Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 146
Filter
1.
Brain ; 2024 Jul 08.
Article in English | MEDLINE | ID: mdl-38976650

ABSTRACT

Mutations in the GBA1 gene are common genetic risk factors for Parkinson's disease (PD), disrupting enzymatic activity and causing lysosomal dysfunction, leading to elevated α-synuclein (α-syn) levels. While GBA1's role in synucleinopathy is well-established, recent research underscores neuroinflammation as a significant pathogenic mechanism in GBA1 deficiency. This study investigates neuroinflammation in Gba1 E326K knock-in mice, a model associated with increased PD and dementia risk. At 9 and 24 months, we assessed GBA1 protein and activity, α-synuclein pathology, neurodegeneration, motor deficits, and gliosis in the ventral midbrain and hippocampus using immunohistochemistry (IHC), Western blot (WB), and GCase assays. Additionally, primary microglia from WT and GBA1E326K/E326K mice were treated with α-syn preformed fibrils (PFF) to study microglia activation, pro-inflammatory cytokines, reactive astrocyte formation, and neuronal death through qPCR, WB, and immunocytochemistry analyses. We also evaluated the effects of gut inoculation of α-syn PFF in Gba1 E326K mice at 7 months and striatal inoculation at 10 months, assessing motor/non-motor symptoms, α-syn pathology, neuroinflammation, gliosis, and neurodegeneration via behavioural tests, IHC, and WB assays. At 24 months, Gba1 E326K knock-in mice showed reduced GCase enzymatic activity and glucosylceramide build-up in the ventral midbrain and hippocampus. Increased pro-inflammatory cytokines and reactive astrocytes were observed in microglia and astrocytes from Gba1 E326K mice treated with pathologic α-syn PFF. Gut inoculation of α-syn PFF increased Lewy body accumulation in the hippocampal dentate gyrus, with heightened microglia and astrocyte activation and worsened non-motor symptoms. Intrastriatal α-syn preformed fibril injection induced motor deficits, reactive glial protein accumulation, and tauopathy in the prefrontal cortex and hippocampus of Gba1 E326K mice. GBA1 deficiency due to the Gba1 E326K mutation exacerbates neuroinflammation and promotes pathogenic α-synuclein transmission, intensifying disease pathology in PD models. This study enhances our understanding of how the Gba1 E326K mutation contributes to neuroinflammation and the spread of pathogenic α-syn in the brain, suggesting new therapeutic strategies for PD and related synucleinopathies.

2.
Article in English | MEDLINE | ID: mdl-38881158

ABSTRACT

BACKGROUND: Heterozygous mutations in GBA1 gene are known as most common genetic risk factor for Parkinson's disease (PD). However, role of GBA1 mutations in non-α-synuclein disorders is unclear. CASES: Case index, 76 year-old woman referred to our movement disorders outpatient clinic for 2-year history of gait impairment, falls and motor slowness, with partial response to levodopa. Clinical and instrumental examinations were consistent with Progressive Supranuclear Palsy-Corticobasal Syndrome (PSP-CBS). Case 2 is older sister reporting depressive symptoms; however, she had dementia (MMSE 18/30), gait apraxia and vertical supranuclear gaze palsy (VSNGP). Case 3 is her deceased older sister who had been diagnosed with Corticobasal Syndrome (CBS). Case 4, older brother had been diagnosed with Parkinson's disease-dementia (PDD) with good response to levodopa. Two affected living siblings harboring same genetic variant. CONCLUSIONS: To our knowledge, this is the first family showing such intrafamilial variability ranging from CBS to PDD to dementia.

3.
Res Sq ; 2024 Jun 07.
Article in English | MEDLINE | ID: mdl-38883744

ABSTRACT

One of the most common genetic risk factors for Parkinson's disease (PD) are variants in GBA1, which encodes the lysosomal enzyme glucocerebrosidase (GCase). GCase deficiency has been associated with an increased PD risk, but not all individuals with low GCase activity are carriers of GBA1 mutations, suggesting other factors may be acting as modifiers. We aimed to discover common variants associated with GCase activity, as well as replicate previously reported associations, by performing a genome-wide association study using two independent cohorts: a Columbia University cohort consisting of 697 PD cases and 347 controls and the Parkinson's Progression Markers Initiative (PPMI) cohort consisting of 357 PD cases and 163 controls. As expected, GBA1 variants have the strongest association with decreased activity, led by p.N370S (beta = -4.36, se = 0.32, p = 5.05e-43). We also identify a novel association in the GAA locus (encoding for acid alpha-glucosidase, beta = -0.96, se = 0.17, p = 5.23e-09) that may be the result of an interaction between GCase and acid alpha-glucosidase based on various interaction analyses. Lastly, we show that several PD-risk loci are potentially associated with GCase activity. Further research will be needed to replicate and validate our findings and to uncover the functional connection between acid alpha-glucosidase and GCase.

