Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 56
Filter
1.
Heliyon ; 10(19): e38547, 2024 Oct 15.
Article in English | MEDLINE | ID: mdl-39398002

ABSTRACT

In this paper, a robust weighted score for unbalanced data (ROWSU) is proposed for selecting the most discriminative features for high dimensional gene expression binary classification with class-imbalance problem. The method addresses one of the most challenging problems of highly skewed class distributions in gene expression datasets that adversely affect the performance of classification algorithms. First, the training dataset is balanced by synthetically generating data points from minority class observations. Second, a minimum subset of genes is selected using a greedy search approach. Third, a novel weighted robust score, where the weights are computed by support vectors, is introduced to obtain a refined set of genes. The highest scoring genes based on this approach are combined with the minimum subset of genes selected by the greedy search approach to form the final set of genes. The novel method ensures the selection of the most discriminative genes, even in the presence of skewed class distribution, thereby improving the performance of the classifiers. The performance of the proposed ROWSU method is evaluated on 7 gene expression datasets. Classification accuracy, sensitivity and F1-score are used as performance metrics to compare the proposed ROWSU algorithm with several other state-of-the-art methods. Boxplots and stability plots are also constructed for a better understanding of the results. The results show that the proposed method outperforms the existing feature selection procedures based on classification performance from k nearest neighbors (kNN) and random forest (RF) classifiers.

2.
Bioengineering (Basel) ; 11(9)2024 Sep 11.
Article in English | MEDLINE | ID: mdl-39329650

ABSTRACT

The aim of this study was to improve the diagnostic ability of fall risk classifiers using a Bayesian approach and the Simulated Annealing (SA) algorithm. A total of 47 features from 181 records (40 Center of Pressure (CoP) indices and 7 patient descriptive variables) were analyzed. The wrapper method of feature selection using the SA algorithm was applied to optimize the cost function based on the difference of the mean minus the standard deviation of the Area Under the Curve (AUC) of the fall risk classifiers across multiple dimensions. A stratified 60-20-20% hold-out method was used for train, test, and validation sets, respectively. The results showed that although the highest performance was observed with 31 features (0.815 ± 0.110), lower variability and higher explainability were achieved with only 15 features (0.780 ± 0.055). These findings suggest that the SA algorithm is a valuable tool for feature selection for acceptable fall risk diagnosis. This method offers an alternative or complementary resource in situations where clinical tools are difficult to apply.

3.
Heliyon ; 10(12): e32726, 2024 Jun 30.
Article in English | MEDLINE | ID: mdl-38975154

ABSTRACT

COVID-19 (Coronavirus), an acute respiratory disorder, is caused by SARS-CoV-2 (coronavirus severe acute respiratory syndrome). The high prevalence of COVID-19 infection has drawn attention to a frequent illness symptom: olfactory and gustatory dysfunction. The primary purpose of this manuscript is to create a Computer-Assisted Diagnostic (CAD) system to determine whether a COVID-19 patient has normal, mild, or severe anosmia. To achieve this goal, we used fluid-attenuated inversion recovery (FLAIR) Magnetic Resonance Imaging (FLAIR-MRI) and Diffusion Tensor Imaging (DTI) to extract the appearance, morphological, and diffusivity markers from the olfactory nerve. The proposed system begins with the identification of the olfactory nerve, which is performed by a skilled expert or radiologist. It then proceeds to carry out the subsequent primary steps: (i) extract appearance markers (i.e., 1 s t and 2 n d order markers), morphology/shape markers (i.e., spherical harmonics), and diffusivity markers (i.e., Fractional Anisotropy (FA) & Mean Diffusivity (MD)), (ii) apply markers fusion based on the integrated markers, and (iii) determine the decision and corresponding performance metrics based on the most-promising classifier. The current study is unusual in that it ensemble bags the learned and fine-tuned ML classifiers and diagnoses olfactory bulb (OB) anosmia using majority voting. In the 5-fold approach, it achieved an accuracy of 94.1%, a balanced accuracy (BAC) of 92.18%, precision of 91.6%, recall of 90.61%, specificity of 93.75%, F1 score of 89.82%, and Intersection over Union (IoU) of 82.62%. In the 10-fold approach, stacking continued to demonstrate impressive results with an accuracy of 94.43%, BAC of 93.0%, precision of 92.03%, recall of 91.39%, specificity of 94.61%, F1 score of 91.23%, and IoU of 84.56%. In the leave-one-subject-out (LOSO) approach, the model continues to exhibit notable outcomes, achieving an accuracy of 91.6%, BAC of 90.27%, precision of 88.55%, recall of 87.96%, specificity of 92.59%, F1 score of 87.94%, and IoU of 78.69%. These results indicate that stacking and majority voting are crucial components of the CAD system, contributing significantly to the overall performance improvements. The proposed technology can help doctors assess which patients need more intensive clinical care.

