Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 426
Filter
1.
Article in English | MEDLINE | ID: mdl-39391113

ABSTRACT

We present a case of a 73-year-old African American lady with COVID-19 infection who developed acute Kidney Injury (AKI) and significant proteinuria. Renal biopsy showed IgA nephropathy. Patient was eventually diagnosed with IgA nephropathy secondary to COVID Infection. This unique case highlights the complexity of renal involvement in COVID-19. Notably, the onset of IgA nephropathy in the patient occurred several weeks after her COVID-19 diagnosis, deviating from the typical synpharyngitic presentation. This article contributes to the growing body of evidence regarding renal complications associated with COVID-19 and highlights the need for vigilance in assessing and managing renal conditions in COVID-19 patients, especially when atypical presentations occur.

2.
Med Res Rev ; 2024 Aug 20.
Article in English | MEDLINE | ID: mdl-39164945

ABSTRACT

Glomerulonephritis (GN) is an important cause of renal inflammation resulting from kidney-targeted adaptive and innate immune responses and consequent glomerular damage. Given the lack of autoantibodies, immune complexes, or the infiltrating immune cells in some forms of GN, for example, focal segmental glomerulosclerosis and minimal change disease, along with paraneoplastic syndrome and a special form of renal involvement in some viral infections, the likeliest causative scenario would be secreted factors, mainly cytokine(s). Since cytokines can modulate the inflammatory mechanisms, severity, and clinical outcomes of GN, it is rational to consider the umbrella term of cytokine GN as a new outlook to reclassify a group of previously known GN. We focus here, particularly, on cytokines that have the central "canonical effect" in the development of GN.

3.
Diagnostics (Basel) ; 14(15)2024 Jul 24.
Article in English | MEDLINE | ID: mdl-39125467

ABSTRACT

Primary focal segmental glomerulosclerosis (FSGS) is a disease of the podocytes and glomerulus, leading to nephrotic syndrome and progressive loss of renal function. One of the most serious aspects is its recurrence of disease in over 30% of patients following allogeneic kidney transplantation, leading to early graft loss. This research investigates the individual genetic predispositions and differences in the immune responses leading to recurrence of FSGS after transplantation. We performed exome sequencing on six patients with recurrent FSGS to identify variants in fifty-one genes and found significant variations in the alpha-2-macroglobulin (A2M). Immunoblotting was used to investigate effects of specific gene variants at the protein level. Further expression analysis identified A2M, exophilin 5 (EXPH5) and plectin (PLEC) as specific proteins linked to podocytes, endothelial cells, and the glomerulus. Subsequent protein array screening revealed the presence of non-HLA-specific antibodies, including TRIM21, after transplantation. Using Metascape for pathway and process enrichment analysis, we focused on the IL-17 signaling and chemotaxis pathways. ELISA measurements showed significantly elevated IL-17 levels in patients with recurrent FSGS (32.30 ± 9.12 pg/mL) compared to individuals with other glomerular diseases (23.16 ± 2.49 pg/mL; p < 0.01) and healthy subjects (22.28 ± 0.94 pg/mL; p < 0.01), with no significant difference in plasma CCL2/MCP-1 levels between groups. This study explores the molecular dynamics underlying recurrence of FSGS after transplantation, offering insights into potential biomarkers and therapeutic targets for the future development of individualized treatments for transplant patients.

4.
Am J Nephrol ; 55(5): 583-596, 2024.
Article in English | MEDLINE | ID: mdl-39074452

ABSTRACT

INTRODUCTION: Buffalo/Mna rats spontaneously develop nephrotic syndrome (NS) which recurs after renal transplantation. The immunosuppressive drug LF15-0195 can promote regression of the initial and post-transplantation nephropathy via induction of regulatory T cells. We investigate if this drug has an additional effect on the expression and localization of podocyte specific proteins. METHODS: Buffalo/Mna kidney samples were collected before and after the occurrence of proteinuria, and after the remission of proteinuria induced by LF15-0195 treatment and compared by quantitative RT-PCR, Western blot, electron, and confocal microscopy to kidney samples of age-matched healthy rats. Cytoskeleton changes were assessed in culture by stress fibers induction by TNFα. RESULTS: We observed, by electron microscopy, a restoration of foot process architecture in the LF15-0195-treated Buff/Mna kidneys, consistent with proteinuria remission. Nephrin, podocin, CD2AP, and α-actinin-4 mRNA levels remained low during the active disease in the Buff/Mna, in comparison with healthy rats which increase, while podocalyxin and synaptopodin transcripts were elevated before the occurrence of the disease but did not differ from healthy animals after. No difference in the mRNA and protein expression between the untreated and the LF15-0195-treated proteinuric Buff/Mna were seen for these 6 proteins. No changes were observed by confocal microscopy in the protein distribution at a cellular level, but a more homogenous distribution similar to healthy rats, was observed within the glomeruli of LF15-0195-treated rats. In addition, LF15-0195 could partially restore actin cytoskeleton of endothelial cells in TNFα-induced-cell stress experiment. CONCLUSION: The effect of LF15-0195 treatment appears to be mediated by 2 mechanisms: an immunomodulatory effect via regulatory T cells induction, described in our previous work and which can act on immune cell involved in the disease pathogenesis, and an effect on the restoration of podocyte cytoskeleton, independent of expression levels of the proteins involved in the slit diaphragm and podocyte function, showed in this article.


