Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.034
Filter
1.
Avian Pathol ; : 1-14, 2024 Oct 09.
Article in English | MEDLINE | ID: mdl-39382006

ABSTRACT

We characterized 15 H5N1 HPAI viruses from different small- and medium-scale poultry flocks across Bangladesh during 2018-2021 based on their complete genome sequences. The antigenic relatedness of H5N1 HPAI viruses from different timepoints was analysed. During 2020-2021, 42.11% of the flocks tested positive for at least one of the respiratory infections, with 15.79% showing influenza A virus, of which 8.77% tested positive for HPAIV H5N1. Co-infections with two to four pathogens were detected in 15.8% of flocks. Phylogeny and gene constellation analyses based on complete genome sequences of 15 HPAI viruses revealed the continuing circulation of H5 clade 2.3.2.1a genotype G2 viruses. In the HA protein of the study isolates, functionally meaningful mutations caused the loss of an N-linked glycosylation site (T156A), a modified antigenic site A (S141P), and a mutation in the receptor binding pocket (E193R/K). Consequently, antigenic analysis revealed a significant loss of cross-reactivity between viruses from different host species and periods. Most viruses displayed oseltamivir resistance markers at positions V96, I97, S227, and N275 (N1 numbering) of the NA protein. In addition, for the PB2, M1, and NS1 proteins, significant mutations were noticed that have been associated with polymerase activity and increased virulence for mammals in all study isolates. These results highlight the need for intensified genomic surveillance of HPAI circulating in poultry in Bangladesh and for establishing appropriate control measures to decrease the circulation of these viruses in poultry in the country.

2.
Virus Res ; 350: 199472, 2024 Oct 05.
Article in English | MEDLINE | ID: mdl-39362411

ABSTRACT

Highly pathogenic influenza A virus (HPIAV) H5N1 within the genetic clade 2.3.4.4b has emerged in wild birds in different regions of the world, leading to the death of >70 million birds. When these strains spread to pinniped species a remarkable mortality has also been observed. A detailed genetic characterization of HPIAV isolated from pinnipeds is essential to understand the potential spread of these viruses to other mammalian species, including humans. To gain insight into these matters a detailed phylogenetic analysis of HPIAV H5N1 2.3.4.4b strains isolated from pinniped species was performed. The results of these studies revealed multiple transmission events from birds to pinnipeds in all world regions. Different evolutionary histories of different genes of HPIAV H5N1 2.3.4.4b strains gave rise to the viruses infecting pinnipeds in different regions of the world. European strains isolated from pinnipeds represent a completely different genetic lineage from strains isolated from South American ones. All strains isolated from pinnipeds bear characteristics of a highly pathogenic form for of avian influenza in poultry. Amino acid substitutions, previously shown to confer an adaptive advantage for infecting mammals, were observed in different genes in all pinniped species studied.

