Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 2.639
Filter
1.
Heliyon ; 10(18): e37657, 2024 Sep 30.
Article in English | MEDLINE | ID: mdl-39315223

ABSTRACT

Total knee arthroplasty (TKA) is a cornerstone in addressing knee joint disorders, significantly enhancing patients' quality of life. However, despite technological advancements, a comprehensive understanding of the dynamic stresses experienced by knee prostheses during daily activities, particularly under rehabilitation interventions, remains elusive. This study aims to bridge this gap by employing numerical simulations and finite element analysis to elucidate these dynamic stresses and their interaction with rehabilitation protocols. A real-life knee replacement prosthesis model was meticulously constructed through coordinate measuring and 3D scanning, facilitating detailed finite element analysis in ANSYS Workbench version 17.1. Two distinct boundary conditions and loading scenarios were applied, with comparisons made between linear and nonlinear material assumptions. The simulation results using these different boundary condition methods revealed minimal differences. Specifically, at a knee angle of 0°, the relative stress error rate between the two boundary condition types was approximately 1 % (1.11 MPa and 1.099 MPa, respectively). At 15° and 90°, the error rates were 1.9 % and 0.56 %, respectively (10.275 MPa and 10.078 MPa at 15°; 10.275 MPa and 10.078 MPa at 90°). Given these minimal differences, the first type of boundary condition was adopted for the subsequent scenarios to enhance convergence efficiency in the analysis. Moreover, comparative analyses between linear and nonlinear material behaviors demonstrated acceptable agreement, offering insights into potential efficiency gains in simulation methodologies. Building on this foundation, an optimized tibial model was proposed, incorporating geometric alterations to the tray. Quantitative assessments revealed significant reductions, with von Mises stress decreasing by 23.35 % and equivalent strain by 17 % at a knee angle of 140°. Further evaluations at varying angles, including 60°, consistently showed positive influences on stress and strain. These quantitative findings not only contribute valuable insights into the mechanical behavior of knee prostheses but also provide tangible evidence for the efficacy of linear material behavior assumptions. The proposed optimized model exhibits promising potential for enhancing the design and performance of knee prostheses, particularly under critical loading conditions. In conclusion, these results underscore the importance of a nuanced understanding of knee prosthesis behavior during rehabilitation, offering a quantitative foundation for refining existing designs and informing the development of next-generation prostheses.

2.
Comput Methods Programs Biomed ; 257: 108430, 2024 Sep 18.
Article in English | MEDLINE | ID: mdl-39316957

ABSTRACT

BACKGROUND AND OBJECTIVE: Spinal cord injuries can have a severe impact on athletes' or patients' lives. High axial impact scenarios like tackling and scrummaging can cause hyperflexion and buckling of the cervical spine, which is often connected with bilateral facet dislocation. Typically, finite-element (FE) or musculoskeletal models are applied to investigate these scenarios, however, they have the drawbacks of high computational cost and lack of soft tissue information, respectively. Moreover, material properties of the involved tissues are commonly tested in quasi-static conditions, which do not accurately capture the mechanical behavior during impact scenarios. Thus, the aim of this study was to develop, calibrate and validate an approach for the creation of impact-specific hybrid, rigid body - finite-element spine models for high-dynamic axial impact scenarios. METHODS: Five porcine cervical spine models were used to replicate in-vitro experiments to calibrate stiffness and damping parameters of the intervertebral joints by matching the kinematics of the in-vitro with the in-silico experiments. Afterwards, a five-fold cross-validation was conducted. Additionally, the von Mises stress of the lumped FE-discs was investigated during impact. RESULTS: The results of the calibration and validation of our hybrid approach agree well with the in-vitro experiments. The stress maps of the lumped FE-discs showed that the highest stress of the most superior lumped disc was located anterior while the remaining lumped discs had their maximum in the posterior portion. CONCLUSION: Our hybrid method demonstrated the importance of impact-specific modeling. Overall, our hybrid modeling approach enhances the possibilities of identifying spine injury mechanisms by facilitating dynamic, impact-specific computational models.