4.
Sci Rep ; 14(1): 14670, 2024 06 25.
Article in English | MEDLINE | ID: mdl-38918550

ABSTRACT

The objective of this study was to investigate the association between a Parkinson's disease (PD)-specific polygenic score (PGS) and protective lifestyle factors on age at onset (AAO) in PD. We included data from 4367 patients with idiopathic PD, 159 patients with GBA1-PD, and 3090 healthy controls of European ancestry from AMP-PD, PPMI, and Fox Insight cohorts. The association between PGS and lifestyle factors on AAO was assessed with linear and Cox proportional hazards models. The PGS showed a negative association with AAO (ß = - 1.07, p = 6 × 10-7) in patients with idiopathic PD. The use of one, two, or three of the protective lifestyle factors showed a reduction in the hazard ratio by 21% (p = 0.0001), 44% (p < 2 × 10-16), and 55% (p < 2 × 10-16), compared to no use. An additive effect of aspirin (ß = 7.62, p = 9 × 10-7) and PGS (ß = - 1.58, p = 0.0149) was found for AAO without an interaction (p = 0.9993) in the linear regressions, and similar effects were seen for tobacco. In contrast, no association between aspirin intake and AAO was found in GBA1-PD (p > 0.05). In our cohort, coffee, tobacco, aspirin, and PGS are independent predictors of PD AAO. Additionally, lifestyle factors seem to have a greater influence on AAO than common genetic risk variants with aspirin presenting the largest effect.


Subject(s)
Age of Onset , Life Style , Multifactorial Inheritance , Parkinson Disease , Humans , Parkinson Disease/genetics , Parkinson Disease/epidemiology , Female , Male , Middle Aged , Aged , Genetic Predisposition to Disease , Proportional Hazards Models , Glucosylceramidase/genetics , Case-Control Studies , Risk Factors , Aspirin/therapeutic use
5.
Parkinsonism Relat Disord ; 123: 106970, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38691978

ABSTRACT

BACKGROUND: Mild cognitive impairment (MCI) is common in Parkinson's disease (PD). We aimed to assess the incidence of MCI among patients with PD, carriers of mutations in LRRK2 and GBA1 genes, based on the movement disorder society (MDS) criteria for the diagnosis of MCI in early-stage PD. METHODS: Patients with PD were included if they scored ≤2 on the Hoehn and Yahr and ≤6 years since motor symptom onset. A group of age and gender matched healthy adults served as controls. A neuropsychological cognitive battery was used covering five cognitive domains (executive functions, working memory, memory, visuospatial and language). MCI was explored while applying two methods (level I and II). Frequency of MCI was assessed in comparison between groups. RESULTS: 70 patients with idiopathic PD (iPD) (68 % males), 42 patients with LRRK2-PD (61 % males), 83 patients with GBA1-PD (63 % males) and 132 age and gender matched controls (61 % males), participated in this study. PD groups were similar in clinical characteristics. Level I criteria were positive in 57.5 % of iPD, 43 % of LRRK2-PD and 63.4 % of the GBA1-PD (p = 0.071). Level II criteria was met by 39 % of iPD, 14 % LRRK2-PD and 41 % of GBA1-PD (p < 0.001), when using a 2 standard-deviation (SD) threshold. GBA1-PD and iPD showed impairments on multiple domains even in the more conservative 2 SD, reflecting MCI. CONCLUSIONS: The majority of our PD cohort was classified as MCI when assessed with strict criteria. GBA1-PD and iPD showed a more widespread pattern of MCI compared with LRRK2-PD.