4.
Front Plant Sci ; 15: 1404238, 2024.
Article in English | MEDLINE | ID: mdl-38799101

ABSTRACT

The Soil Plant Analysis Development (SPAD) is a vital index for evaluating crop nutritional status and serves as an essential parameter characterizing the reproductive growth status of winter wheat. Non-destructive and accurate monitorin3g of winter wheat SPAD plays a crucial role in guiding precise management of crop nutrition. In recent years, the spectral saturation problem occurring in the later stage of crop growth has become a major factor restricting the accuracy of SPAD estimation. Therefore, the purpose of this study is to use features selection strategy to optimize sensitive remote sensing information, combined with features fusion strategy to integrate multiple characteristic features, in order to improve the accuracy of estimating wheat SPAD. This study conducted field experiments of winter wheat with different varieties and nitrogen treatments, utilized UAV multispectral sensors to obtain canopy images of winter wheat during the heading, flowering, and late filling stages, extracted spectral features and texture features from multispectral images, and employed features selection strategy (Boruta and Recursive Feature Elimination) to prioritize sensitive remote sensing features. The features fusion strategy and the Support Vector Machine Regression algorithm are applied to construct the SPAD estimation model for winter wheat. The results showed that the spectral features of NIR band combined with other bands can fully capture the spectral differences of winter wheat SPAD during the reproductive growth stage, and texture features of the red and NIR band are more sensitive to SPAD. During the heading, flowering, and late filling stages, the stability and estimation accuracy of the SPAD model constructed using both features selection strategy and features fusion strategy are superior to models using only a single feature strategy or no strategy. The enhancement of model accuracy by this method becomes more significant, with the greatest improvement observed during the late filling stage, with R2 increasing by 0.092-0.202, root mean squared error (RMSE) decreasing by 0.076-4.916, and ratio of performance to deviation (RPD) increasing by 0.237-0.960. In conclusion, this method has excellent application potential in estimating SPAD during the later stages of crop growth, providing theoretical basis and technical support for precision nutrient management of field crops.

5.
Nutrients ; 16(5)2024 Feb 23.
Article in English | MEDLINE | ID: mdl-38474741

ABSTRACT

This study investigated the relationship between Metabolic Syndrome (MetS), sleep disorders, the consumption of some nutrients, and social development factors, focusing on gender differences in an unbalanced dataset from a Mexico City cohort. We used data balancing techniques like SMOTE and ADASYN after employing machine learning models like random forest and RPART to predict MetS. Random forest excelled, achieving significant, balanced accuracy, indicating its robustness in predicting MetS and achieving a balanced accuracy of approximately 87%. Key predictors for men included body mass index and family history of gout, while waist circumference and glucose levels were most significant for women. In relation to diet, sleep quality, and social development, metabolic syndrome in men was associated with high lactose and carbohydrate intake, educational lag, living with a partner without marrying, and lack of durable goods, whereas in women, best predictors in these dimensions include protein, fructose, and cholesterol intake, copper metabolites, snoring, sobbing, drowsiness, sanitary adequacy, and anxiety. These findings underscore the need for personalized approaches in managing MetS and point to a promising direction for future research into the interplay between social factors, sleep disorders, and metabolic health, which mainly depend on nutrient consumption by region.


Subject(s)
Metabolic Syndrome , Sleep Wake Disorders , Male , Humans , Female , Metabolic Syndrome/complications , Sleep Quality , Social Change , Eating , Waist Circumference , Body Mass Index , Sleep Wake Disorders/complications , Machine Learning , Risk Factors
7.
Comput Biol Med ; 170: 108009, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38242013

ABSTRACT

In recent years, the encoder-decoder U-shaped network architecture has become a mainstream structure for medical image segmentation. Its biggest advantage lies in the incorporation of shallow features into deeper layers of the network through skip connections. However, according to our research, there are still some limitations in the skip connection part of the network: (1) The information from the encoder stage is not completely and effectively supplemented to the decoder stage; (2) The decoder receives the supplemented feature information from the encoder indiscriminately, which sometimes leads to the poor performance of the model. Therefore, to effectively address these limitations, we have redesigned the skip connections in UNet using a feature aggregation and feature selection approach. We firstly design the FA module to aggregate all encoder features and perform local multi-scale information extraction to obtain the complete multi-scale aggregated features. Further, we design the FS module to actively perform specific selection of these aggregated features through the decoder, thus effectively guiding the semantic recovery of the decoder. Finally, we conduct experiments on several medical image datasets, and the results show that our method has higher segmentation accuracy compared with other methods.