3.
Burns ; 2024 Jul 14.
Article in English | MEDLINE | ID: mdl-39317539

ABSTRACT

This study aims to explore the potential of a scaffold composed of drug-chitosan-hydroxyapatite (HA) in improving tissue treatment. The focus of the investigation lies in analyzing the physical and biological properties of the scaffold and evaluating its mechanical characteristics through finite-element analysis. To synthesize microcapsules containing dextran-diclofenac sodium, the electrospraying method was employed. The drug-chitosan-HA scaffold with varying volume fractions (VF) of the synthesized microcapsules (10, 15, and 20) was fabricated using the freeze-drying technique. Microscopic and scanning electron microscopy (SEM) images were utilized to evaluate the morphology, shape, and size of the microcapsules, as well as the porosity of the scaffolds for wound healing purposes. The mechanical properties of the synthesized microcapsules were determined via a nanoindentation test, while the mechanical behavior of the fabricated scaffolds was assessed through compression testing. Additionally, a multiscale finite-element model was developed to predict the mechanical properties of tissue scaffolds containing pharmaceutical microcapsules. The findings indicate that the incorporation of drug-chitosan-hydroxyapatite into the tissue significantly enhances both mechanical and biological responses. The mechanical evaluations demonstrate that the drug-chitosan-hydroxyapatite tissue exhibits excellent resistance to pressure, making it a suitable protective covering for skin wounds. Moreover, biological evaluations reveal that an increase in scaffold porosity leads to higher swelling behavior. The scaffold containing 20 % pharmaceutical microcapsules demonstrated the greatest swelling and desirable antibacterial properties, thereby indicating its potential as an effective wound dressing. Furthermore, a multiscale finite-element model was developed to predict the mechanical properties of tissue containing pharmaceutical microcapsules. The results indicated that the average size of the microcapsules was in the range of 170 to 180 µm, and the porosity of the prepared tissue was between 52 % and 61 %. The experimental compressive properties revealed that an increase in the volume fraction of the embedded microcapsules led to an increase in the maximum compressive stress and compressive modulus of the scaffolds by up to 54.95 % and 53.18 %, respectively, for the scaffold containing 20 % VF of pharmaceutical microcapsules compared to the specimen containing 10 % VF. In conclusion, the developed scaffold has the potential to serve as an effective wound dressing, with the ability to provide structural support, facilitate controlled drug release, and promote wound healing.

4.
Comput Biol Med ; 182: 109159, 2024 Sep 19.
Article in English | MEDLINE | ID: mdl-39303394

ABSTRACT

PURPOSE: The objective of this study is to validate a novel workflow for implementing patient-specific finite element (FE) simulations to virtually replicate the Transcatheter Aortic Valve Implantation (TAVI) procedure. METHODS: Seven patients undergoing TAVI were enrolled. Patient-specific anatomical models were reconstructed from pre-operative computed tomography (CT) scans and subsequentially discretized, considering the native aortic leaflets and calcifications. Moreover, high-fidelity models of CoreValve Evolut R and Acurate Neo2 valves were built. To determine the most suitable material properties for the two stents, an accurate calibration process was undertaken. This involved conducting crimping simulations and fine-tuning Nitinol parameters to fit experimental force-diameter curves. Subsequently, FE simulations of TAVI procedures were conducted. To validate the reliability of the implemented implantation simulations, qualitative and quantitative comparisons with post-operative clinical data, such as angiographies and CT scans, were performed. RESULTS: For both devices, the simulation curves closely matched the experimental data, indicating successful validation of the valves mechanical behaviour. An accurate qualitative superimposition with both angiographies and CTs was evident, proving the reliability of the simulated implantation. Furthermore, a mean percentage difference of 1,79 ± 0,93 % and 3,67 ± 2,73 % between the simulated and segmented final configurations of the stents was calculated in terms of orifice area and eccentricity, respectively. CONCLUSION: This study shows the successful validation of TAVI simulations in patient-specific anatomies, offering a valuable tool to optimize patients care through personalized pre-operative planning. A systematic approach for the validation is presented, laying the groundwork for enhanced predictive modeling in clinical practice.