Subject(s)
Cognitive Dysfunction , Glucosylceramidase , Leucine-Rich Repeat Serine-Threonine Protein Kinase-2 , Parkinson Disease , Humans , Leucine-Rich Repeat Serine-Threonine Protein Kinase-2/genetics , Male , Female , Cognitive Dysfunction/etiology , Parkinson Disease/genetics , Parkinson Disease/complications , Glucosylceramidase/genetics , Aged , Middle Aged , Mutation , Neuropsychological Tests
6.
J Inherit Metab Dis ; 2024 May 20.
Article in English | MEDLINE | ID: mdl-38768609

ABSTRACT

Gaucher disease (GD) stands as one of the most prevalent lysosomal disorders, yet neuronopathic GD (nGD) is an uncommon subset characterized by a wide array of clinical manifestations that complicate diagnosis, particularly when neurological symptoms are understated. nGD may manifest as the acute neuronopathic type, or GD type 2 (GD2), either prenatally or within the first weeks to months of life, whereas GD type 3 (GD3) symptoms may emerge at any point during childhood or occasionally in adolescence. The clinical presentation encompasses severe systemic involvement to mild visceral disease, often coupled with a spectrum of progressive neurological signs and symptoms such as cognitive impairment, ataxia, seizures, myoclonus, varying degrees of brainstem dysfunction presenting with stridor, apneic episodes, and/or impaired swallowing. This manuscript aims to provide a comprehensive review of the incidence, distinctive presentations, and diverse clinical phenotypes of nGD across various countries and regions. It will explore the natural history of the neurodegenerative process in GD, shedding light on its various manifestations during infancy and childhood, and offer insights into the diagnostic journey, the challenges faced in the clinical management, and current and investigative therapeutic approaches for GD's neurological variants.

7.
bioRxiv ; 2024 Mar 27.
Article in English | MEDLINE | ID: mdl-38712038

ABSTRACT

Glucocerebrosidase (GCase) is implicated in both a rare, monogenic disorder (Gaucher disease, GD) and a common, multifactorial condition (Parkinson's disease); hence, it is an urgent therapeutic target. To identify correctors of severe protein misfolding and trafficking obstruction manifested by the pathogenic L444P-variant of GCase, we developed a suite of quantitative, high-throughput, cell-based assays. First, we labeled GCase with a small pro-luminescent HiBiT peptide reporter tag, enabling quantitation of protein stabilization in cells while faithfully maintaining target biology. TALEN-based gene editing allowed for stable integration of a single HiBiT-GBA1 transgene into an intragenic safe-harbor locus in GBA1-knockout H4 (neuroglioma) cells. This GD cell model was amenable to lead discovery via titration-based quantitative high-throughput screening and lead optimization via structure-activity relationships. A primary screen of 10,779 compounds from the NCATS bioactive collections identified 140 stabilizers of HiBiT-GCase-L444P, including both pharmacological chaperones (ambroxol and non-inhibitory chaperone NCGC326) and proteostasis regulators (panobinostat, trans-ISRIB, and pladienolide B). Two complementary high-content imaging-based assays were deployed to triage hits: the fluorescence-quenched substrate LysoFix-GBA captured functional lysosomal GCase activity, while an immunofluorescence assay featuring antibody hGCase-1/23 provided direct visualization of GCase lysosomal translocation. NCGC326 was active in both secondary assays and completely reversed pathological glucosylsphingosine accumulation. Finally, we tested the concept of combination therapy, by demonstrating synergistic actions of NCGC326 with proteostasis regulators in enhancing GCase-L444P levels. Looking forward, these physiologically-relevant assays can facilitate the identification, pharmacological validation, and medicinal chemistry optimization of new chemical matter targeting GCase, ultimately leading to a viable therapeutic for two protein-misfolding diseases.

8.
Hum Mol Genet ; 2024 May 16.
Article in English | MEDLINE | ID: mdl-38757200

ABSTRACT

Gaucher Disease (GD) is an inherited metabolic disorder caused by mutations in the GBA1 gene. It can manifest with severe neurodegeneration and visceral pathology. The most acute neuronopathic form (nGD), for which there are no curative therapeutic options, is characterised by devastating neuropathology and death during infancy. In this study, we investigated the therapeutic benefit of systemically delivered AAV9 vectors expressing the human GBA1 gene at two different doses comparing a neuronal-selective promoter with ubiquitous promoters. Our results highlight the importance of a careful evaluation of the promoter sequence used in gene delivery vectors, suggesting a neuron-targeted therapy leading to high levels of enzymatic activity in the brain but lower GCase expression in the viscera, might be the optimal therapeutic strategy for nGD.