Subject(s)
Information Storage and Retrieval , Semantics , Image Processing, Computer-Assisted
8.
Talanta ; 265: 124836, 2023 Dec 01.
Article in English | MEDLINE | ID: mdl-37393709

ABSTRACT

Understanding many biological processes relies heavily on accurately predicting protein-protein interactions (PPIs). In this study, we propose a novel method for predicting PPIs that is based on LogitBoost with a binary bat feature selection algorithm. Our approach involves the extraction of an initial feature vector by combining pseudo amino acid composition (PseAAC), pseudo-position-specific scoring matrix (PsePSSM), reduced sequence and index-vectors (RSIV), and autocorrelation descriptor (AD). Subsequently, a binary bat algorithm is applied to eliminate redundant features, and the resulting optimal features are fed into the LogitBoost classifier for the identification of PPIs. To evaluate the proposed method, we test it on two databases, Saccharomyces cerevisiae and Helicobacter pylori, using 10-fold cross-validation, and achieve accuracies of 94.39% and 97.89%, respectively. Our results showcase the significant potential of our pipeline in accurately predicting protein-protein interactions (PPIs), thereby offering a valuable resource to the scientific research community.


Subject(s)
Helicobacter pylori , Saccharomyces cerevisiae Proteins , Saccharomyces cerevisiae/metabolism , Protein Interaction Maps , Helicobacter pylori/chemistry , Helicobacter pylori/metabolism , Saccharomyces cerevisiae Proteins/metabolism , Protein Interaction Mapping/methods , Computational Biology/methods , Support Vector Machine , Algorithms
9.
Bioengineering (Basel) ; 10(6)2023 Jun 09.
Article in English | MEDLINE | ID: mdl-37370634

ABSTRACT

Accurate diagnosis and classification of epileptic seizures can greatly support patient treatments. As many epileptic seizures are convulsive and have a motor component, the analysis of muscle activity can provide valuable information for seizure classification. Therefore, this paper present a feasibility study conducted on healthy volunteers, focusing on tracking epileptic seizures movements using surface electromyography signals (sEMG) measured on human limb muscles. For the experimental studies, first, compact wireless sensor nodes were developed for real-time measurement of sEMG on the gastrocnemius, flexor carpi ulnaris, biceps brachii, and quadriceps muscles on the right side and the left side. For the classification of the seizure, a machine learning model has been elaborated. The 16 common sEMG time-domain features were first extracted and examined with respect to discrimination and redundancy. This allowed the features to be classified into irrelevant features, important features, and redundant features. Redundant features were examined with the Big-O notation method and with the average execution time method to select the feature that leads to lower complexity and reduced processing time. The finally selected six features were explored using different machine learning classifiers to compare the resulting classification accuracy. The results show that the artificial neural network (ANN) model with the six features: IEMG, WAMP, MYOP, SE, SKEW, and WL, had the highest classification accuracy (99.95%). A further study confirms that all the chosen eight sensors are necessary to reach this high classification accuracy.