Subject(s)
Actinin , Cytoskeleton , Immunosuppressive Agents , Membrane Proteins , Nephrotic Syndrome , Podocytes , Sialoglycoproteins , Animals , Podocytes/drug effects , Podocytes/metabolism , Rats , Immunosuppressive Agents/pharmacology , Cytoskeleton/drug effects , Cytoskeleton/metabolism , Membrane Proteins/metabolism , Membrane Proteins/genetics , Sialoglycoproteins/metabolism , Actinin/metabolism , Nephrotic Syndrome/drug therapy , Nephrotic Syndrome/metabolism , Nephrotic Syndrome/immunology , Proteinuria , Intracellular Signaling Peptides and Proteins/metabolism , Intracellular Signaling Peptides and Proteins/genetics , Tumor Necrosis Factor-alpha/metabolism , Adaptor Proteins, Signal Transducing/metabolism , Kidney Glomerulus/pathology , Kidney Glomerulus/drug effects , Kidney Glomerulus/immunology , Cytoskeletal Proteins/metabolism , Cytoskeletal Proteins/genetics , Male , Microfilament Proteins/metabolism , RNA, Messenger/metabolism
5.
J Biol Chem ; 300(8): 107516, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38960036

ABSTRACT

Focal segmental glomerulosclerosis (FSGS), a common cause of primary glomerulonephritis, has a poor prognosis and is pathologically featured by tubulointerstitial injury. Thrombospondin-1 (TSP-1) is an extracellular matrix protein that acts in combination with different receptors in the kidney. Here, we analyzed the tubular expression of TSP-1 and its receptor integrin ß3 (ITGB3) in FSGS. Previously the renal interstitial chip analysis of FSGS patients with tubular interstitial injury showed that the expression of TSP-1 and ITGB3 were upregulated. We found that the expression of TSP-1 and ITGB3 increased in the tubular cells of FSGS patients. The plasma level of TSP-1 increased and was correlated to the degree of tubulointerstitial lesions in FSGS patients. TSP-1/ITGB3 signaling induced renal tubular injury in HK-2 cells exposure to bovine serum albumin and the adriamycin (ADR)-induced nephropathy model. THBS1 KO ameliorated tubular injury and renal fibrosis in ADR-treated mice. THBS1 knockdown decreased the expression of KIM-1 and caspase 3 in the HK-2 cells treated with bovine serum albumin, while THBS1 overexpression could induce tubular injury. In vivo, we identified cyclo-RGDfK as an agent to block the binding of TSP-1 to ITGB3. Cyclo-RGDfK treatment could alleviate ADR-induced renal tubular injury and interstitial fibrosis in mice. Moreover, TSP-1 and ITGB3 were colocalized in tubular cells of FSGS patients and ADR-treated mice. Taken together, our data showed that TSP-1/ITGB3 signaling contributed to the development of renal tubulointerstitial injury in FSGS, potentially identifying a new therapeutic target for FSGS.


Subject(s)
Glomerulosclerosis, Focal Segmental , Integrin beta3 , Thrombospondin 1 , Glomerulosclerosis, Focal Segmental/metabolism , Glomerulosclerosis, Focal Segmental/pathology , Glomerulosclerosis, Focal Segmental/genetics , Animals , Thrombospondin 1/metabolism , Thrombospondin 1/genetics , Humans , Mice , Integrin beta3/metabolism , Integrin beta3/genetics , Male , Mice, Knockout , Kidney Tubules/metabolism , Kidney Tubules/pathology , Female , Adult , Signal Transduction , Cell Line , Doxorubicin/pharmacology , Hepatitis A Virus Cellular Receptor 1/metabolism , Hepatitis A Virus Cellular Receptor 1/genetics
6.
Clin Kidney J ; 17(7): sfae131, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38989280