5.
J Neural Eng ; 2024 Sep 20.
Article in English | MEDLINE | ID: mdl-39303746

ABSTRACT

Objective.Decades ago, neurosurgeons used electrical impedance measurements in the brain for coarse intraoperative tissue differentiation. Over time, these techniques were largely replaced by more refined imaging and electrophysiological localization. Today, advanced methods of diffusion tensor imaging (DTI) and finite element method (FEM) modeling may permit non-invasive, high-resolution intracerebral impedance prediction. However, expectations for tissue-impedance relationships and experimentally verified parameters for impedance modeling in human brains are lacking. This study seeks to address this need.Approach.We used FEM to simulate high-resolution single- and dual-electrode impedance measurements along linear electrode trajectories through (1) canonical gray and white matter tissue models, and (2) selected anatomic structures within whole-brain patient DTI-based models. We then compared intraoperative impedance measurements taken at known locations along deep brain stimulation (DBS) surgical trajectories with model predictions to evaluate model accuracy and refine model parameters.Main results.In DTI-FEM models, single- and dual-electrode configurations performed similarly. While only dual-electrode configurations were sensitive to white matter fiber orientation, other influences on impedance, such as white matter density, enabled single-electrode impedance measurements to display significant spatial variation even within purely white matter structures. We compared 308 intraoperative single-electrode impedance measurements in five DBS patients to DTI-FEM predictions at one-to-one corresponding locations. After calibration of model coefficients to these data, predicted impedances reliably estimated intraoperative measurements in all patients (R=0.784±0.116, n=5). Through this study, we derived an updated value for the slope coefficient of the DTI conductance model published by Tuch et al., k=0.0649 S·s/mm3(original k=0.844), for use specifically in humans at physiological frequencies.Significance.This is the first study to compare impedance estimates from imaging-based models of human brain tissue to experimental measurements at the same locations in vivo. Accurate, non-invasive, imaging-based impedance prediction has numerous applications in functional neurosurgery, including tissue mapping, intraoperative electrode localization, and DBS.

6.
Sci Rep ; 14(1): 20835, 2024 Sep 06.
Article in English | MEDLINE | ID: mdl-39242608

ABSTRACT

This study investigates the impact of Al 2 O 3 particle volume fraction and distribution on the deformation and damage of particle-reinforced metal matrix composites, particularly in the context of functionally graded metal matrix composites. In this study, a two-dimensional nonlinear random microstructure-based finite element modeling approach implemented in ABAQUS/Explicit with a Python-generated script to analyze the deformation and damage mechanisms in AA 6061 - T 6 / Al 2 O 3 composites. The plastic deformation and ductile cracking of the matrix are captured using the Gurson-Tvergaard-Needleman model, whereas particle fracture is modelled using the Johnson-Holmquist II model. Matrix-particle interface decohesion is simulated using the surface-based cohesive zone method. The findings reveal that functionally graded metal matrix composites exhibit higher hardness values ( HRB ) than traditional metal matrix composites. The results highlight the importance of functionally graded metal matrix composites. Functionally graded metal matrix composites with a Gaussian distribution and a particle volume fraction of 10% achieve HRB values comparable to particle-reinforced metal matrix composites with a particle volume fraction of 20%, with only a 2% difference in HRB . Thus, HRB can be improved significantly by employing a low particle volume fraction and incorporating a Gaussian distribution across the material thickness. Furthermore, functionally graded metal matrix composites with a Gaussian distribution exhibit higher HRB values and better agreement with experimental distribution functions when compared to those with a power-law distribution.

7.
Article in English | MEDLINE | ID: mdl-39256142

ABSTRACT

Reconstruction for large-scale temporomandibular joint (TMJ) defects can be challenging. Previously, we utilized the medial femoral condyle (MFC) flap for TMJ reconstruction. However, the optimal fixation method remains uncertain. In this study, finite element analysis was used to study the effects of three different fixation types of bone graft: overlap type, bevel type, and flush type. Models of different fixation types of MFC flap were reconstructed from CT images. A standard internal fixation model for extracapsular condylar fracture was also included as a control. Displacement of bone graft, deformation of plates and screws, and stress distribution of plates, screws, and cortical and cancellous of the bone graft were analyzed by finite element analysis to investigate their biomechanical features. The displacement of the bone graft and deformation of plates and screws in three different fixation types showed no significant difference. The overlap type and flush type of fixation displayed the lowest and highest stress respectively. All three fixation types could satisfy the mechanical requirement and face no risk of breakage and the major displacement of the MFC bone graft. These results provide insights into the optimal fixation approach for MFC bone grafts, offering valuable guidance and reference for clinical application.