10.
Jpn J Radiol ; 41(9): 983-993, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37071251

ABSTRACT

PURPOSE: Noninvasive assessment of significant liver fibrosis in rabbits by spectral CT parameters and texture analysis. MATERIALS AND METHODS: Thirty-three rabbits were randomly divided into 27 carbon tetrachloride-induced liver fibrosis group and 6 control group. Spectral CT contrast-enhanced scan was performed in batches, and the liver fibrosis was staged according to the histopathological results. The portal venous phase spectral CT parameters [70 keV CT value, normalized iodine concentration (NIC), spectral HU curve slope (λHU)] were measured, and MaZda texture analysis was performed on 70 keV monochrome images. Three dimensionality reduction methods and four statistical methods in B11 module were used to perform discriminant analysis and calculate misclassified rate (MCR), and ten texture features under the lowest combination of MCR were statistically analyzed. Receiver operating characteristic curve (ROC) was used to calculate the diagnostic performance of spectral parameters and texture features for significant liver fibrosis. Finally, the binary logistic regression was used to further screen independent predictors and establish model. RESULTS: A total of 23 experimental rabbits and 6 control rabbits were included, of which 16 had significant liver fibrosis. Three spectral CT parameters with significant liver fibrosis were significantly lower than those of non-significant liver fibrosis (p < 0.05), and the AUC ranged from 0.846 to 0.913. The combination analysis of mutual information (MI) and nonlinear discriminant analysis (NDA) had the lowest MCR, which with 0%. In the filtered texture features, four were statistically significant and AUC > 0.5, ranges from 0.764 to 0.875. The logistic regression model showed that Perc.90% and NIC could be used as independent predictors, the overall prediction accuracy of the model was 89.7% and the AUC was 0.976. CONCLUSION: Spectral CT parameters and texture features have high diagnostic value for predicting significant liver fibrosis in rabbits, and the combination of the two can improve its diagnostic efficiency.


Subject(s)
Liver Cirrhosis , Tomography, X-Ray Computed , Animals , Rabbits , Liver Cirrhosis/diagnostic imaging , ROC Curve , Tomography, X-Ray Computed/methods , Retrospective Studies
11.
Sensors (Basel) ; 23(4)2023 Feb 19.
Article in English | MEDLINE | ID: mdl-36850919

ABSTRACT

In this paper, new features relevant to blood pressure (BP) estimation using photoplethysmography (PPG) are presented. A total of 195 features, including the proposed ones and those already known in the literature, have been calculated on a set composed of 50,000 pulses from 1080 different patients. Three feature selection methods, namely Correlation-based Feature Selection (CFS), RReliefF and Minimum Redundancy Maximum Relevance (MRMR), have then been applied to identify the most significant features for BP estimation. Some of these features have been extracted through a novel PPG signal enhancement method based on the use of the Maximal Overlap Discrete Wavelet Transform (MODWT). As a matter of fact, the enhanced signal leads to a reliable identification of the characteristic points of the PPG signal (e.g., systolic, diastolic and dicrotic notch points) by simple means, obtaining results comparable with those from purposely defined algorithms. For systolic points, mean and std of errors computed as the difference between the locations obtained using a purposely defined already known algorithm and those using the MODWT enhancement are, respectively, 0.0097 s and 0.0202 s; for diastolic points they are, respectively, 0.0441 s and 0.0486 s; for dicrotic notch points they are 0.0458 s and 0.0896 s. Hence, this study leads to the selection of several new features from the MODWT enhanced signal on every single pulse extracted from PPG signals, in addition to features already known in the literature. These features can be employed to train machine learning (ML) models useful for estimating systolic blood pressure (SBP) and diastolic blood pressure (DBP) in a non-invasive way, which is suitable for telemedicine health-care monitoring.


Subject(s)
Algorithms , Photoplethysmography , Humans , Blood Pressure , Diastole , Heart Rate
12.
Appl Intell (Dordr) ; : 1-23, 2023 Feb 06.
Article in English | MEDLINE | ID: mdl-36777882

ABSTRACT

According to the World Health Organization, millions of infections and a lot of deaths have been recorded worldwide since the emergence of the coronavirus disease (COVID-19). Since 2020, a lot of computer science researchers have used convolutional neural networks (CNNs) to develop interesting frameworks to detect this disease. However, poor feature extraction from the chest X-ray images and the high computational cost of the available models introduce difficulties for an accurate and fast COVID-19 detection framework. Moreover, poor feature extraction has caused the issue of 'the curse of dimensionality', which will negatively affect the performance of the model. Feature selection is typically considered as a preprocessing mechanism to find an optimal subset of features from a given set of all features in the data mining process. Thus, the major purpose of this study is to offer an accurate and efficient approach for extracting COVID-19 features from chest X-rays that is also less computationally expensive than earlier approaches. To achieve the specified goal, we design a mechanism for feature extraction based on shallow conventional neural network (SCNN) and used an effective method for selecting features by utilizing the newly developed optimization algorithm, Q-Learning Embedded Sine Cosine Algorithm (QLESCA). Support vector machines (SVMs) are used as a classifier. Five publicly available chest X-ray image datasets, consisting of 4848 COVID-19 images and 8669 non-COVID-19 images, are used to train and evaluate the proposed model. The performance of the QLESCA is evaluated against nine recent optimization algorithms. The proposed method is able to achieve the highest accuracy of 97.8086% while reducing the number of features from 100 to 38. Experiments prove that the accuracy of the model improves with the usage of the QLESCA as the dimensionality reduction technique by selecting relevant features.