3.
Avian Dis ; 68(3): 272-281, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39400223

ABSTRACT

In 2022, a new epornitic of H5N1 highly pathogenic avian influenza (HPAI) virus clade 2.3.4.4b emerged in U.S. domestic poultry with high prevalence in wild bird populations. We describe pathological findings of HPAI H5N1 in nine wild birds encompassing eight different species, including Accipitriformes (red-tailed hawk, bald eagle), Cathartiforme (turkey vulture), Falconiforme (peregrine falcon), Strigiforme (one adult great-horned owl, one juvenile great-horned owl), Pelecaniforme (American white pelican), and Anseriformes (American green-winged teal, trumpeter swan). All these birds died naturally (found dead, or died in transit to or within a rehabilitation center), except for the bald eagle and American green-winged teal, which were euthanized. Gross lesions were subtle, characterized by meningeal congestion observed in the turkey vulture, bald eagle, and adult great-horned owl. Histologically, encephalitis was observed in all cases (9/9, 100%). Leukocytoclastic and fibrinoid vasculitis with necrotizing encephalitis was observed in the red-tailed hawk, great-horned owls, and American white pelican (5/9, 55.6%), and perivascular lymphohistiocytic encephalitis was seen in the turkey vulture, peregrine falcon, green-winged teal, and bald eagle (4/9, 44.4%). Coagulative necrosis or lymphohistiocytic/lymphoplasmacytic inflammation was identified in the kidney (6/8, 75%), liver (6/9, 66.7%), heart (5/9, 55.6%), and lung (2/9, 22.2%). Immunopositive signals against Influenza virus A nucleoprotein were predominantly detected within the brain (9/9, 100%), air sac (7/9, 77.8%), lung (7/9, 77.8%), kidney (6/8, 75%), heart (6/9, 66.7%), and liver (5/9, 55.6%). Additionally, other organs, such as the pancreas, spleen, intestines, gonads, and adrenals occasionally exhibited positive viral protein signals. In these organs, in addition to parenchymal cells, viral protein signals were often identified in endothelial cells. Our results suggest that the 2022-2023 HPAIV H5N1 clade 2.3.4.4b replicated systemically in all examined birds, with brain lesions being the most prevalent and associated with a subset of birds displaying clinical signs observed perimortem.


Características histopatológicas y distribución del antígeno viral del virus de la influenza aviar altamente patógeno H5N1, clado 2.3.4.4b del brote de 2022-2023 en aves silvestres de Iowa. En 2022, surgió una nueva epizootia por el clado 2.3.4.4b del virus de la influenza aviar altamente patógeno (HPAI) H5N1 en la avicultura de los Estados Unidos con alta prevalencia en poblaciones de aves silvestres. En este artículo se describen los hallazgos patológicos producidos por el virus de la influenza aviar altamente patógeno H5N1 en nueve aves silvestres que abarcan ocho especies diferentes, incluyendo Accipitriformes (gavilán colirrojo, águila calva), Cathartiforme (buitre americano), Falconiforme (halcón peregrino), Strigiforme (un búho americano adulto y un búho americano juvenil), pelecaniforme (pelícano blanco americano) y anseriformes (cerceta americana, cisne trompetero). Todas estas aves murieron de forma natural (encontradas muertas o murieron en tránsito hacia o dentro de un centro de rehabilitación), excepto el águila calva y la cerceta americana, que fueron sacrificadas. Las lesiones macroscópicas fueron sutiles y se caracterizaron por congestión meníngea observada en el buitre, el águila calva y el búho adulto. Histológicamente se observó encefalitis en todos los casos (9/9, 100%). Se observó vasculitis leucocitoclástica y fibrinoide con encefalitis necrotizante en el gavilan colirrojo, el búho americano, el pelícano blanco americano (5/9, 55,6%), y encefalitis linfohistiocítica perivascular en el buitre, el halcón peregrino, la cerceta americana y el águila calva (4/9, 44,4%). Se identificó necrosis coagulativa o inflamación linfohistiocítica/linfoplasmocítica en el riñón (6/8, 75%), hígado (6/9, 66,7%), corazón (5/9, 55,6%) y pulmón (2/9, 22,2%). La detección positiva contra la nucleoproteína del virus de la influenza A se detectó predominantemente en el cerebro (9/9, 100%), sacos aéreos (7/9, 77,8%), pulmón (7/9, 77,8%), riñón (6/8, 75 %), corazón (6/9, 66,7%) e hígado (5/9, 55,6%). Además, otros órganos, como el páncreas, el bazo, los intestinos, las gónadas y las glándulas suprarrenales ocasionalmente exhibieron señales positivas de proteínas virales. En estos órganos, además de las células parenquimatosas, a menudo se identificaron señales de proteínas virales en las células endoteliales. Nuestros resultados sugieren que el virus de influenza altamente patógeno clado 2.3.4.4b H5N1 2022-2023 se replicó sistémicamente en todas las aves examinadas, siendo las lesiones cerebrales las más prevalentes y asociadas con un subconjunto de aves que muestran signos clínicos observados alrededor de la muerte.