ABSTRACT

Background: Focal segmental glomerulosclerosis (FSGS) can lead to kidney failure in adults. This study examines the progression of FSGS in the German Chronic Kidney Disease (GCKD) cohort. Methods: The GCKD study (N = 5217), a prospective cohort, included 159 patients with biopsy-confirmed FSGS recruited from 2010 to 2012. Baseline was defined as the first study visit. Adjudicated endpoints included a composite kidney endpoint (CKE), including an estimated glomerular filtration rate (eGFR) decrease >40%, eGFR <15 ml/min/1.73 m2 or initiation of kidney replacement therapy and combined major adverse cardiovascular events (MACE), including non-fatal myocardial infarction or stroke and all-cause mortality. Associations between baseline demographics, laboratory data, comorbidity and CKE and MACE were analysed using the Cox proportional hazards regression model. Results: The mean age at baseline was 52.1 ± 13.6 years, with a disease duration of 4.72 years (quartile 1: 1; quartile 3: 6) before joining the study. The median urinary albumin:creatinine ratio (UACR) at baseline was 0.7 g/g (IQR 0.1;1.8), while mean eGFR was 55.8 ± 23 ml/min/1.73 m2. Based on clinical and pathological features, 69 (43.4%) patients were categorized as primary FSGS, 55 (34.6%) as secondary FSGS and 35 (22%) as indeterminate. Over a follow-up of 6.5 years, 44 patients reached the composite kidney endpoint and 16 individuals had at least one MACE. UACR ≥0.7 g/g was strongly associated with both the composite kidney endpoint {hazard ratio [HR] 5.27 [95% confidence interval (CI) 2.4-11.5]} and MACE [HR 3.37 (95% CI 1.05-10.82)] compared with <0.7 g/g, whereas a higher eGFR at baseline (per 10 ml/min) was protective for both endpoints [HR 0.8 (95% CI 0.68-0.95) and HR 0.63 (95% CI 0.46-0.88), respectively]. Patients with secondary FSGS experienced a greater rate of eGFR decline than patients with primary FSGS. Conclusions: Lower eGFR and higher albuminuria are key risk factors for kidney disease progression and cardiovascular events in patients with FSGS.

7.
Adv Kidney Dis Health ; 31(4): 309-316, 2024 Jul.
Article in English | MEDLINE | ID: mdl-39084756

ABSTRACT

The field of nephrology has a long-standing interest in deciphering the genetic basis of nephrotic syndrome (NS), motivated by the mechanistic insights it provides in chronic kidney disease. The initial era of genetic studies solidified NS and the focal segmental glomerulosclerosis lesion as podocyte disorders. The likelihood of identifying a single gene (called monogenic) cause is higher if certain factors are present such as positive family history. Obtaining a monogenic diagnosis enables reproductive counseling and screening of family members. Now, with a new era of genomic studies facilitated by technological advances and the emergence of large genetically characterized cohorts, more insights are apparent. This includes the phenotypic breadth associated with disease genes, as evidenced in Alport syndrome and congenital NS of the Finnish type. Moreover, the underlying genetic architecture is more complex than previously appreciated, as shown by genome-wide association studies, suggesting that variants in multiple genes collectively influence risk. Achieving molecularly informed diagnoses also holds substantial potential for personalizing medicine, including the development of targeted therapeutics. Illustrative examples include coenzyme Q10 for ADCK4-associated NS and inaxaplin, a small molecule that inhibits apolipoprotein L1 channel activity, though larger studies are required to confirm benefit.


Subject(s)
Glomerulosclerosis, Focal Segmental , Nephrotic Syndrome , Humans , Nephrotic Syndrome/genetics , Nephrotic Syndrome/diagnosis , Glomerulosclerosis, Focal Segmental/genetics , Genome-Wide Association Study , Nephritis, Hereditary/genetics , Nephritis, Hereditary/diagnosis , Genetic Predisposition to Disease
8.
Kidney Med ; 6(6): 100833, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38831932

ABSTRACT

Rationale & Objective: Sparsentan is a novel, non-immunosuppressive, single-molecule, dual endothelin angiotensin receptor antagonist (DEARA) examined in the ongoing phase 2 DUET trial for focal segmental glomerulosclerosis (FSGS). In the DUET 8-week double-blind period, sparsentan resulted in greater proteinuria reduction versus irbesartan. We report the long-term efficacy and safety of sparsentan during the open-label extension over more than 4 years. Study Design: Patients were examined from their first sparsentan dose (double-blind period or open-label extension) through 4.6 years. Setting & Participants: Patients with FSGS, excluding secondary FSGS. Intervention: Sparsentan (200, 400, and 800 mg/d). Outcomes: Urinary protein-creatinine ratio, FSGS partial remission endpoint (urinary protein-creatinine ratio ≤1.5 g/g and >40% reduction from baseline), estimated glomerular filtration rate, and blood pressure approximately every 12 weeks. Treatment-emergent adverse events by year and cases/100 patient-years. Results: 109 patients were enrolled; 108 received ≥1 sparsentan dose; 103 entered the open-label extension (68 sparsentan, 35 irbesartan during the double-blind period). Sparsentan was ongoing in 45/108 patients (41.7%); median time to treatment discontinuation was 3.9 years (95% CI, 2.6-5.2). Mean percent proteinuria reduction from baseline was sustained through follow-up. Achieving partial remission within 9 months of first sparsentan dose (52.8% of patients) versus not achieving (47.2%) was associated with significantly slower rate of estimated glomerular filtration rate decline over the entire treatment period (-2.70 vs -6.56; P = 0.03) and in the first 2 years (-1.69 vs -6.46; P = 0.03). The most common treatment-emergent adverse events (>9 cases/100 patient-years) were headache, peripheral edema, upper respiratory infection, hyperkalemia, and hypotension. Peripheral edema and hypotension declined from year 1 (13.9% and 15.7% of patients, respectively) to ≤4% in years ≥2. There were no cases of heart failure and no patient deaths. Limitations: The open-label extension does not include a comparison group. Conclusions: Long-term sparsentan treatment showed sustained proteinuria reduction and a consistent safety profile.