8.
Article in English | MEDLINE | ID: mdl-39289175

ABSTRACT

Owing to its low incidence, small trauma, fast recovery, and high efficiency, left atrial appendage occlusion has become a new strategy for preventing stroke caused by atrial fibrillation. Due to a lack of relevant research information on this emerging technology, the effectiveness, stability, or related complications of occluders are mostly observed from a clinical perspective. However, there are fewer studies on the mechanical properties and safety of these occluders. In this study, a new left atrial appendage occluder is proposed, and a complete numerical simulation analysis framework is established through the finite element method to simulate the actual implantation and service process of the left atrial appendage occluder. Besides, the influence of the structural size and release scale of the occluder on its support performance, occluding effect, and safety is also explored. The results demonstrate that the structural size and release scale exert a significant impact on the support performance, occluding effect, and safety of the occluder. The structural optimization of the occluder contributes to enhancing its mechanical performance, thus ensuring its stability and effectiveness after implantation. Overall, these efforts may lay a scientific foundation for the structural optimization, safety evaluation, and effectiveness prediction of the occluder. Furthermore, these findings also provide effective reference for the application of numerical simulation technology in the research on the left atrial appendage occlusion.

9.
Sensors (Basel) ; 24(17)2024 Sep 07.
Article in English | MEDLINE | ID: mdl-39275732

ABSTRACT

Recently, capacitive micromachined ultrasound transducers (CMUTs) with long rectangular membranes have demonstrated performance advantages over conventional piezoelectric transducers; however, modeling these CMUT geometries has been limited to computationally burdensome numerical methods. Improved fast modeling methods, such as equivalent circuit models, could help achieve designs with even better performance. The primary obstacle in developing such methods is the lack of tractable methods for computing the radiation impedance of clamped rectangular radiators. This paper presents a method that approximates the velocity profile using a polynomial shape model to rapidly and accurately estimate radiation impedance. The validity of the approximate velocity profile and corresponding radiation impedance calculation was assessed using finite element simulations for a variety of membrane aspect ratios and bias voltages. Our method was evaluated for rectangular radiators with width:length ratios from 1:1 up to 1:25. At all aspect ratios, the radiation resistance was closely modeled. However, when calculating the radiation reactance, our initial approach was only accurate for low aspect ratios. This motivated us to consider an alternative shape model for high aspect ratios, which was more accurate when compared with FEM. To facilitate the development of future rectangular CMUTs, we provide a MATLAB script that quickly calculates radiation impedance using both methods.

10.
Int J Numer Method Biomed Eng ; : e3864, 2024 Sep 09.
Article in English | MEDLINE | ID: mdl-39250194

ABSTRACT

Heat transfer in the human eyeball, a complex organ, is significantly influenced by various pathophysiological and external parameters. Particularly, heat transfer critically affects fluid behavior within the eye and ocular drug delivery processes. Overcoming the challenges of experimental analysis, this study introduces a comprehensive three-dimensional mathematical and computational model to simulate the heat transfer in a realistic geometry. Our work includes an extensive sensitivity analysis to address uncertainties and delineate the impact of different variables on heat distribution in ocular tissues. To manage the model's complexity, we employed a very fast model reduction technique with certified sharp error bounds, ensuring computational efficiency without compromising accuracy. Our results demonstrate remarkable consistency with experimental observations and align closely with existing numerical findings in the literature. Crucially, our findings underscore the significant role of blood flow and environmental conditions, particularly in the eye's internal tissues. Clinically, this model offers a promising tool for examining the temperature-related effects of various therapeutic interventions on the eye. Such insights are invaluable for optimizing treatment strategies in ophthalmology.

11.
Materials (Basel) ; 17(17)2024 Aug 25.
Article in English | MEDLINE | ID: mdl-39274595

ABSTRACT

The impact of perforation patterns on the compressive strength of cardboard packaging is a critical concern in the packaging industry, where optimizing material usage without compromising structural integrity is essential. This study aims to investigate how different perforation designs affect the load-bearing capacity of cardboard boxes. Utilizing finite element method (FEM) simulations, we assessed the compressive strength of packaging made of various types of corrugated cardboards, including E, B, C, EB, and BC flutes with different heights. Mechanical testing was conducted to obtain accurate material properties for the simulations. Packaging dimensions were varied to generalize the findings across different sizes. Results showed that perforation patterns significantly influenced the compressive strength, with reductions ranging from 14% to 43%, compared to non-perforated packaging. Notably, perforations on multiple walls resulted in the highest strength reductions. The study concludes that while perforations are necessary for functionality and aesthetics, their design must be carefully considered to minimize negative impacts on structural integrity. These findings provide valuable insights for designing more efficient and sustainable packaging solutions in the industry.