9.
BMC Neurol ; 24(1): 146, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38693511

ABSTRACT

BACKGROUND: To date, no disease modifying therapies are available for Parkinson's disease (PD). Since PD is the second most prevalent neurodegenerative disorder, there is a high demand for such therapies. Both environmental and genetic risk factors play an important role in the etiology and progression of PD. The most common genetic risk factor for PD is a mutation in the GBA1(GBA)-gene, encoding the lysosomal enzyme glucocerebrosidase (GCase). The mucolytic ambroxol is a repurposed drug, which has shown the property to upregulate GCase activity in-vitro and in-vivo. Ambroxol therefore has the potency to become a disease modifying therapy in PD, which was the reason to design this randomized controlled trial with ambroxol in PD patients. METHODS: This trial is a single-center, double-blind, randomized, placebo-controlled study, including 80 PD patients with a GBA mutation, receiving either ambroxol 1800 mg/day or placebo for 48 weeks. The primary outcome measure is the Unified Parkinson's Disease Rating Scale motor subscore (part III) of the Movement Disorder Society (MDS-UPDRSIII) in the practically defined off-state at 60 weeks (after a 12-week washout period). Secondary outcomes include a 3,4-dihydroxy-6-18F-fluoro-I-phenylalanine ([18F]FDOPA) PET-scan of the brain, Magnetic Resonance Imaging (with resting state f-MRI and Diffusion Tensor Imaging), GCase activity, both intra- and extracellularly, sphingolipid profiles in plasma, Montreal Cognitive Assessment (MoCA), quality of life (QoL) measured by the Parkinson's Disease Questionnaire (PDQ-39) and the Non-Motor Symptom Scale (NMSS) questionnaire. DISCUSSION: Ambroxol up to 1200 mg/day has shown effects on human cerebrospinal fluid endpoints, which supports at least passage of the blood-brain-barrier. The dose titration in this trial up to 1800 mg/day will reveal if this dose level is safe and also effective in modifying the course of the disease. TRIAL REGISTRATION: NCT05830396. Registration date: March 20, 2023.


Subject(s)
Ambroxol , Glucosylceramidase , Mutation , Parkinson Disease , Humans , Ambroxol/administration & dosage , Ambroxol/therapeutic use , Parkinson Disease/drug therapy , Parkinson Disease/genetics , Parkinson Disease/diagnostic imaging , Glucosylceramidase/genetics , Double-Blind Method , Male , Female , Aged , Middle Aged , Treatment Outcome , Expectorants/therapeutic use , Expectorants/administration & dosage , Adult
10.
Mov Disord ; 39(6): 1065-1070, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38610104

ABSTRACT

BACKGROUND: The GPNMB single-nucleotide polymorphism rs199347 and GBA1 variants both associate with Lewy body disorder (LBD) risk. GPNMB encodes glycoprotein nonmetastatic melanoma protein B (GPNMB), a biomarker for GBA1-associated Gaucher's disease. OBJECTIVE: The aim of this study was to determine whether GPNMB levels (1) differ in LBD with and without GBA1 variants and (2) associate with rs199347 genotype. METHODS: We quantified GPNMB levels in plasma and cerebrospinal fluid (CSF) from 124 individuals with LBD with one GBA1 variant (121 plasma, 14 CSF), 631 individuals with LBD without GBA1 variants (626 plasma, 41 CSF), 9 neurologically normal individuals with one GBA1 variant (plasma), and 2 individuals with two GBA1 variants (plasma). We tested for associations between GPNMB levels and rs199347 or GBA1 status. RESULTS: GPNMB levels associate with rs199347 genotype in plasma (P = 0.022) and CSF (P = 0.007), but not with GBA1 status. CONCLUSIONS: rs199347 is a protein quantitative trait locus for GPNMB. GPNMB levels are unaltered in individuals carrying one GBA1 variant. © 2024 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.


Subject(s)
Biomarkers , Glucosylceramidase , Lewy Body Disease , Membrane Glycoproteins , Polymorphism, Single Nucleotide , Humans , Female , Glucosylceramidase/genetics , Male , Lewy Body Disease/genetics , Lewy Body Disease/cerebrospinal fluid , Lewy Body Disease/blood , Membrane Glycoproteins/genetics , Membrane Glycoproteins/cerebrospinal fluid , Aged , Middle Aged , Biomarkers/blood , Biomarkers/cerebrospinal fluid , Aged, 80 and over , Genotype , Heterozygote , Gaucher Disease/genetics , Gaucher Disease/blood , Gaucher Disease/cerebrospinal fluid
11.
Orphanet J Rare Dis ; 19(1): 144, 2024 Apr 04.
Article in English | MEDLINE | ID: mdl-38575988