13.
Comput Biol Med ; 153: 106520, 2023 02.
Article in English | MEDLINE | ID: mdl-36608463

ABSTRACT

Feature selection (FS) is a popular data pre-processing technique in machine learning to extract the optimal features to maintain or increase the classification accuracy of the dataset, which is a combinatorial optimization problem, requiring a powerful optimizer to obtain the optimum subset. The equilibrium optimizer (EO) is a recent physical-based metaheuristic algorithm with good performance for various optimization problems, but it may encounter premature or the local convergence in feature selection. This work presents a self-adaptive quantum EO with artificial bee colony for feature selection, named SQEOABC. In the proposed algorithm, the quantum theory and the self-adaptive mechanism are employed into the updating rule of EO to enhance convergence, and the updating mechanism from the artificial bee colony is also incorporated into EO to achieve appropriate FS solutions. In the experiments, 25 benchmark datasets from the UCI repository are investigated to verify SQEOABC, which is compared with several state-of-the-art metaheuristic algorithms and the variants of EO. The statistical results of fitness values and accuracy demonstrate that SQEOABC has better performance than the compared algorithms and the variants of EO. Finally, a real-world FS problem from COVID-19 illustrates the effectiveness and superiority of SQEOABC.


Subject(s)
COVID-19 , Humans , Algorithms , Machine Learning
14.
Forensic Sci Int Genet ; 62: 102806, 2023 01.
Article in English | MEDLINE | ID: mdl-36399972

ABSTRACT

As evidenced by the large number of articles recently published in the literature, forensic scientists are making great efforts to infer externally visible features and biogeographical ancestry (BGA) from DNA analysis. Just as phenotypic, ancestry information obtained from DNA can provide investigative leads to identify the victims (missing/unidentified persons, crime/armed conflict/mass disaster victims) or trace their perpetrators when no matches were found with the reference profile or in the database. Recently, the advent of Massively Parallel Sequencing technologies associated with the possibility of harnessing high-throughput genetic data allowed us to investigate the associations between phenotypic and genomic variations in worldwide human populations and develop new BGA forensic tools capable of simultaneously analyzing up to millions of markers if for example the ancient DNA approach of hybridization capture was adopted to target SNPs of interest. In the present study, a selection of more than 3000 SNPs was performed to create a new BGA panel and the accuracy of the new panel to infer ancestry from unknown samples was evaluated by the PLS-DA method. Subsequently, the panel created was assessed using three variable selection techniques (Backward variable elimination, Genetic Algorithm and Regularized elimination procedure), and the best SNPs in terms of inferring bio-geographical ancestry at inter- and intra-continental level were selected to obtain panels to predict BGA with a reduced number of selected markers to be applied in routine forensic cases where PCR amplification is the best choice to target SNPs.


Subject(s)
Forensic Genetics , High-Throughput Nucleotide Sequencing , Population Groups , Humans , DNA/genetics , Forensic Genetics/methods , High-Throughput Nucleotide Sequencing/methods , Least-Squares Analysis , Phylogeography , Polymerase Chain Reaction , Polymorphism, Single Nucleotide , Population Groups/genetics
15.
Front Neurogenom ; 4: 1189179, 2023.
Article in English | MEDLINE | ID: mdl-38234469

ABSTRACT

We have all experienced the sense of time slowing down when we are bored or speeding up when we are focused, engaged, or excited about a task. In virtual reality (VR), perception of time can be a key aspect related to flow, immersion, engagement, and ultimately, to overall quality of experience. While several studies have explored changes in time perception using questionnaires, limited studies have attempted to characterize them objectively. In this paper, we propose the use of a multimodal biosensor-embedded VR headset capable of measuring electroencephalography (EEG), electrooculography (EOG), electrocardiography (ECG), and head movement data while the user is immersed in a virtual environment. Eight gamers were recruited to play a commercial action game comprised of puzzle-solving tasks and first-person shooting and combat. After gameplay, ratings were given across multiple dimensions, including (1) the perception of time flowing differently than usual and (2) the gamers losing sense of time. Several features were extracted from the biosignals, ranked based on a two-step feature selection procedure, and then mapped to a predicted time perception rating using a Gaussian process regressor. Top features were found to come from the four signal modalities and the two regressors, one for each time perception scale, were shown to achieve results significantly better than chance. An in-depth analysis of the top features is presented with the hope that the insights can be used to inform the design of more engaging and immersive VR experiences.