There is substantial unmet clinical need for safe and effective treatments for focal segmental glomerulosclerosis (FSGS), a kidney lesion with varied causes. Sparsentan is being studied for treatment of FSGS and targets 2 important pathways (endothelin-1 and angiotensin II) that lead to the loss of kidney function. In the 8-week randomized, double-blind DUET study in patients with FSGS, sparsentan reduced the amount of protein in the urine better than irbesartan (a blood pressure medicine often used to treat FSGS). We examined long-term treatment with sparsentan over >4 years in the DUET open-label extension. We found sustained proteinuria reduction in patients who continued treatment with sparsentan and a consistent safety profile with no new or unexpected adverse effects.

9.
Curr Mol Med ; 2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38867537

ABSTRACT

BACKGROUND: Podocyte injury is the most important pathological hallmark of kidney diseases. Autophagy is a critical factor that involves podocyte injury. Here, we sought to determine whether Astragaloside IV (AS-IV) was able to improve renal function and reverse podocyte injury through the regulation of autophagy. METHODS: Using the Adriamycin (ADR) mice model, cultured immortalized mouse podocytes were exposed to AS-IV. Western blotting, immunofluorescence, and histochemistry were used to analyze markers of autophagy, mitochondrial dysfunction, podocyte apoptosis, and glomerulopathy in the progression of focal segmental glomerular sclerosis. RESULTS: We observed that AS-IV can inhibit podocyte apoptosis, increased reactive oxygen species (ROS) generation, mitochondrial fragmentation, and dysfunction by inducing the Mfn2/Pink1/Parkin mitophagy pathway both in vivo and in vitro. Overexpression of Mfn2 reduced puromycin aminonucleoside (PAN)-induced podocyte injury, while downregulation of Mfn2 expression limited the renal protective effect of AS-IV by regulating mitophagy. CONCLUSION: AS-IV ameliorates renal function and renal pathological changes in ADR mice and inhibits PAN-induced podocyte injury by directly enhancing Mfn2/Pink1/Parkin-associated autophagy.

10.
Clin Sci (Lond) ; 138(11): 645-662, 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38808486

ABSTRACT

Simultaneous inhibition of angiotensin II AT1 and endothelin ETA receptors has emerged as a promising approach for treatment of chronic progressive kidney disease. This therapeutic approach has been advanced by the introduction of sparsentan, the first dual AT1 and ETA receptor antagonist. Sparsentan is a single molecule with high affinity for both receptors. It is US Food and Drug Administration approved for immunoglobulin A nephropathy (IgAN) and is currently being developed as a treatment for rare kidney diseases, such as focal segmental glomerulosclerosis. Clinical studies have demonstrated the efficacy and safety of sparsentan in these conditions. In parallel with clinical development, studies have been conducted to elucidate the mechanisms of action of sparsentan and its position in the context of published evidence characterizing the nephroprotective effects of dual ETA and AT1 receptor inhibition. This review summarizes this evidence, documenting beneficial anti-inflammatory, antifibrotic, and hemodynamic actions of sparsentan in the kidney and protective actions in glomerular endothelial cells, mesangial cells, the tubulointerstitium, and podocytes, thus providing the rationale for the use of sparsentan as therapy for focal segmental glomerulosclerosis and IgAN and suggesting potential benefits in other renal diseases, such as Alport syndrome.


Subject(s)
Kidney , Renal Insufficiency, Chronic , Humans , Animals , Renal Insufficiency, Chronic/drug therapy , Renal Insufficiency, Chronic/metabolism , Kidney/drug effects , Kidney/metabolism , Endothelin A Receptor Antagonists/therapeutic use , Endothelin A Receptor Antagonists/pharmacology , Angiotensin II Type 1 Receptor Blockers/therapeutic use , Angiotensin II Type 1 Receptor Blockers/pharmacology , Disease Models, Animal
11.
Kidney Int ; 106(1): 50-66, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38697478