ABSTRACT

BACKGROUND: Osteoporosis and its primary complication, fragility fractures, contribute to substantial global morbidity and mortality. Gaucher disease (GD) is caused by glucocerebrosidase (GBA1) deficiency, leading to skeletal complications. This study aimed to investigate the impact of the GBA1 gene on osteoporosis progression in GD patients and the specific populations. METHODS: We selected 8115 patients with osteoporosis (T-score ≤ - 2.5) and 55,942 healthy individuals (T-score > - 1) from a clinical database (N = 95,223). Monocytes from GD patients were evaluated in relation to endoplasmic reticulum (ER) stress, inflammasome activation, and osteoclastogenesis. An in vitro model of GD patient's cells treated with adeno-associated virus 9 (AAV9)-GBA1 to assess GBA1 enzyme activity, chitotriosidase activity, ER stress, and osteoclast differentiation. Longitudinal dual-energy X-ray absorptiometry (DXA) data tracking bone density in patients with Gaucher disease (GD) undergoing enzyme replacement therapy (ERT) over an extended period. RESULTS: The GBA1 gene variant rs11264345 was significantly associated [P < 0.002, Odds Ratio (OR) = 1.06] with an increased risk of bone disease. Upregulation of Calnexin, NOD-, LRR- and pyrin domain-containing protein 3 (NLRP3) and Apoptosis-associated speck-like protein containing a C-terminal caspase recruitment domain (ASC) was positively associated with osteoclastogenesis in patients with GD. In vitro AAV9-GBA1 treatment of GD patient cells led to enhanced GBA1 enzyme activity, reduced chitotriosidase activity, diminished ER stress, and decreased osteoclast differentiation. Long-term bone density data suggests that initiating ERT earlier in GD leads to greater improvements in bone density. CONCLUSIONS: Elevated ER stress and inflammasome activation are indicative of osteoporosis development, suggesting the need for clinical monitoring of patients with GD. Furthermore, disease-associated variant in the GBA1 gene may constitute a risk factor predisposing specific populations to osteoporosis.


Subject(s)
Gaucher Disease , Osteoporosis , Humans , Bone Density/genetics , Gaucher Disease/drug therapy , Glucosylceramidase/therapeutic use , Inflammasomes , Osteoporosis/genetics , Osteoporosis/drug therapy
12.
Am J Med Genet A ; : e63630, 2024 Apr 22.
Article in English | MEDLINE | ID: mdl-38647370

ABSTRACT

Gaucher disease (GD) is an autosomal recessively inherited lysosomal storage disorder caused by biallelic pathological variants in the GBA1 gene. Patients present along a broad clinical spectrum, and phenotypes are often difficult to predict based on genotype alone. The variant R463C (p.Arg502Cys) exemplifies this challenge. To better characterize its different clinical presentations, we examined the records of 25 current and historical patients evaluated at the National Institutes of Health. Nine patients were classified as GD1, 14 were classified as GD3, and two had an ambiguous diagnosis between GD1 and GD3. In addition, we reviewed the published literature in PubMed and Web of Science through December 2023, identifying 62 cases with an R463C variant from 18 countries. Within the NIH cohort, the most common second variants were N370S (p.N409S) and L444P (p.L483P). R463C/L444P was encountered in patients with GD1 and GD3 in both the NIH cohort and worldwide. In the literature, R463C/R463C was also reported in both GD1 and GD3, although sparse phenotypic information was shared. Often the phenotype reflected what might be predicted for the second mutant allele. This diversity of phenotypes emphasizes the need for longitudinal follow-up to assess symptom development and neurological involvement.

13.
J Neurochem ; 2024 Apr 20.
Article in English | MEDLINE | ID: mdl-38641924

ABSTRACT

Glucocerebrosidase 1 (GBA1) mutations are the most important genetic risk factors for Parkinson's disease (PD). Clinically, mild (e.g., p.N370S) and severe (e.g., p.L444P and p.D409H) GBA1 mutations have different PD phenotypes, with differences in age at disease onset, progression, and the severity of motor and non-motor symptoms. We hypothesize that GBA1 mutations cause the accumulation of α-synuclein by affecting the cross-talk between cellular protein degradation mechanisms, leading to neurodegeneration. Accordingly, we tested whether mild and severe GBA1 mutations differentially affect the degradation of α-synuclein via the ubiquitin-proteasome system (UPS), chaperone-mediated autophagy (CMA), and macroautophagy and differentially cause accumulation and/or release of α-synuclein. Our results demonstrate that endoplasmic reticulum (ER) stress and total ubiquitination rates were significantly increased in cells with severe GBA1 mutations. CMA was found to be defective in induced pluripotent stem cell (iPSC)-derived dopaminergic neurons with mild GBA1 mutations, but not in those with severe GBA1 mutations. When examining macroautophagy, we observed reduced formation of autophagosomes in cells with the N370S and D409H GBA1 mutations and impairments in autophagosome-lysosome fusion in cells with the L444P GBA1 mutation. Accordingly, severe GBA1 mutations were found to trigger the accumulation and release of oligomeric α-synuclein in iPSC-derived dopaminergic neurons, primarily as a result of increased ER stress and defective macroautophagy, while mild GBA1 mutations affected CMA, which is mainly responsible for the degradation of the monomeric form of α-synuclein. Overall, our findings provide new insight into the molecular basis of the clinical variability in PD associated with different GBA1 mutations.

