensis sp. nov. and Enterobacter rongchengensis sp. nov., as the species names. The type strains of Enterobacter chinensis sp. nov., and Enterobacter rongchengensis sp. nov. are 170198T (=GDMCC 1.3549T=JCM 35826T) and 170250T (=GDMCC 1.3670T=JCM 36189T), respectively. The two novel species have clinical significance with the ability to cause bloodstream infections.IMPORTANCEEnterobacter is a group of bacteria comprising several common opportunistic pathogens and has a complicated taxonomy. Here, we reported two novel Enterobacter species. We demonstrated that the two novel species can be differentiated from other Enterobacter species by certain phenotypic characteristics and therefore provide information for designing tests for identification. We also showed that strains of the two novel species are able to cause human bloodstream infections and carry multiple virulence factors and therefore are of clinical significance. We highlight that the virulence of Enterobacter is less studied and warrants further exploration. We believe that the findings here are valuable for enhancing the appreciation toward Enterobacter, an important pathogen.

16.
Yakugaku Zasshi ; 144(6): 627-631, 2024.
Article in Japanese | MEDLINE | ID: mdl-38825471

ABSTRACT

Cefiderocol is a novel siderophore-conjugated cephalosporin with a catechol residue acting as an iron chelator. Cefiderocol forms a chelating complex with ferric iron and is transported rapidly into bacterial cells through iron-uptake systems. As a result, cefiderocol shows good activity against Gram-negative bacteria, including carbapenem-resistant isolates that are causing significant global health issues. Cefiderocol has been approved for clinical use in the United States and Europe, where it is being used to treat infection caused by carbapenem-resistant Gram-negative pathogens.


Subject(s)
Anti-Bacterial Agents , Cefiderocol , Cephalosporins , Gram-Negative Bacteria , Siderophores , Cephalosporins/pharmacology , Cephalosporins/chemistry , Siderophores/chemistry , Humans , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Gram-Negative Bacteria/drug effects , Iron Chelating Agents/pharmacology , Iron/metabolism , Drug Resistance, Bacterial , Drug Discovery , Carbapenems/pharmacology , Gram-Negative Bacterial Infections/drug therapy
17.
Kidney Int Rep ; 9(6): 1654-1663, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38899186

ABSTRACT

Introduction: Gram-negative peritonitis (GNP) is associated with significant morbidity in children receiving long-term peritoneal dialysis (PD) and current treatment recommendations are based on limited data. Methods: Analysis of 379 GNP episodes in 308 children (median age 6.9 years, interquartile range [IQR]: 3.0-13.6) from 45 centers in 28 countries reported to the International Pediatric Peritoneal Dialysis Network registry between 2011 and 2023. Results: Overall, 74% of episodes responded well to empiric therapy and full functional recovery (FFR) was achieved in 82% of cases. In vitro bacterial susceptibility to empiric antibiotics and lack of severe abdominal pain at onset were associated with a good initial response. Risk factors for failure to achieve FFR included severe abdominal pain at onset and at 60 to 72 hours from treatment initiation (odds ratio [OR]: 3.81, 95% confidence interval [CI]: 2.01-7.2 and OR: 3.94, 95% CI: 1.06-14.67, respectively), Pseudomonas spp. etiology (OR: 1.73, 95% CI: 1.71-4.21]) and in vitro bacterial resistance to empiric antibiotics (OR: 2.40, 95% CI: 1.21-4.79); the risk was lower with the use of monotherapy as definitive treatment (OR: 0.40, 95% CI: 0.21-0.77). Multivariate analysis showed no benefit of dual antibiotic therapy for treatment of Pseudomonas peritonitis after adjustment for age, presenting symptomatology, 60 to 72-hour treatment response, and treatment duration. Monotherapy with cefazolin in susceptible Enterobacterales peritonitis resulted in a similar FFR rate (91% vs. 93%) as treatment with ceftazidime or cefepime monotherapy. Conclusion: Detailed microbiological assessment, consisting of patient-specific and center-specific antimicrobial susceptibility data, should guide empiric treatment. Treatment "deescalation" with the use of monotherapy and narrow spectrum antibiotics according to susceptibility data is not associated with inferior outcomes and should be advocated in the context of emerging bacterial resistance.