ABSTRACT

Retinoic acid receptor responder protein-1 (RARRES1) is a podocyte-enriched transmembrane protein whose increased expression correlates with human glomerular disease progression. RARRES1 promotes podocytopenia and glomerulosclerosis via p53-mediated podocyte apoptosis. Importantly, the cytopathic actions of RARRES1 are entirely dependent on its proteolytic cleavage into a soluble protein (sRARRES1) and subsequent podocyte uptake by endocytosis, as a cleavage mutant RARRES1 exerted no effects in vitro or in vivo. As RARRES1 expression is upregulated in human glomerular diseases, here we investigated the functional consequence of podocyte-specific overexpression of RARRES1 in mice in the experimental focal segmental glomerulosclerosis and diabetic kidney disease. We also examined the effects of long-term RARRES1 overexpression on slowly developing aging-induced kidney injury. As anticipated, the induction of podocyte overexpression of RARRES1 (Pod-RARRES1WT) significantly worsened glomerular injuries and worsened kidney function in all three models, while overexpression of RARRES1 cleavage mutant (Pod-RARRES1MT) did not. Remarkably, direct uptake of sRARRES1 was also seen in proximal tubules of injured Pod-RARRES1WT mice and associated with exacerbated tubular injuries, vacuolation, and lipid accumulation. Single-cell RNA sequence analysis of mouse kidneys demonstrated RARRES1 led to a marked deregulation of lipid metabolism in proximal tubule subsets. We further identified matrix metalloproteinase 23 (MMP23) as a highly podocyte-specific metalloproteinase and responsible for RARRES1 cleavage in disease settings, as adeno-associated virus 9-mediated knockdown of MMP23 abrogated sRARRES1 uptake in tubular cells in vivo. Thus, our study delineates a previously unrecognized mechanism by which a podocyte-derived protein directly facilitates podocyte and tubular injury in glomerular diseases and suggests that podocyte-specific functions of RARRES1 and MMP23 may be targeted to ameliorate glomerular disease progression in vivo.


Subject(s)
Diabetic Nephropathies , Disease Progression , Glomerulosclerosis, Focal Segmental , Kidney Tubules, Proximal , Podocytes , Animals , Humans , Male , Mice , Apoptosis , Diabetic Nephropathies/pathology , Diabetic Nephropathies/metabolism , Diabetic Nephropathies/genetics , Diabetic Nephropathies/etiology , Disease Models, Animal , Endocytosis , Glomerulosclerosis, Focal Segmental/pathology , Glomerulosclerosis, Focal Segmental/metabolism , Glomerulosclerosis, Focal Segmental/genetics , Kidney Tubules, Proximal/metabolism , Kidney Tubules, Proximal/pathology , Membrane Proteins/metabolism , Membrane Proteins/genetics , Mice, Inbred C57BL , Mice, Transgenic , Podocytes/metabolism , Podocytes/pathology
12.
Kidney Med ; 6(6): 100826, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38765809

ABSTRACT

Focal segmental glomerulosclerosis (FSGS) defines a distinct histologic pattern observed in kidney tissue that is linked to several distinct underlying causes, all converging on the common factor of podocyte injury. It presents a considerable challenge in terms of classification because of its varied underlying causes and the limited correlation between histopathology and clinical outcomes. Critically, precise nomenclature is key to describe and delineate the pathogenesis, subsequently guiding the selection of suitable and precision therapies. A proposed pathomechanism-based approach has been suggested for FSGS classification. This approach differentiates among primary, secondary, genetic, and undetermined causes, aiming to provide clarity. Genetic FSGS from monogenic mutations can emerge during childhood or adulthood, and it is advisable to conduct genetic testing in cases in which there is a family history of chronic kidney disease, nephrotic syndrome, or resistance to treatment. Genome-wide association studies have identified several genetic risk variants, such as those in apolipoprotein L1 (APOL1), that play a role in the development of FSGS. Currently, no specific treatments have been approved to treat genetic FSGS; however, interventions targeting underlying cofactor deficiencies have shown potential in some cases. Furthermore, encouraging results have emerged from a phase 2 trial investigating inaxaplin, a novel small molecule APOL1 channel inhibitor, in APOL1-associated FSGS.