12.
Materials (Basel) ; 17(17)2024 Aug 26.
Article in English | MEDLINE | ID: mdl-39274600

ABSTRACT

Solid-state shear milling (S3M) equipment is an evolution from traditional stone mills, enabling the processing of polymer materials and fillers through crushing, mixing, and mechanochemical reactions at ambient temperature. Due to the complex structure of the mill-pan, empirical data alone are insufficient to give a comprehensive understanding of the physicochemical interactions during the milling process. To provide an in-depth insight of the working effect and mechanism of S3M equipment, finite element method (FEM) analysis is employed to simulate the milling dynamics, which substantiates the correlation between numerical outcomes and experimental observations. A model simplification strategy is proposed to optimize calculation time without compromising accuracy. The findings in this work demonstrate the S-S bond breakage mechanism behind stress-induced devulcanization and suggest the structural optimizations for enhancing the devulcanization and pulverization efficiency of S3M equipment, thereby providing a theoretical foundation for its application in material processing.

13.
Materials (Basel) ; 17(17)2024 Sep 03.
Article in English | MEDLINE | ID: mdl-39274746

ABSTRACT

Modeling the dynamic properties of wood and wood-based composites is a challenging task due to naturally growing structure and moisture-dependent material properties. This paper presents the finite element modeling of plywood panels' dynamic properties. Two panels differing in thickness were analyzed: (i) 18 mm and (ii) 27 mm. The developed models consisted of individual layers of wood, which were discretized using three-dimensional finite elements formulated using an orthotropic material model. The models were subjected to an updating procedure based on experimentally determined frequency response functions. As a result of a model updating relative errors for natural frequencies obtained numerically and experimentally were not exceeding 2.0%, on average 0.7% for 18 mm thick panel and not exceeding 2.6%, on average 1.5% for 27 mm thick panel. To prove the utility of the method and at the same time to validate it, a model of a cabinet was built, which was then subjected to experimental verification. In this case, average relative differences for natural frequencies of 6.6% were obtained.

14.
Ann Biomed Eng ; 2024 Sep 04.
Article in English | MEDLINE | ID: mdl-39230788

ABSTRACT

PURPOSE: Ultrasound imaging is key in the management of patients with an abdominal aortic aneurysm (AAA). It was recently shown that the cyclic diameter variations between diastole and systole, which can be quantified with US imaging, increase significantly with the strength of the applied probe pressure on the patient's abdomen. The goal of this study is to investigate this effect more thoroughly. METHODS: With finite-element modeling, pulsatile blood pressure and probe pressure are simulated in three patient-specific geometries. Two distinct models for the aortic wall were simulated: a nonlinear hyperelastic and a linear elastic model. In addition, varying stiffness was considered for the surrounding tissues. The effect of light, moderate, and firm probe pressure was quantified on the stresses and strains in the aortic wall, and on two in vivo stiffness measures. In addition, the Elasticity Loss Index was proposed to quantify the change in stiffness due to probe pressure. RESULTS: Firm probe pressure decreased the measured aortic stiffness, and material stiffness was affected only when the wall was modeled as nonlinear, suggesting a shift in the stress-strain curve. In addition, stiffer surrounding tissues and a more elongated aneurysm sac decreased the responsiveness to the probe pressure. CONCLUSION: The effect of probe pressure on the AAA wall stiffness was clarified. In particular, the AAA wall nonlinear behavior was found to be of primary importance in determining the probe pressure response. Thus, further work will intend to make use of this novel finding in a clinical context.