14.
Biomedicines ; 12(4)2024 Mar 27.
Article in English | MEDLINE | ID: mdl-38672099

ABSTRACT

Endoplasmic reticulum (ER) stress is involved in the pathogenesis of many human diseases, such as cancer, type 2 diabetes, kidney disease, atherosclerosis and neurodegenerative diseases, in particular Parkinson's disease (PD). Since there is currently no treatment for PD, a better understanding of the molecular mechanisms underlying its pathogenesis, including the mechanisms of the switch from adaptation in the form of unfolded protein response (UPR) to apoptosis under ER stress conditions, may help in the search for treatment methods. Genetically encoded biosensors based on fluorescent proteins are suitable tools that facilitate the study of living cells and visualization of molecular events in real time. The combination of technologies to generate patient-specific iPSC lines and genetically encoded biosensors allows the creation of cell models with new properties. Using CRISPR-Cas9-mediated homologous recombination at the AAVS1 locus of iPSC with the genetic variant p.N370S (rs76763715) in the GBA1 gene, we created a cell model designed to study the activation conditions of the IRE1-XBP1 cascade of the UPR system. The cell lines obtained have a doxycycline-dependent expression of the genetically encoded biosensor XBP1-TagRFP, possess all the properties of human pluripotent cells, and can be used to test physical conditions and chemical compounds that affect the development of ER stress, the functioning of the UPR system, and in particular, the IRE1-XBP1 cascade.

15.
Genes Genomics ; 46(5): 519-529, 2024 05.
Article in English | MEDLINE | ID: mdl-38460098

ABSTRACT

BACKGROUND: GBA1 mutations are the most common genetic risk factor for development of Parkinson's disease (PD). The loss of catalytic activity in GBA1, as well as the reduction of the GBA1 protein in certain cellular compartment, may increase disease progression. However, the mechanisms underlying cellular dysfunction caused by GBA1 deficiency are still mostly unknown. OBJECTIVE: In this study, we focus on the genetic interaction between GBA1 deficiency and PD-causing genes, such as DJ-1, in mitochondrial dysfunction. METHODS: GBA1 knockout (KO) SH-SY5Y cells were used to assess DJ-1 functions against oxidative stress in vitro. The levels of cellular reactive oxygen species were monitored with MitoSOX reagent. The expression of the PARK7 gene was analyzed using the quantitative real-time PCR (qRT-PCR). To understand the mechanism underlying DJ-1 upregulation in GBA1 KO cells, we assess ROS levels, antioxidant protein, and cell viability in GBA1 KO cells with treatment of ROS inhibitor N-acetyl-cysteine or miglustat, which is an inhibitor of glucosylceramide synthase. Dopaminergic degeneration was assessed from Gba1 L444P heterozygous mice mated with Park7 knockout mice. RESULTS: We find that DJ-1 is significantly upregulated in GBA1 KO cells. Elevated levels of DJ-1 are attributed to the transcriptional expression of PARK7 mRNA, but not the inhibition of DJ-1 protein degradation. Because DJ-1 expression is highly linked to oxidative stress, we observe cellular reactive oxygen species (ROS) in GBA1 KO cells. Moreover, several antioxidant gene expressions and protein levels are increased in GBA1 KO cells. To this end, GBA1 KO cells are more susceptible to H2O2-induced cell death. Importantly, there is a significant reduction in dopaminergic neurons in the midbrain from Gba1 L444P heterozygous mice mated with Park7 knockout mice, followed by mild motor dysfunction. CONCLUSION: Taken together, our results suggest that DJ-1 upregulation due to GBA1 deficiency has a protective role against oxidative stress. It may be supposed that mutations or malfunctions in the DJ-1 protein may have disadvantages in the survival of dopaminergic neurons in the brains of patients harboring GBA1 mutations.