13.
Pediatr Nephrol ; 2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38652137

ABSTRACT

BACKGROUND: Limited data exists regarding the clinical course and outcomes of children with primary focal segmental glomerulosclerosis (FSGS) from low- and middle- income countries. METHODS: Children aged 1-18 years with biopsy-proven primary FSGS followed from January 2010-June 2023 in a tertiary-care center were enrolled and their clinical profile, histological characteristics, kidney outcomes, and predictors of adverse outcomes were determined. RESULTS: Over 13 years, 73 (54.8% boys) children with median (IQR) age at FSGS diagnosis 6.7 (3,10) years were recruited and followed up for median 4 (2.5,8) years. FSGS-not otherwise specified (NOS) was the most common histological subtype, in 64 (87.6%) children, followed by collapsing variant in 5 (6.8%) children. At last follow-up, 43 (58.9%), 2 (2.7%) and 28 (38.3%) children were in complete remission (CR), partial remission (PR), and no remission (NR) respectively. Calcineurin inhibitors led to CR or PR in 39 (62%) children. Overall, 21 (28.7%) children progressed to chronic kidney disease (CKD) stage 2-5 (19 from NR vs. 2 from PR group; p = 0.03); with 41% of those NR at 12 months progressing to CKD 4-5 by last follow-up. On multivariable analysis, collapsing variant [adjusted HR 2.5 (95%CI 1.5, 4.17), p = 0.001] and segmental sclerosis > 25% [aHR 9.9 (95%CI 2.2, 45.2), p = 0.003] predicted kidney disease progression. CONCLUSIONS: In children with FSGS, response to immunosuppression predicts kidney survival as evidenced by nil to lower progression to CKD 2-5 by median follow-up of 4 (2.5,8) years in children with CR and PR, compared to those with no remission at 12 months from diagnosis. Segmental sclerosis > 25% and collapsing variant predicted progression to advanced CKD.

14.
Indian J Nephrol ; 34(1): 45-49, 2024.
Article in English | MEDLINE | ID: mdl-38645919

ABSTRACT

Introduction: There is a paucity of data and therapeutic options nationally and internationally on calcineurin inhibitor (CNI)-resistant forms of focal segmental glomerulosclerosis (FSGS) in children. CNI (tacrolimus or cyclosporine) are proven monotherapy in children with FSGS with a steroid-dependent (SD) or steroid-resistant (SR) course. We analyzed a novel therapeutic option in CNI-resistant FSGS by using the dual therapy of rituximab and mycophenolate to maintain remission. Methods: This is a retrospective analysis of clinical, therapeutic profile, and treatment outcomes (sustained remission versus no remission) in subjects with CNI-resistant FSGS who received dual rituximab therapy along with mycophenolate as maintenance therapy for a minimum of 1 year. Results: The median age of presentation of 13 recruited children was 7.8 years (range: 2.4-17.6 years); nine (69.2%) were males. Ten (76.9%) of them had an SD course and three (23.1%) had an SR course. Four (30.7%) had evidence of acute/chronic CNI toxicity, and the remaining nine (69.3%) showed no response to CNI therapy despite adequate trough levels. Post dual therapy, 11 (84.6%) had sustained remission for at 1 year and two (15.4%) children did not show remission. None reported adverse reactions or infections, and all had preserved renal functions. Conclusion: Dual combination therapy with rituximab and mycophenolate among children with CNI-resistant FSGS can emerge as a promising and efficacious treatment strategy to ensure sustained remission in this subset of patients.

15.
Indian J Nephrol ; 34(1): 70-73, 2024.
Article in English | MEDLINE | ID: mdl-38645916

ABSTRACT

Collapsing focal segmental glomerulosclerosis (FSGS) a heterogeneous group of disorders, rather than a single disease entity. Kidney biopsy shows segmental or globally collapsed, sclerotic glomerular capillaries. There is also hypertrophy and hyperplasia of overlying glomerular epithelial cells. Immuno-fluorescence is negative or has non-specific deposits of immunoglobulins and C3. We present two cases of C3 dominant collapsing FSGS. Both the cases were non-responsive to therapy and had a poor outcome. This calls for research to study the role of the complement pathway in the pathogenesis of FSGS.

16.
J Cell Mol Med ; 28(9): e18310, 2024 May.
Article in English | MEDLINE | ID: mdl-38676361

ABSTRACT

Studies have shown that adoptive transfer of myeloid-derived suppressor cells (MDSCs) can alleviate various inflammatory diseases, including glomerulonephritis, but the long-term effects of the transferred MDSCs are still unclear. In addition, although glucocorticoids exert immunosuppressive effects on inflammatory diseases by inducing the expansion of MDSCs, the impact of glucocorticoids on the immunosuppressive function of MDSCs and their molecular mechanisms are unclear. In this study, we found that adoptive transfer of MDSCs to doxorubicin-induced focal segmental glomerulosclerosis (FSGS) mice for eight consecutive weeks led to an increase in serum creatinine and proteinuria and aggravation of renal interstitial fibrosis. Similarly, 8 weeks of high-dose dexamethasone administration exacerbated renal interstitial injury and interstitial fibrosis in doxorubicin-induced mice, manifested as an increase in serum creatinine and proteinuria, collagen deposition and α-SMA expression. On this basis, we found that dexamethasone could enhance MDSC expression and secretion of the fibrosis-related cytokines TGF-ß and IL-10. Mechanistically, we revealed that dexamethasone promotes the expression of immunoglobulin-like transcription factor 4 (ILT4), which enhances the T-cell inhibitory function of MDSCs and promotes the activation of STAT6, thereby strengthening the expression and secretion of TGF-ß and IL-10. Knocking down ILT4 alleviated renal fibrosis caused by adoptive transfer of MDSCs. Therefore, our findings demonstrate that the role and mechanism of dexamethasone mediate the expression and secretion of TGF-ß and IL-10 in MDSCs by promoting the expression of ILT4, thereby leading to renal fibrosis.