15.
Korean J Orthod ; 54(5): 316-324, 2024 Sep 25.
Article in English | MEDLINE | ID: mdl-39175205

ABSTRACT

Objective: To evaluate tooth displacement and periodontal stress generated by the dual action vertical intra-arch technique (DAVIT) for open-bite correction using three-dimensional finite element analysis. Methods: A three-dimensional model of the maxilla was created by modeling the cortical bone, cancellous bone, periodontal ligament, and teeth from the second molar to the central incisor of a hemiarch. All orthodontic devices were designed using specific software to reproduce their morpho-dimensional characteristics, and their physical properties were determined using Young's modulus and Poisson's coefficient of each material. A linear static simulation was performed to analyze the tooth displacements (mm) and maximum stresses (Mpa) induced in the periodontal ligament by the posterior intrusion and anterior extrusion forces generated by the DAVIT. Results: The first and second molars showed the greatest intrusion, whereas the canines and lateral incisors showed the greatest extrusion displacement. A neutral zone of displacement corresponding to the fulcrum of occlusal plane rotation was observed in the premolar region. Buccal tipping of the molars and lingual tipping of the anterior teeth occurred with intrusion and extrusion, respectively. Posterior intrusion generated compressive stress at the apex of the buccal roots and furcation of the molars, while anterior extrusion generated tensile stress at the apex and apical third of the palatal root surface of the incisors and canines. Conclusions: DAVIT mechanics produced a set of beneficial effects for open-bite correction, including molar intrusion, extrusion and palatal tipping of the anterior teeth, and occlusal plane rotation with posterior teeth uprighting.

16.
Materials (Basel) ; 17(16)2024 Aug 07.
Article in English | MEDLINE | ID: mdl-39203103

ABSTRACT

In this study, a numerical dynamic analysis of ceiling raster panels was performed. The analysis was conducted on panels designed with inspiration from bionics. The purpose of the analysis was to enable optimisation of the location of the holes in the designed slabs in order to achieve the preferred dynamic properties, including the natural frequencies of the slabs and an appropriate airflow to avoid the occurrence of resonance. Three different types of panels were used and a total of fifteen panels were designed in terms of their geometry, with circular, elliptical, and hexagonal perforations, made of different materials: polypropylene PP, wood, and aluminium. Then, using the finite element method and ANSYS 2023 R1 software, the airflow over the ceiling panels and their natural frequencies and vibration modes were analysed. The analysis took into account not only the shape of the openings, but also their percentage area relative to the total panel area and different airflow velocities. In addition, the results were compared in an analytical way with those obtained for a solid slab. The results obtained include findings on the mode shapes and values of the vibration frequencies of the plates, air pressure maps, histograms, and plots of the pressure dependence on the surface area of the plate openings.

17.
Materials (Basel) ; 17(16)2024 Aug 20.
Article in English | MEDLINE | ID: mdl-39203308

ABSTRACT

This paper presents an optimized design approach using nonlinear dynamic analysis and finite element methods to ensure the structural integrity of square-shaped containers made from ductile cast iron for intermediate- and low-level radioactive waste packaging. Ductile cast iron, with its spherical graphite structure, effectively distributes stress throughout the material, leading to a storage capacity increase of approximately 18%. Considering the critical need for containers that maintain integrity under extreme conditions like earthquakes, the design focuses on mitigating stress concentrations at the corners of square structures. Nonlinear dynamic analyses were conducted in five drop directions: three specified by ASTM-D5276 standards and two additional directions to account for different load patterns. Fractures were observed in four out of the five scenarios. For each direction where fractures occurred, equivalent loads causing similar displacement fields were applied to linear static models, which were then used for multi-load topology optimization. Three optimized models were derived, each increasing the volume by 1.4% to 1.6% compared to the original model, and the design that best met the structural integrity requirements during drop scenarios was selected. To further enhance the optimization process, weights were assigned to different load conditions based on numerical analysis results, balancing the impact of maximum stress, average stress, and plastic deformation energy. The final model, with its increased storage capacity and enhanced structural integrity, offers a practical solution for radioactive waste management, overcoming limitations in previous designs by effectively addressing complex load conditions.

18.
Micromachines (Basel) ; 15(8)2024 Jul 30.
Article in English | MEDLINE | ID: mdl-39203637

ABSTRACT

This paper introduces a novel plasmon refractive index nanosensor structure based on Fano resonance. The structure comprises a metal-insulator-metal (MIM) waveguide with an inverted rectangular cavity and a circle minus a small internal circle plus a rectangular cavity (CMSICPRC). This study employs the finite element method (FEM) to analyze the sensing characteristics of the structure. The results demonstrate that the geometrical parameters of specific structures exert a considerable influence on the sensing characteristics. Simulated experimental data show that the maximum sensitivity of this structure is 3240 nm/RIU, with a figure of merit (FOM) of 52.25. Additionally, the sensor can be used in biology, for example, to detect the concentration of hemoglobin in blood. The sensitivity of the sensor in this application, according to our calculations, can be 0.82 nm∙g/L.