Subject(s)
Animals, Wild , Antigens, Viral , Birds , Disease Outbreaks , Influenza A Virus, H5N1 Subtype , Influenza in Birds , Animals , Influenza in Birds/virology , Influenza in Birds/epidemiology , Influenza in Birds/pathology , Iowa/epidemiology , Disease Outbreaks/veterinary
4.
J Virol ; : e0105224, 2024 Oct 10.
Article in English | MEDLINE | ID: mdl-39387556

ABSTRACT

Influenza A viruses (IAVs) from the H5N1 2.3.4.4b clade are circulating in dairy farms in the USA.; ruminants were presumed not to be hosts for IAVs. Previously, IAV-positive mammalian species were hunters and scavengers, possibly getting infected while feeding on infected birds. It is now recognized that H5N1 viruses that circulate in US dairy cattle transmit through a mammary gland route, in contrast to transmission by aerosols via the respiratory tract. The sialome in the cow mammary and respiratory tract is so far solely defined using plant lectins. Here, we used recombinant HA proteins representing current circulating and classical H5 viruses to determine the distribution of IAV receptors in the respiratory and mammary tract tissues of cows. We complemented our study by mapping the glycan distribution of the upper and lower respiratory tracts of horses and pigs. Most of the sialome of the cow respiratory tract is lined with sialic acid modifications, such as N-glycolyl and O-acetyl, which are not bound by IAV. Interestingly, the H5 protein representing the cow isolates is bound significantly in the mammary gland, whereas classical H5 proteins failed to do so. Furthermore, whereas the 9-O-acetyl modification is prominent in all tissues tested, the 5-N-glycolyl modification is not, resulting in the display of receptors for avian IAV hemagglutinins. This could explain the high levels of virus found in these tissues and milk, adding supporting data to this virus transmission route.IMPORTANCEH5N1 influenza viruses, which usually affect birds, have been found on dairy farms in the USA. Surprisingly, these viruses are spreading among dairy cows, and there is a possibility that they do not spread through the air but through their milk glands. To understand this better, we studied how the virus attaches to tissues in the cow's respiratory tract and mammary glands using specific viral proteins. We found that the cow-associated virus binds strongly to the mammary glands, unlike older versions infecting birds. This might explain why the virus is found in cow's milk, suggesting a new way the virus could be spreading.

5.
Dev Comp Immunol ; : 105279, 2024 Oct 11.
Article in English | MEDLINE | ID: mdl-39396691

ABSTRACT

This study describes the first successful cloning and functional characterization of chicken CX3CL1, a chemokine involved in immune cell migration and inflammatory responses. Evolutionary analyses revealed its close relation to CX3CL1 from other avian species, particularly duck, turkey, and quail. Structurally, chicken CX3CL1 includes a signal peptide and a chemokine interleukin-8-like domain characterized by unique alpha-helices and disulfide bonds. Additionally, we produced and purified recombinant CX3CL1 protein and assessed its endotoxin levels. Chemotaxis assays revealed that CX3CL1 significantly enhances the migration of HD11 macrophages and CU91 T cells. Furthermore, recombinant CX3CL1 induced the expression of pro-inflammatory cytokines (TNF-α, IFN-ß, IFN-γ, IL-6, and CCL20) in a time-dependent manner, while exerting differential effects on anti-inflammatory cytokines (IL-4, IL-10). Conversely, transfection with siCX3CL1 or siCX3CR1 led to the downregulation of these responses. We also observed activation of the MAPK, NF-κB, and JAK/STAT pathways, evidenced by increased phosphorylation of key signaling molecules. These findings underscore the crucial role of chicken CX3CL1 in regulating immune responses, cell migration, and the activation of key signaling pathways. This study provides valuable insights into the immunomodulatory functions of soluble CX3CL1, highlighting its potential as a therapeutic target for inflammatory conditions and enhancing our understanding of immune cell dynamics.