Subject(s)
Antioxidants , Neuroblastoma , Parkinson Disease , Humans , Mice , Animals , Reactive Oxygen Species/metabolism , Antioxidants/metabolism , Hydrogen Peroxide , Oxidative Stress , Cell Death/physiology , Mice, Knockout , Protein Deglycase DJ-1/genetics , Protein Deglycase DJ-1/metabolism
16.
Ann Hematol ; 103(5): 1765-1774, 2024 May.
Article in English | MEDLINE | ID: mdl-38509388

ABSTRACT

Gaucher disease (GD) is an autosomal recessive ailment resulting from glucocerebrosidase deficiency caused by a mutation in the GBA1 gene, leading to multi-organ problems in the liver, spleen, and bone marrow. In China, GD is extremely uncommon and has a lower incidence rate than worldwide. In this study, we report the case of an adult male with an enlarged spleen for 13 years who presented with abdominal distension, severe loss of appetite and weight, reduction of the three-line due to hypersplenism, frequent nosebleeds, and bloody stools. Regrettably, the unexpected discovery of splenic pathology suggestive of splenic Gaucher disease was only made after a splenectomy due to a lack of knowledge about rare disorders. Our patient's delayed diagnosis may have been due to the department where he was originally treated, but it highlights the need for multidisciplinary consultation in splenomegaly of unknown etiology. We then investigated the patient's clinical phenotypes and gene mutation features using genetically phenotypical analysis. The analysis of the GBA1 gene sequence indicated that the patient carried a compound heterozygous mutation consisting of two potentially disease-causing mutations: c.907C > A (p. Leu303Ile) and c.1448 T > C (p. Leu483Pro). While previous research has linked the p. Leu483Pro mutation site to neurologic GD phenotypes (GD2 and GD3), the patients in this investigation were identified as having non-neuronopathic GD1. The other mutation, p. Leu303Ile, is a new GD-related mutation not indexed in PubMed that enriches the GBA1 gene mutation spectrum. Biosignature analysis has shown that both mutations alter the protein's three-dimensional structure, which may be a pathogenic mechanism for GD1 in this patient.


Subject(s)
Gaucher Disease , Splenic Diseases , Adult , Humans , Male , Gaucher Disease/complications , Gaucher Disease/genetics , Gaucher Disease/surgery , Splenectomy , Bone Marrow , Phenotype , Splenomegaly/genetics , Mutation , Glucosylceramidase/genetics
17.
Int J Mol Sci ; 25(6)2024 Mar 12.
Article in English | MEDLINE | ID: mdl-38542193

ABSTRACT

Due to the high comorbidity of Parkinson's disease (PD) with major depressive disorder (MDD) and the involvement of sphingolipids in both conditions, we investigated the peripheral expression levels of three primarily PD-associated genes: α-synuclein (SNCA), lysosomal enzyme ß-glucocerebrosidase (GBA1), and UDP-glucose ceramide glucosyltransferase (UGCG) in a sex-balanced MDD cohort. Normalized gene expression was determined by quantitative PCR in patients suffering from MDD (unmedicated n = 63, medicated n = 66) and controls (remitted MDD n = 39, healthy subjects n = 61). We observed that expression levels of SNCA (p = 0.036), GBA1 (p = 0.014), and UGCG (p = 0.0002) were higher in currently depressed patients compared to controls and remitted patients, and expression of GBA1 and UGCG decreased in medicated patients during three weeks of therapy. Additionally, in subgroups, expression was positively correlated with the severity of depression and anxiety. Furthermore, we identified correlations between the gene expression levels and PD-related laboratory parameters. Our findings suggest that SNCA, GBA1, and UGCG analysis could be instrumental in the search for biomarkers of MDD and in understanding the overlapping pathological mechanisms underlying neuro-psychiatric diseases.


Subject(s)
Depressive Disorder, Major , Glucosyltransferases , Parkinson Disease , Humans , alpha-Synuclein/genetics , alpha-Synuclein/metabolism , Depression , Depressive Disorder, Major/genetics , Gene Expression , Glucosylceramidase/genetics , Glucosylceramidase/metabolism , Mutation , Parkinson Disease/metabolism , Up-Regulation
18.
bioRxiv ; 2024 Feb 28.
Article in English | MEDLINE | ID: mdl-38529501