Subject(s)
Dexamethasone , Fibrosis , Myeloid-Derived Suppressor Cells , Animals , Dexamethasone/pharmacology , Myeloid-Derived Suppressor Cells/metabolism , Myeloid-Derived Suppressor Cells/drug effects , Mice , Kidney/pathology , Kidney/metabolism , Kidney/drug effects , Male , Doxorubicin/adverse effects , Doxorubicin/pharmacology , Mice, Inbred C57BL , Glomerulosclerosis, Focal Segmental/chemically induced , Glomerulosclerosis, Focal Segmental/metabolism , Glomerulosclerosis, Focal Segmental/pathology , Adoptive Transfer , Disease Models, Animal , Up-Regulation/drug effects , Interleukin-10/metabolism , Interleukin-10/genetics , Transforming Growth Factor beta/metabolism
17.
Sci Rep ; 14(1): 8278, 2024 04 09.
Article in English | MEDLINE | ID: mdl-38594302

ABSTRACT

Focal segmental glomerulosclerosis (FSGS) is a common pathological form of nephrotic syndrome. This study analyzed the value of pathological lesions and clinical prognosis of different segmental glomerulosclerosis ratios in FSGS. Two hundred and six FSGS patients were collected from Dec 2013 to Apr 2016. The patients were divided into two groups according to the proportion of glomerular segmental sclerosis: F1 (SSR ≤ 15%, n = 133) and F2 (SSR > 15%, n = 73). The clinical and pathological data were recorded and analyzed, and statistical differences were observed between the serum uric acid level and the percentage of chronic renal failure. The pathological results showed significant differences in interstitial fibrosis and tubular atrophy (IFTA), degree of mesangial hyperplasia, vascular lesions, synaptopodin intensity, and foot process effacement between the two groups. Multivariate logistic regression analysis showed significant differences in creatinine (OR: 1.008) and F2 group (OR: 1.19). In all patients, the prognoses of urine protein and serum creatinine levels were statistically different. Multivariate Cox regression analysis revealed that F2 (hazard ratio: 2.306, 95% CI 1.022-5.207) was associated with a risk of ESRD (end stage renal disease). The proportion of segmental glomerulosclerosis provides a guiding value in the pathological diagnosis and clinical prognosis of FSGS.


Subject(s)
Glomerulosclerosis, Focal Segmental , Kidney Failure, Chronic , Renal Insufficiency, Chronic , Humans , Glomerulosclerosis, Focal Segmental/pathology , Uric Acid , Kidney Failure, Chronic/etiology , Kidney Failure, Chronic/diagnosis
18.
Kidney Int ; 106(1): 67-84, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38428734

ABSTRACT

Parietal epithelial cells (PECs) are kidney progenitor cells with similarities to a bone marrow stem cell niche. In focal segmental glomerulosclerosis (FSGS) PECs become activated and contribute to extracellular matrix deposition. Colony stimulating factor-1 (CSF-1), a hematopoietic growth factor, acts via its specific receptor, CSF-1R, and has been implicated in several glomerular diseases, although its role on PEC activation is unknown. Here, we found that CSF-1R was upregulated in PECs and podocytes in biopsies from patients with FSGS. Through in vitro studies, PECs were found to constitutively express CSF-1R. Incubation with CSF-1 induced CSF-1R upregulation and significant transcriptional regulation of genes involved in pathways associated with PEC activation. Specifically, CSF-1/CSF-1R activated the ERK1/2 signaling pathway and upregulated CD44 in PECs, while both ERK and CSF-1R inhibitors reduced CD44 expression. Functional studies showed that CSF-1 induced PEC proliferation and migration, while reducing the differentiation of PECs into podocytes. These results were validated in the Adriamycin-induced FSGS experimental mouse model. Importantly, treatment with either the CSF-1R-specific inhibitor GW2580 or Ki20227 provided a robust therapeutic effect. Thus, we provide evidence of the role of the CSF-1/CSF-1R pathway in PEC activation in FSGS, paving the way for future clinical studies investigating the therapeutic effect of CSF-1R inhibitors on patients with FSGS.