6.
Healthcare (Basel) ; 12(19)2024 Oct 01.
Article in English | MEDLINE | ID: mdl-39408139

ABSTRACT

BACKGROUND/OBJECTIVES: The ongoing avian influenza (H5N1) outbreak, one of the most widespread and persistent in recent history, has significantly impacted public health and the poultry and dairy cattle industries. This review covers lessons from past outbreaks, risk factors for transmission, molecular epidemiology, clinical features, surveillance strategies, and socioeconomic impacts. Since 1997, H5N1 has infected over 900 individuals globally, with a fatality rate exceeding 50%. Key factors influencing infection rates include demographic, socioeconomic, environmental, and ecological variables. The virus's potential for sustained human-to-human transmission remains a concern. The current outbreak, marked by new viral clades, has complicated containment efforts. METHODS: This review discusses how to integrate technological advances, such as mathematical modeling and artificial intelligence (AI), to improve forecasting, hotspot detection, and early warning systems. RESULTS: We provide inventories of data sources, covering both conventional and unconventional data streams, as well as those of mathematical and AI models, which can be vital for comprehensive surveillance and outbreak responses. CONCLUSION: In conclusion, integrating AI, mathematical models, and technological innovations into a One-Health approach is essential for improving surveillance, forecasting, and response strategies to mitigate the impacts of the ongoing avian influenza outbreak. Strengthening international collaboration and biosecurity measures will be pivotal in controlling future outbreaks and protecting both human and animal populations from this evolving global threat.

8.
Biosystems ; 246: 105347, 2024 Sep 28.
Article in English | MEDLINE | ID: mdl-39349133

ABSTRACT

Influenza A H5N1 hemagglutinin (HA) plays a crucial role in viral pathogenesis and changes in the HA receptor binding domain (RBD) have been attributed to alterations in viral pathogenesis. Mutations often occur within the HA which in-turn results in HA structural changes that consequently contribute to protein evolution. However, the possible occurrence of mutations that results to reversion of the HA protein (going back to an ancestral protein conformation) which in-turn creates distinct HA structural patterns across the 1959-2023 H5N1 viral evolution has never been investigated. Here, we generated and verified the quality of the HA models, identified similar HA structural patterns, and elucidated the possible variations in HA RBD structural dynamics. Our results show that there are 7 distinct structural patterns occurring among the 1959-2023 H5N1 HA models which suggests that reversion of the HA protein putatively occurs during viral evolution. Similarly, we found that the HA RBD structural dynamics vary among the 7 distinct structural patterns possibly affecting viral pathogenesis.

10.
Emerg Infect Dis ; 30(10): 2033-2041, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39240548

ABSTRACT

The prevalence of highly pathogenic avian influenza (HPAI) A(H5N1) viruses has increased in wild birds and poultry worldwide, and concomitant outbreaks in mammals have occurred. During 2023, outbreaks of HPAI H5N1 virus infections were reported in cats in South Korea. The H5N1 clade 2.3.4.4b viruses isolated from 2 cats harbored mutations in the polymerase basic protein 2 gene encoding single amino acid substitutions E627K or D701N, which are associated with virus adaptation in mammals. Hence, we analyzed the pathogenicity and transmission of the cat-derived H5N1 viruses in other mammals. Both isolates caused fatal infections in mice and ferrets. We observed contact infections between ferrets, confirming the viruses had high pathogenicity and transmission in mammals. Most HPAI H5N1 virus infections in humans have occurred through direct contact with poultry or a contaminated environment. Therefore, One Health surveillance of mammals, wild birds, and poultry is needed to prevent potential zoonotic threats.