18.
Clin Infect Dis ; 2024 Jun 21.
Article in English | MEDLINE | ID: mdl-38902929

ABSTRACT

The in vitro susceptibility testing interpretive criteria (STIC) for TZP against Enterobacterales were recently updated by the Food and Drug Administration (FDA), Clinical & Laboratory Standards Institute (CLSI), and European Committee on Antimicrobial Susceptibility Testing (EUCAST). The United States Committee on Antimicrobial Susceptibility Testing (USCAST) also recently reviewed TZP STIC for Enterobacterales and arrived at different STIC for Enterobacterales and herein we explain our recommendations and rationale behind them. Based on our review of the available data, USCAST does not recommend TZP STIC for certain Enterobacterales species that have a moderate to high likelihood of clinically significant AmpC production (E. cloacae, C. freundii, and K. aerogenes only) or for third-generation cephalosporin-non-susceptible (3GC-NS) Enterobacterales. USCAST recommends a TZP susceptibility breakpoint of ≤ 16/4 mg/L for third-generation cephalosporin-susceptible (3GC-S) Enterobacterales but only endorses the use of extended infusion TZP regimens for patients with infections due to these pathogens.

19.
Microbiol Spectr ; : e0418123, 2024 Jun 21.
Article in English | MEDLINE | ID: mdl-38904361

ABSTRACT

Carbapenem-resistant Enterobacterales represent a major health threat and have few approved therapeutic options. Enterobacterales isolates were collected from hospitalized inpatients from 49 sites in six European countries (1 January-31 December 2020) and underwent susceptibility testing to cefiderocol and ß-lactam/ß-lactamase inhibitor combinations. Meropenem-resistant (MIC >8 mg/L) and cefiderocol-susceptible isolates were analyzed by PCR, and cefiderocol-|resistant isolates by whole-genome sequencing, to identify resistance mechanisms. Overall, 1,909 isolates (including 970 Klebsiella spp., 382 Escherichia coli, and 244 Enterobacter spp.) were collected, commonly from bloodstream infections (43.6%). Cefiderocol susceptibility was higher than approved ß-lactam/ß-lactamase inhibitor combinations and largely comparable to cefepime-taniborbactam and aztreonam-avibactam against all Enterobacterales (98.1% vs 78.1%-|97.4% and 98.7%-99.1%, respectively) and Enterobacterales resistant to meropenem (n = 148, including 125 Klebsiella spp.; 87.8% vs 0%-71.6% and 93.2%-98.6%, respectively), ß-lactam/ß-lactamase inhibitor combinations (66.7%-|92.1% vs 0%-|88.1% and 66.7%-97.9%, respectively), and to both meropenem and ß-|lactam/ß-lactamase inhibitor combinations (61.9%-65.9% vs 0%-|20.5% and 76.2%-97.7%, respectively). Susceptibilities to approved and developmental ß-lactam/ß-lactamase inhibitor combinations against cefiderocol-resistant Enterobacterales (n = 37) were 10.8%-|56.8% and 78.4%-94.6%, respectively. Most meropenem-resistant Enterobacterales harbored Klebsiella pneumoniae carbapenemase (110/148) genes, although metallo-ß-lactamase (35/148) and oxacillinase (OXA) carbapenemase (6/148) genes were less common; cefiderocol susceptibility was retained in ß-lactamase producers, other than NDM, AmpC, and non-carbapenemase OXA producers. Most cefiderocol-resistant Enterobacterales had multiple resistance mechanisms, including ≥1 iron uptake-related mutation (37/37), carbapenemase gene (33/37), and ftsI mutation (24/37). The susceptibility to cefiderocol was higher than approved ß-lac|tam/ß-lactamase inhibitor combinations against European Enterobacterales, including meropenem- and ß-lactam/ß-lactamase inhibitor combination-resistant isolates. IMPORTANCE: This study collected a notably large number of Enterobacterales isolates from Europe, including meropenem- and ß-lactam/ß-lactamase inhibitor combination-resistant isolates against which the in vitro activities of cefiderocol and developmental ß-lactam/ß-lactamase inhibitor combinations were directly compared for the first time. The MIC breakpoint for high-dose meropenem was used to define meropenem resistance, so isolates that would remain meropenem resistant with doses clinically available to patients were included in the data. Susceptibility to cefiderocol, as a single active compound, was high against Enterobacterales and was higher than or comparable to available ß-lactam/ß-lactamase inhibitor combinations. These results provide insights into the treatment options for infections due to Enterobacterales with resistant phenotypes. Early susceptibility testing of cefiderocol in parallel with ß-lactam/ß-lactamase inhibitor combinations will allow patients to receive the most appropriate treatment option(s) available in a timely manner. This is particularly important when options are more limited, such as against metallo-ß-lactamase-producing Enterobacterales.