16.
Comput Biol Med ; 150: 106028, 2022 11.
Article in English | MEDLINE | ID: mdl-36126356

ABSTRACT

Blood is made up of leukocytes (WBCs), erythrocytes (RBCs), and thrombocytes. The ratio of blood cancer diseases is increasing rapidly, among which leukemia is one of the famous cancer which may lead to death. Leukemia cancer is initiated by the unnecessary growth of immature WBCs present in the sponge tissues of bone marrow. It is generally analyzed by etiologists by perceiving slides of blood smear images under a microscope. The morphological features and blood cells count facilitated the etiologists to detect leukemia. Due to the late detection and expensive instruments used for leukemia analysis, the death rate has risen significantly. The fluorescence-based cell sorting technique and manual recounts using a hemocytometer are error-prone and imprecise. Leukemia detection methods consist of pre-processing, segmentation, features extraction, and classification. In this article, recent deep learning methodologies and challenges for leukemia detection are discussed. These methods are helpful to examine the microscopic blood smears images and for the detection of leukemia more accurately.


Subject(s)
Algorithms , Leukemia , Humans , Leukocytes , Leukemia/diagnosis , Erythrocytes , Image Processing, Computer-Assisted/methods
17.
Front Aging Neurosci ; 14: 818871, 2022.
Article in English | MEDLINE | ID: mdl-35707703

ABSTRACT

Accurate diagnosis of the initial phase of Alzheimer's disease (AD) is essential and crucial. The objective of this research was to employ efficient biomarkers for the diagnostic analysis and classification of AD based on combining structural MRI (sMRI) and resting-state functional MRI (rs-fMRI). So far, several anatomical MRI imaging markers for AD diagnosis have been identified. The use of cortical and subcortical volumes, the hippocampus, and amygdala volume, as well as genetic patterns, has proven to be beneficial in distinguishing patients with AD from the healthy population. The fMRI time series data have the potential for specific numerical information as well as dynamic temporal information. Voxel and graphical analyses have gained popularity for analyzing neurodegenerative diseases, such as Alzheimer's and its prodromal phase, mild cognitive impairment (MCI). So far, these approaches have been utilized separately for the diagnosis of AD. In recent studies, the classification of cases of MCI into those that are not converted for a certain period as stable MCI (MCIs) and those that converted to AD as MCIc has been less commonly reported with inconsistent results. In this study, we verified and validated the potency of a proposed diagnostic framework to identify AD and differentiate MCIs from MCIc by utilizing the efficient biomarkers obtained from sMRI, along with functional brain networks of the frequency range .01-.027 at the resting state and the voxel-based features. The latter mainly included default mode networks (amplitude of low-frequency fluctuation [ALFF], fractional ALFF [ALFF], and regional homogeneity [ReHo]), degree centrality (DC), and salience networks (SN). Pearson's correlation coefficient for measuring fMRI functional networks has proven to be an efficient means for disease diagnosis. We applied the graph theory to calculate nodal features (nodal degree [ND], nodal path length [NL], and between centrality [BC]) as a graphical feature and analyzed the connectivity link between different brain regions. We extracted three-dimensional (3D) patterns to calculate regional coherence and then implement a univariate statistical t-test to access a 3D mask that preserves voxels showing significant changes. Similarly, from sMRI, we calculated the hippocampal subfield and amygdala nuclei volume using Freesurfer (version 6). Finally, we implemented and compared the different feature selection algorithms to integrate the structural features, brain networks, and voxel features to optimize the diagnostic identifications of AD using support vector machine (SVM) classifiers. We also compared the performance of SVM with Random Forest (RF) classifiers. The obtained results demonstrated the potency of our framework, wherein a combination of the hippocampal subfield, the amygdala volume, and brain networks with multiple measures of rs-fMRI could significantly enhance the accuracy of other approaches in diagnosing AD. The accuracy obtained by the proposed method was reported for binary classification. More importantly, the classification results of the less commonly reported MCIs vs. MCIc improved significantly. However, this research involved only the AD Neuroimaging Initiative (ADNI) cohort to focus on the diagnosis of AD advancement by integrating sMRI and fMRI. Hence, the study's primary disadvantage is its small sample size. In this case, the dataset we utilized did not fully reflect the whole population. As a result, we cannot guarantee that our findings will be applicable to other populations.