Subject(s)
Ferrets , Influenza A Virus, H5N1 Subtype , Orthomyxoviridae Infections , Animals , Ferrets/virology , Republic of Korea/epidemiology , Mice , Cats , Orthomyxoviridae Infections/virology , Orthomyxoviridae Infections/veterinary , Orthomyxoviridae Infections/epidemiology , Influenza A Virus, H5N1 Subtype/pathogenicity , Influenza A Virus, H5N1 Subtype/genetics , Phylogeny , Cat Diseases/virology , Cat Diseases/epidemiology , Virulence , Disease Outbreaks , Humans , Female
11.
Pathogens ; 13(9)2024 Sep 05.
Article in English | MEDLINE | ID: mdl-39338955

ABSTRACT

Synanthropic wild rodents associated with agricultural operations may represent a risk path for transmission of high pathogenicity avian influenza viruses (HPAIVs) from wild birds to poultry birds. However, their susceptibility to HPAIVs remains unclear. In the present study, house mice (Mus musculus), brown rats (Rattus norvegicus), and black rats (Rattus rattus) were experimentally exposed to H5N1 subtype HPAIVs to evaluate their vulnerability to infection. After intranasal inoculation with HA clade 2.2 and 2.3.2.1 H5N1 subtype HPAIVs, wild rodents did not show any clinical signs and survived for 10- and 12-day observation periods. Viruses were isolated from oral swabs for several days after inoculation, while little or no virus was detected in their feces or rectal swabs. In euthanized animals at 3 days post-inoculation, HPAIVs were primarily detected in respiratory tract tissues such as the nasal turbinates, trachea, and lungs. Serum HI antibodies were detected in HA clade 2.2 HPAIV-inoculated rodents. These results strongly suggest that synanthropic wild rodents are susceptible to infection of avian-origin H5N1 subtype HPAIVs and contribute to the virus ecosystem as replication-competent hosts. Detection of infectious viruses in oral swabs indicates that wild rodents exposed to HPAIVs could contaminate food, water, and the environment in poultry houses and play roles in the introduction and spread of HPAIVs in farms.

12.
Viruses ; 16(9)2024 Aug 29.
Article in English | MEDLINE | ID: mdl-39339851

ABSTRACT

The emergence and spread of highly pathogenic avian influenza virus A subtype H5N1 (HP H5N1-IAV), particularly clade H5N1 2.3.4.4b, pose a severe global health threat, affecting various species, including mammals. Historically, cattle have been considered less susceptible to IAV, but recent outbreaks of H5N1-IAV 2.3.4.4b in dairy farms suggest a shift in host tropism, underscoring the urgency of expanded surveillance and the need for adaptable diagnostic tools in outbreak management. This study investigated the presence of anti-nucleoprotein (NP) antibodies in serum and milk and viral RNA in milk on dairy farms affected by outbreaks in Texas, Kansas, and Michigan using a multi-species IAV ELISA and RT-qPCR. The analysis of ELISA results from a Michigan dairy farm outbreak demonstrated a positive correlation between paired serum and milk sample results, confirming the reliability of both specimen types. Our findings also revealed high diagnostic performance during the convalescent phase (up to 96%), further improving sensitivity through serial sampling. Additionally, the evaluation of diagnostic specificity using serum and milk samples from IAV-free farms showed an excellent performance (99.6%). This study underscores the efficacy of the IAV NP-blocking ELISA for detecting and monitoring H5N1-IAV 2.3.4.4b circulation in dairy farms, whose recent emergence raises significant animal welfare and zoonotic concerns, necessitating expanded surveillance efforts.


Subject(s)
Cattle Diseases , Disease Outbreaks , Milk , Orthomyxoviridae Infections , Animals , Cattle , Orthomyxoviridae Infections/veterinary , Orthomyxoviridae Infections/epidemiology , Orthomyxoviridae Infections/virology , Orthomyxoviridae Infections/diagnosis , Disease Outbreaks/veterinary , Milk/virology , Cattle Diseases/epidemiology , Cattle Diseases/virology , Cattle Diseases/diagnosis , Antibodies, Viral/blood , Influenza A virus/isolation & purification , Influenza A virus/genetics , Influenza A virus/immunology , Enzyme-Linked Immunosorbent Assay/methods , Enzyme-Linked Immunosorbent Assay/veterinary , United States/epidemiology , RNA, Viral/genetics , Dairying , Female
13.
Viruses ; 16(9)2024 Sep 10.
Article in English | MEDLINE | ID: mdl-39339917