20.
J Clin Microbiol ; : e0125523, 2024 Jun 21.
Article in English | MEDLINE | ID: mdl-38904386

ABSTRACT

Prompt and precise identification of carbapenemase-producing organisms is crucial for guiding clinical antibiotic treatments and limiting transmission. Here, we propose modifying the Blue Carba test (BCT) and Carba NP-direct (CNPd) to identify molecular carbapenemase classes, including dual carbapenemase strains, by adding specific Class A and Class B inhibitors. We tested 171 carbapenemase-producing Gram-negative bacilli strains-21 in Class A (KPC, NMC, SME), 58 in Class B (IMP, VIM, NDM, SPM), and 92 with dual carbapenemase production (KPC+NDM, KPC+IMP, KPC+VIM), all previously positive with BCT or CNPd. We also included 13 carbapenemase non-producers. ß-lactamases were previously characterized by PCR. The improved BCT/CNPd methods detect imipenem hydrolysis from an imipenem-cilastatin solution, using pH indicators and Class A (avibactam) and/or Class B (EDTA) inhibitors. Results were interpreted visually based on color changes. CNPd achieved 99.4% sensitivity and 100% specificity in categorizing carbapenemases, while BCT had 91.8% sensitivity and 100% specificity. Performance varied by carbapenemase classes: both tests classified all Class A-producing strains. For Class B, the CNP test identified 57/58 strains (98.3%), whereas the BCT test, 45/58 strains (77.6%), with non-fermenters posing the greatest detection challenge. For Classes A plus B dual producers, both tests performed exceptionally well, with only one indeterminate strain for the BCT. The statistical comparison showed both methods had similar times to a positive result, with differences based on the carbapenemase class or bacterial group involved. This improved assay rapidly distinguishes major Class A or Class B carbapenemase producers among Gram-negative bacilli, including dual-class combinations, in less than 2 hours. IMPORTANCE: Rapid and accurate identification of carbapenemase-producing organisms is of vital importance in guiding appropriate clinical antibiotic treatments and curbing their transmission. The emergence of negative bacilli carrying multiple carbapenemase combinations during and after the severe acute respiratory syndrome coronavirus 2 pandemic has posed a challenge to the conventional biochemical tests typically used to determine the specific carbapenemase type in the isolated strains. Several initiatives have aimed to enhance colorimetric methods, enabling them to independently identify the presence of Class A or Class B carbapenemases. Notably, no previous efforts have been made to distinguish both classes simultaneously. Additionally, these modifications have struggled to differentiate between carriers of multiple carbapenemases, a common occurrence in many Latin American countries. In this study, we introduced specific Class A and Class B carbapenemase inhibitors into the Blue Carba test (BCT) and Carba NP-direct (CNP) colorimetric assays to identify the type of carbapenemase, even in cases of multiple carbapenemase producers within these classes. These updated assays demonstrated exceptional sensitivity and specificity (≥ 90%) all within a rapid turnaround time of under 2 hours, typically completed in just 45 minutes. These in-house enhancements to the BCT and CNP assays present a rapid, straightforward, and cost-effective approach to determining the primary carbapenemase classes. They could serve as a viable alternative to molecular biology or immuno-chromatography techniques, acting as an initial diagnostic step in the process.

SELECTION OF CITATIONS
SEARCH DETAIL