18.
J Supercomput ; 78(17): 19246-19271, 2022.
Article in English | MEDLINE | ID: mdl-35754515

ABSTRACT

Population size has made disease monitoring a major concern in the healthcare system, due to which auto-detection has become a top priority. Intelligent disease detection frameworks enable doctors to recognize illnesses, provide stable and accurate results, and lower mortality rates. An acute and severe disease known as Coronavirus (COVID19) has suddenly become a global health crisis. The fastest way to avoid the spreading of Covid19 is to implement an automated detection approach. In this study, an explainable COVID19 detection in CT scan and chest X-ray is established using a combination of deep learning and machine learning classification algorithms. A Convolutional Neural Network (CNN) collects deep features from collected images, and these features are then fed into a machine learning ensemble for COVID19 assessment. To identify COVID19 disease from images, an ensemble model is developed which includes, Gaussian Naive Bayes (GNB), Support Vector Machine (SVM), Decision Tree (DT), Logistic Regression (LR), K-Nearest Neighbor (KNN), and Random Forest (RF). The overall performance of the proposed method is interpreted using Gradient-weighted Class Activation Mapping (Grad-CAM), and t-distributed Stochastic Neighbor Embedding (t-SNE). The proposed method is evaluated using two datasets containing 1,646 and 2,481 CT scan images gathered from COVID19 patients, respectively. Various performance comparisons with state-of-the-art approaches were also shown. The proposed approach beats existing models, with scores of 98.5% accuracy, 99% precision, and 99% recall, respectively. Further, the t-SNE and explainable Artificial Intelligence (AI) experiments are conducted to validate the proposed approach.

19.
PeerJ Comput Sci ; 8: e941, 2022.
Article in English | MEDLINE | ID: mdl-35494874

ABSTRACT

Road condition monitoring is essential for improving traffic safety and reducing accidents. Machine learning methods have recently gained prominence in the practically important task of controlling road surface quality. Several systems have been proposed using sensors, especially accelerometers present in smartphones due to their availability and low cost. However, these methods require practitioners to specify an exact set of features from all the sensors to provide more accurate results, including the time, frequency, and wavelet-domain signal features. It is important to know the effect of these features change on machine learning model performance in handling road anomalies classification tasks. Thus, we address such a problem by conducting a sensitivity analysis of three machine learning models which are Support Vector Machine, Decision Tree, and Multi-Layer Perceptron to test the effectiveness of the model by selecting features. We built a feature vector from all three axes of the sensors that boosts classification performance. Our proposed approach achieved an overall accuracy of 94% on four types of road anomalies. To allow an objective analysis of different features, we used available accelerometer datasets. Our objective is to achieve a good classification performance of road anomalies by distinguishing between significant and relatively insignificant features. Our chosen baseline machine learning models are based on their comparative simplicity and powerful empirical performance. The extensive analysis results of our study provide practical advice for practitioners wishing to select features effectively in real-world settings for road anomalies detection.

20.
Int J Mach Learn Cybern ; 13(7): 2089-2103, 2022.
Article in English | MEDLINE | ID: mdl-35492262

ABSTRACT

Corporate financial distress is related to the interests of the enterprise and stakeholders. Therefore, its accurate prediction is of great significance to avoid huge losses from them. Despite significant effort and progress in this field, the existing prediction methods are either limited by the number of input variables or restricted to those financial predictors. To alleviate those issues, both financial variables and non-financial variables are screened out from the existing accounting and finance theory to use as financial distress predictors. In addition, a novel method for financial distress prediction (FDP) based on sparse neural networks is proposed, namely FDP-SNN, in which the weight of the hidden layer is constrained with L 1 / 2 regularization to achieve the sparsity, so as to select relevant and important predictors, improving the predicted accuracy. It also provides support for the interpretability of the model. The results show that non-financial variables, such as investor protection and governance structure, play a key role in financial distress prediction than those financial ones, especially when the forecast period grows longer. By comparing those classic models proposed by predominant researchers in accounting and finance, the proposed model outperforms in terms of accuracy, precision, and AUC performance.

SELECTION OF CITATIONS
SEARCH DETAIL