ABSTRACT

Since early 2024, a multistate outbreak of highly pathogenic avian influenza H5N1 has been affecting dairy cattle in the USA. The influenza viral RNA concentrations in milk make it an ideal matrix for surveillance purposes. However, viral RNA detection in multi-component fluids such as milk can be complex, and optimization of influenza detection methods is thus required. Raw bulk tank milk and mastitis milk samples were artificially contaminated with an avian influenza strain and subjected to five extraction methods. HCoV-229E and synthetic RNA were included as exogenous internal process controls. Given the high viral load usually observed in individual raw milk samples, four out of five tested methods would enable influenza detection in milk with normal texture, over a time window of at least 2 weeks post-onset of clinical signs. Nevertheless, sample dilution 1:3 in molecular transport medium prior to RNA extraction provided the best results for dilution of inhibitory substances and a good recovery rate of influenza RNA, that reached 12.5 ± 1.2% and 10.4 ± 3.8% in two independent experiments in bulk milk and 11.2 ± 3.6% and 10.0 ± 2.9% on two cohorts of mastitis milk samples. We have also shown compatibility of an influenza RT-qPCR system with synthetic RNA detection for simultaneous validation of the RNA extraction and RT-qPCR processes.


Subject(s)
Milk , RNA, Viral , Animals , Milk/virology , RNA, Viral/isolation & purification , RNA, Viral/genetics , RNA, Viral/analysis , Cattle , Female , Influenza A Virus, H5N1 Subtype/isolation & purification , Influenza A Virus, H5N1 Subtype/genetics , Influenza in Birds/virology , Influenza in Birds/diagnosis , Viral Load , Influenza A virus/isolation & purification , Influenza A virus/genetics
14.
Vaccines (Basel) ; 12(9)2024 Sep 12.
Article in English | MEDLINE | ID: mdl-39340074

ABSTRACT

The prevalence of the highly pathogenic avian influenza virus H5N1 in wild birds that migrate all over the world has resulted in the dissemination of this virus across Asia, Europe, Africa, North and South America, the Arctic continent, and Antarctica. So far, H5N1 clade 2.3.4.4.b has reached an almost global distribution, with the exception of Australia and New Zealand for autochthonous cases. H5N1 clade 2.3.4.4.b, derived from the broad-host-range A/Goose/Guangdong/1/96 (H5N1) lineage, has evolved, adapted, and spread to species other than birds, with potential mammal-to-mammal transmission. Many public health agencies consider H5N1 influenza a real pandemic threat. In this sense, we analyzed H5N1 hemagglutinin sequences from recent outbreaks in animals, clinical samples, antigenic prototypes of candidate vaccine viruses, and licensed human vaccines for H5N1 with the aim of shedding light on the development of an H5N1 vaccine suitable for a pandemic response, should one occur in the near future.