ABSTRACT

Inducible pluripotent stem cells (iPSCs) derived from patient samples have significantly enhanced our ability to model neurological diseases. Comparative studies of dopaminergic (DA) neurons differentiated from iPSCs derived from siblings with Gaucher disease discordant for parkinsonism provides a valuable avenue to explore genetic modifiers contributing to GBA1-associated parkinsonism in disease-relevant cells. However, such studies are often complicated by the inherent heterogeneity in differentiation efficiency among iPSC lines derived from different individuals. To address this technical challenge, we devised a selection strategy to enrich dopaminergic (DA) neurons expressing tyrosine hydroxylase (TH). A neomycin resistance gene (neo) was inserted at the C-terminus of the TH gene following a T2A self-cleavage peptide, placing its expression under the control of the TH promoter. This allows for TH+ DA neuron enrichment through geneticin selection. This method enabled us to generate comparable, high-purity DA neuron cultures from iPSC lines derived from three sisters that we followed for over a decade: one sibling is a healthy individual, and the other two have Gaucher disease (GD) with GBA1 genotype N370S/c.203delC+R257X (p.N409S/c.203delC+p.R296X). Notably, the younger sister with GD later developed Parkinson disease (PD). A comprehensive analysis of these high-purity DA neurons revealed that although GD DA neurons exhibited decreased levels of glucocerebrosidase (GCase), there was no substantial difference in GCase protein levels or lipid substrate accumulation between DA neurons from the GD and GD/PD sisters, suggesting that the PD discordance is related to of other genetic modifiers.

19.
J Parkinsons Dis ; 14(3): 467-482, 2024.
Article in English | MEDLINE | ID: mdl-38552119

ABSTRACT

The discovery of a pathogenic variant in the alpha-synuclein (SNCA) gene in the Contursi kindred in 1997 indisputably confirmed a genetic cause in a subset of Parkinson's disease (PD) patients. Currently, pathogenic variants in one of the seven established PD genes or the strongest known risk factor gene, GBA1, are identified in ∼15% of PD patients unselected for age at onset and family history. In this Debate article, we highlight multiple avenues of research that suggest an important - and in some cases even predominant - role for genetics in PD aetiology, including familial clustering, high rates of monogenic PD in selected populations, and complete penetrance with certain forms. At first sight, the steep increase in PD prevalence exceeding that of other neurodegenerative diseases may argue against a predominant genetic etiology. Notably, the principal genetic contribution in PD is conferred by pathogenic variants in LRRK2 and GBA1 and, in both cases, characterized by an overall late age of onset and age-related penetrance. In addition, polygenic risk plays a considerable role in PD. However, it is likely that, in the majority of PD patients, a complex interplay of aging, genetic, environmental, and epigenetic factors leads to disease development.


Subject(s)
Genetic Predisposition to Disease , Glucosylceramidase , Leucine-Rich Repeat Serine-Threonine Protein Kinase-2 , Parkinson Disease , alpha-Synuclein , Humans , Parkinson Disease/genetics , Glucosylceramidase/genetics , Leucine-Rich Repeat Serine-Threonine Protein Kinase-2/genetics , alpha-Synuclein/genetics
20.
Int J Mol Sci ; 25(4)2024 Feb 14.
Article in English | MEDLINE | ID: mdl-38396963

ABSTRACT

Parkinson's disease (PD) is a common neurodegenerative disorder with a prolonged prodromal phase. Higher urinary bis(monoacylglycerol)phosphate (BMP) levels associate with LRRK2 (leucine-rich repeat kinase 2) and GBA1 (glucocerebrosidase) mutations, and are considered as potential noninvasive biomarkers for predicting those mutations and PD progression. However, their reliability has been questioned, with inadequately investigated genetics, cohorts, and population. In this study, multiple statistical hypothesis tests were employed on urinary BMP levels and sequences of 90 PD-risk single nucleotide polymorphisms (SNPs) from Parkinson's Progression Markers Institution (PPMI) participants. Those SNPs were categorized into four groups based on their impact on BMP levels in various cohorts. Variants rs34637584 G/A and rs34637584 A/A (LRRK2 G2019S) were identified as the most relevant on increasing urinary BMP levels in the PD cohort. Meanwhile, rs76763715 T/T (GBA1) was the primary factor elevating BMP levels in the prodromal cohort compared to its T/C and C/C variants (N370S) and the PD cohort. Proteomics analysis indicated the changed transport pathways may be the reasons for elevated BMP levels in prodromal patients. Our findings demonstrated that higher urinary BMP levels alone were not reliable biomarkers for PD progression or gene mutations but might serve as supplementary indicators for early diagnosis and treatment.


Subject(s)
Lysophospholipids , Monoglycerides , Parkinson Disease , Humans , Parkinson Disease/genetics , Polymorphism, Single Nucleotide , Reproducibility of Results , Mutation , Biomarkers
SELECTION OF CITATIONS
SEARCH DETAIL