Subject(s)
Glomerulosclerosis, Focal Segmental , Hyaluronan Receptors , Macrophage Colony-Stimulating Factor , Podocytes , Glomerulosclerosis, Focal Segmental/pathology , Glomerulosclerosis, Focal Segmental/metabolism , Glomerulosclerosis, Focal Segmental/genetics , Animals , Humans , Podocytes/metabolism , Podocytes/pathology , Macrophage Colony-Stimulating Factor/metabolism , Macrophage Colony-Stimulating Factor/genetics , Hyaluronan Receptors/metabolism , Hyaluronan Receptors/genetics , Mice , Cell Proliferation/drug effects , Epithelial Cells/metabolism , Epithelial Cells/pathology , Epithelial Cells/drug effects , Receptor, Macrophage Colony-Stimulating Factor/metabolism , Receptor, Macrophage Colony-Stimulating Factor/genetics , Kidney Glomerulus/pathology , Kidney Glomerulus/metabolism , Male , Disease Models, Animal , Cells, Cultured , Female , Up-Regulation , Cell Movement/drug effects , MAP Kinase Signaling System/drug effects , Signal Transduction , Mice, Inbred C57BL , Receptors, Granulocyte-Macrophage Colony-Stimulating Factor
19.
Sci Rep ; 14(1): 6748, 2024 03 21.
Article in English | MEDLINE | ID: mdl-38514826

ABSTRACT

The data regarding primary FSGS (pFSGS) from different parts of the world differ. While the prevalence of pFSGS has been increasing in Western countries like the USA, it follows an inconsistent trend in Europe and Asia and a decreasing trend in Far Eastern countries such as China in the last two decades. There are undetermined factors to explain those national and geographic discrepancies. Herein, we aimed to reveal the current prevalence with clinical and histopathological characteristics of pFSGS in Turkish adults. This study includes the biopsy-proven pFSGS patients data recorded between 2009 and 2019, obtained from the national multicenter primary glomerulonephritis registry system of the Turkish Society of Nephrology Glomerular Diseases (TSN-GOLD) database. 850 of the 3875 primer glomerulonephritis patients(21.9%) have pFSGS. The mean age is 40.5 ± 14.2 and 435 (51.2%) of patients are male. Nephrotic syndrome is the most common biopsy indication (59.2%). 32.6% of patients have hematuria, 15.2% have leukocyturia and 7.8% have both. Serum creatinine, albumin, and proteinuria are 1.0 mg/dL (IQR = 0.7-1.4) mg/dl, 3.4 ± 0.9 g/dl, 3400 mg/day(IQR, 1774-5740), respectively. Females have lower mean arterial pressure (- 2.2 mmHg), higher eGFR (+ 10.0 mL/min/1.73 m2), and BMI (+ 1.6 kg/m2) than males. Thickened basal membrane(76.6%) and mesangial proliferation (53.5%) on light microscopy are the major findings after segmental sclerosis. IgM (32.7%) and C3 (32.9%) depositions are the most common findings on immunofluorescence microscopy. IgM positivity is related to lower eGFR, serum albumin, and higher proteinuria. The prevalence of pFSGS is stable although slightly increasing in Turkish adults. The characteristics of the patients are similar to those seen in Western countries.


Subject(s)
Glomerulonephritis , Glomerulosclerosis, Focal Segmental , Adult , Female , Humans , Male , Biopsy , Glomerulosclerosis, Focal Segmental/epidemiology , Glomerulosclerosis, Focal Segmental/pathology , Immunoglobulin M , Proteinuria , Retrospective Studies , Serum Albumin , Multicenter Studies as Topic , Middle Aged
20.
Front Med (Lausanne) ; 11: 1343161, 2024.
Article in English | MEDLINE | ID: mdl-38510448

ABSTRACT

Corticosteroid therapy, often in combination with inhibition of the renin-angiotensin system, is first-line therapy for primary focal and segmental glomerulosclerosis (FSGS) with nephrotic-range proteinuria. However, the response to treatment is variable, and therefore new approaches to indicate the response to therapy are required. Podocyte depletion is a hallmark of early FSGS, and here we investigated whether podocyte number, density and/or size in diagnostic biopsies and/or the degree of glomerulosclerosis could indicate the clinical response to first-line therapy. In this retrospective single center cohort study, 19 participants (13 responders, 6 non-responders) were included. Biopsies obtained at diagnosis were prepared for analysis of podocyte number, density and size using design-based stereology. Renal function and proteinuria were assessed 6 months after therapy commenced. Responders and non-responders had similar levels of proteinuria at the time of biopsy and similar kidney function. Patients who did not respond to treatment at 6 months had a significantly higher percentage of glomeruli with global sclerosis than responders (p < 0.05) and glomerulosclerotic index (p < 0.05). Podocyte number per glomerulus in responders was 279 (203-507; median, IQR), 50% greater than that of non-responders (186, 118-310; p < 0.05). These findings suggest that primary FSGS patients with higher podocyte number per glomerulus and less advanced glomerulosclerosis are more likely to respond to first-line therapy at 6 months. A podocyte number less than approximately 216 per glomerulus, a GSI greater than 1 and percentage global sclerosis greater than approximately 20% are associated with a lack of response to therapy. Larger, prospective studies are warranted to confirm whether these parameters may help inform therapeutic decision making at the time of diagnosis of primary FSGS.

SELECTION OF CITATIONS
SEARCH DETAIL