15.
Comp Immunol Microbiol Infect Dis ; 113: 102229, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39332166

ABSTRACT

In this study the pathogenicity, infectivity, and transmissibility of H5N1 highly pathogenic avian influenza (HPAI) clade 2.2.1.2 and H5N8 HPAI clade 2.3.4.4b viruses were evaluated in commercial broilers on days 24 and 31. The mortality rate was 100 % in both challenge viruses and in contact birds either on day 24 or day 31 which confirmed the highly pathogenicity of both clades (2.2.1.2/ 2.3.4.4b) in commercial broilers. Both clades (H5N8 clade 2.3.4.4b/ H5N1 clade 2.2.1.2 viruses) were efficiently replicate within and transmitted between commercial broilers. The H5N8-infected birds shed high titer of viruses from oropharynx and cloaca, which associated with the field spread of AIV-H5N8 in commercial broilers. Mean lesion score in both challenged clades showed similar scores, which confirmed the pathogenicity of both clades in commercial broilers' organs (mainly spleen, cerebellum, thymus, Bursa, Lung) which confirm the neurogenic affinity of the virus. In the central nervous system, non-suppurative encephalitis consisting in multifocal areas of necrosis in cerebral hemispheres, intense spongiosis, neuronal chromatolysis and gliosis were commonly observed. In cerebrum, chromatolysis of Purkinje neurons was a common finding. In the lung, interstitial pneumonia consisting of moderate to severe increase of the cellularity (macrophages and lymphoid cells) in air capillaries and focal areas of necrosis associated with intense viral replication was commonly observed. In lymphoid tissues, including spleen, thymus, and bursa of Fabricius, multifocal areas of necrosis/apoptosis of variable intensity in mononuclear cells were present. Particularly, diffuse necrotic areas were present in the spleen. In the liver, we detected focal areas of necrosis with mild distention of hepatic sinusoids. To conclude the AIV either H5N1 or H5N8 have neurological affinity with immune suppression effect based on necrosis and apoptosis of lymphoid tissues.


Subject(s)
Chickens , Influenza A Virus, H5N1 Subtype , Influenza A Virus, H5N8 Subtype , Influenza in Birds , Animals , Influenza in Birds/virology , Influenza in Birds/pathology , Chickens/virology , Influenza A Virus, H5N1 Subtype/pathogenicity , Influenza A Virus, H5N8 Subtype/pathogenicity , Virus Shedding , Poultry Diseases/virology , Poultry Diseases/pathology , Cloaca/virology , Virus Replication , Virulence , Oropharynx/virology , Lung/virology , Lung/pathology
17.
J Infect Dis ; 230(3): 533-542, 2024 Sep 23.
Article in English | MEDLINE | ID: mdl-39283944

ABSTRACT

Since the resurgence of highly pathogenic avian influenza (HPAI) A(H5N1) virus, clade 2.3.4.4b, during 2021, these viruses have spread widely among birds worldwide, causing poultry outbreaks and infections of a wide range of terrestrial and marine mammal species. During 2024, HPAI A(H5N1) virus, clade 2.3.4.4b, was detected in dairy cattle for the first time and caused an ongoing multistate outbreak, with high levels of virus documented in raw cow milk. Human infections with clade 2.3.4.4b viruses from exposures to infected poultry or dairy cattle have resulted in a wide spectrum of illness severity, from conjunctivitis or mild respiratory illness to severe and fatal pneumonia in different countries. Vigilance, and stronger global virologic surveillance among birds, poultry, terrestrial and marine mammals, and humans, with virus characterization and rapid data sharing, is needed to inform the threat of clade 2.3.4.4b viruses, as they continue to evolve, to public health.


Subject(s)
Birds , Disease Outbreaks , Influenza A Virus, H5N1 Subtype , Influenza in Birds , Influenza, Human , Animals , Influenza A Virus, H5N1 Subtype/pathogenicity , Influenza A Virus, H5N1 Subtype/genetics , Influenza A Virus, H5N1 Subtype/isolation & purification , Influenza A Virus, H5N1 Subtype/classification , Influenza in Birds/virology , Influenza in Birds/epidemiology , Humans , Influenza, Human/virology , Influenza, Human/epidemiology , Birds/virology , Poultry/virology , Cattle , Phylogeny
18.
J Med Virol ; 96(9): e29926, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39295251