19.
Adv Model Simul Eng Sci ; 11(1): 16, 2024.
Article in English | MEDLINE | ID: mdl-39184936

ABSTRACT

Computational modeling of the melt pool dynamics in laser-based powder bed fusion metal additive manufacturing (PBF-LB/M) promises to shed light on fundamental mechanisms of defect generation. These processes are accompanied by rapid evaporation so that the evaporation-induced recoil pressure and cooling arise as major driving forces for fluid dynamics and temperature evolution. The magnitude of these interface fluxes depends exponentially on the melt pool surface temperature, which, therefore, has to be predicted with high accuracy. The present work utilizes a diffuse interface finite element model based on a continuum surface flux (CSF) description of interface fluxes to study dimensionally reduced thermal two-phase problems representative for PBF-LB/M in a finite element framework. It is demonstrated that the extreme temperature gradients combined with the high ratios of material properties between metal and ambient gas lead to significant errors in the interface temperatures and fluxes when classical CSF approaches, along with typical interface thicknesses and discretizations, are applied. It is expected that this finding is also relevant for other types of diffuse interface PBF-LB/M melt pool models. A novel parameter-scaled CSF approach is proposed, which is constructed to yield a smoother temperature field in the diffuse interface region, significantly increasing the solution accuracy. The interface thickness required to predict the temperature field with a given level of accuracy is less restrictive by at least one order of magnitude for the proposed parameter-scaled approach compared to classical CSF, drastically reducing computational costs. Finally, we showcase the general applicability of the parameter-scaled CSF to a 3D simulation of stationary laser melting of PBF-LB/M considering the fully coupled thermo-hydrodynamic multi-phase problem, including phase change.

20.
Comput Methods Programs Biomed ; 255: 108362, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39163784

ABSTRACT

BACKGROUND AND OBJECTIVES: Techniques for imaging the mechanical properties of cells are needed to study how cell mechanics influence cell function and disease progression. Mechano-microscopy (a high-resolution variant of compression optical coherence elastography) generates elasticity images of a sample undergoing compression from the phase difference between optical coherence microscopy (OCM) B-scans. However, the existing mechano-microscopy signal processing chain (referred to as the algebraic method) assumes the sample stress is uniaxial and axially uniform, such that violation of these assumptions reduces the accuracy and precision of elasticity images. Furthermore, it does not account for prior information regarding the sample geometry or mechanical property distribution. In this study, we investigate the feasibility of training a conditional generative adversarial network (cGAN) to generate elasticity images from phase difference images of samples containing a cell spheroid embedded in a hydrogel. METHODS: To construct the cGAN training and simulated test sets, we generated 30,000 artificial elasticity images using a parametric model and computed the corresponding phase difference images using finite element analysis to simulate compression applied to the artificial samples. We also imaged real MCF7 breast tumor spheroids embedded in hydrogel using mechano-microscopy to construct the experimental test set and evaluated the cGAN using the algebraic elasticity images and co-registered OCM and confocal fluorescence microscopy (CFM) images. RESULTS: Comparison with the simulated test set ground truth elasticity images shows the cGAN produces a lower root mean square error (median: 3.47 kPa, 95 % confidence interval (CI) [3.41, 3.52]) than the algebraic method (median: 4.91 kPa, 95 % CI [4.85, 4.97]). For the experimental test set, the cGAN elasticity images contain features resembling stiff nuclei at locations corresponding to nuclei seen in the algebraic elasticity, OCM, and CFM images. Furthermore, the cGAN elasticity images are higher resolution and more robust to noise than the algebraic elasticity images. CONCLUSIONS: The cGAN elasticity images exhibit better accuracy, spatial resolution, sensitivity, and robustness to noise than the algebraic elasticity images for both simulated and real experimental data.


Subject(s)
Elasticity Imaging Techniques , Elasticity , Spheroids, Cellular , Humans , Elasticity Imaging Techniques/methods , MCF-7 Cells , Algorithms , Image Processing, Computer-Assisted/methods , Neural Networks, Computer , Microscopy/methods , Tomography, Optical Coherence/methods , Finite Element Analysis
SELECTION OF CITATIONS
SEARCH DETAIL