ABSTRACT

H5N1, a highly pathogenic avian influenza virus, poses an ongoing and significant threat to global public health, primarily due to its potential to cause severe respiratory illness and high mortality rates in humans. Despite extensive efforts in vaccination and antiviral therapy, H5N1 continues to exhibit high mutation rates, resulting in recurrent outbreaks and the emergence of drug-resistant strains. Traditional antiviral therapies, such as neuraminidase inhibitors and M2 ion channel blockers, have demonstrated limited efficacy, necessitating the exploration of innovative therapeutic strategies. Proteolysis-targeting chimeras (PROTACs) emerge as a novel and promising approach, leveraging the ubiquitin-proteasome system to selectively degrade pathogenic proteins. Unlike conventional inhibitors that only block protein function, PROTACs eliminate the target protein, providing a sustained therapeutic effect and potentially reducing the development of resistance. This paper offers a comprehensive examination of the current landscape of H5N1 infections, detailing the pathogenesis and challenges associated with existing treatments. It further explores the mechanism of action, design, and therapeutic potential of PROTACs in inhibiting H5N1. By targeting essential viral proteins, such as hemagglutinin and the RNA-dependent RNA polymerase complex, PROTACs hold the potential to revolutionize the treatment of H5N1 infections, offering a new frontier in antiviral therapy.


Subject(s)
Antiviral Agents , Influenza A Virus, H5N1 Subtype , Influenza, Human , Proteolysis , Humans , Influenza A Virus, H5N1 Subtype/drug effects , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , Influenza, Human/drug therapy , Influenza, Human/virology , Proteolysis/drug effects , Animals , Viral Proteins/antagonists & inhibitors , Viral Proteins/metabolism , Viral Proteins/genetics , Proteolysis Targeting Chimera
19.
Virology ; 600: 110231, 2024 Sep 05.
Article in English | MEDLINE | ID: mdl-39278105

ABSTRACT

We tested the ability of six peridomestic wildlife species to replicate a highly pathogenic (HP) clade 2.3.4.4b AIV (H5N1) isolated in the U.S. during 2022. All tested species replicated and shed virus, at least to some degree. Of the six species evaluated (house sparrows (Passer domesticus), European starlings (Sturnus vulgaris), feral pigeons (Columba livia), striped skunks (Mephitis mephitis), Virginia opossums (Didelphis virginiana), and cottontails (Sylvilagus sp.)), striped skunks and Virginia opossums shed the highest viral titers of 106.3 PFU/mL and 105.0 PFU/mL, respectively. Overall, the results of this study indicate that certain peridomestic species could pose a biosecurity threat to poultry operations in some situations. In addition, this study and field reports indicate that the HP AIVs circulating in the U.S. during 2022-2024 may have an extremely broad range of species that can be impacted by and/or replicate and shed these viruses.

20.
Arch Biochem Biophys ; 761: 110148, 2024 Sep 10.
Article in English | MEDLINE | ID: mdl-39265696

ABSTRACT

Influenza A virus, particularly the H5N1 strain, poses a significant threat to public health due to its ability to cause severe respiratory illness and its high mortality rate. Traditional antiviral drugs targeting influenza A virus have faced challenges such as drug resistance and limited efficacy. Therefore, new antiviral compounds are needed to be discovered and developed. This study concentrated on examining the stability and behavior of the H5N1 polymerase PB2 CAP-binding domain when interacting with natural compounds, aiming to identify potential candidates for antiviral drug discovery. Through the virtual screening process, four lead compounds, ZINC000096095464, ZINC000044404209, ZINC000001562130, and ZINC000059779788, were selected, and these compounds showed binding energies -9.6, -9.4, -9.3, and -9.2 kcal/mol, respectively. When complexed with PB2, the ligand showed acceptable binding stability due to significant bond formation. However, during the 200ns MD simulation analysis, three (ZINC000096095464, ZINC000044404209, and ZINC000059779788) showed significant stability, which was proven by the trajectory analysis. The Rg-RMSD-based FEL plot showed significant structural stability due to stable conformers. The free-binding energy calculation also validates the stability of these complexes. This study offers valuable insights into the stability and dynamics of the H5N1 polymerase PB2 CAP-binding domain in complexes with natural compounds. These findings highlight the potential of these natural compounds as antiviral agents against the H5N1 influenza virus. Furthermore, this research contributes to the broader field of influenza virus treatment by demonstrating the effectiveness of computational methods in predicting and evaluating the stability and dynamics of potential drug candidates.

SELECTION OF CITATIONS
SEARCH DETAIL