Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 135
Filter
1.
Bioorg Chem ; 151: 107698, 2024 Aug 06.
Article in English | MEDLINE | ID: mdl-39126869

ABSTRACT

Non-alcoholic fatty liver disease (NAFLD) is the leading chronic liver disease worldwide, facing increasing challenges in terms of prevention and treatment. The methylation of lysine and arginine residues on histone proteins is dynamically controlled by histone methyltransferases (HMTs) and histone demethylases (HDMs), regulating chromatin structure and gene transcription. Mutations, genetic translocations, and altered gene expression involving HMTs and HDMs are frequently observed in NAFLD. HMTs and HDMs are receiving increasing attention in regulating NALFD. Targeting specific HMTs and HDMs for drug development is becoming a new strategy for treating NAFLD. This review provides a comprehensive summary of the regulatory mechanism of histone methylation/demethylation in NAFLD. Additionally, we discuss the potential applications of HMTs and HDMs inhibitors in preventing NAFLD, which may provide a scientific basis for the treatment of NAFLD.

2.
bioRxiv ; 2024 May 06.
Article in English | MEDLINE | ID: mdl-38766267

ABSTRACT

Dosage compensation in Drosophila involves upregulating male X-genes two-fold. This process is carried out by the MSL (male-specific lethal) complex, which binds high-affinity sites and spreads to surrounding genes. Current models of MSL spreading focus on interactions of MSL3 (male-specific lethal 3) with histone marks; in particular, Set2-dependent H3 lysine-36 trimethylation (H3K36me3). However, Set2 might affect DC via another target, or there could be redundancy between canonical H3.2 and variant H3.3 histones. Further, it is difficult to parse male-specific effects from those that are simply X-specific. To discriminate among these possibilities, we employed genomic approaches in H3K36 (residue) and Set2 (writer) mutants. The results confirm a role for Set2 in X-gene regulation, but show that expression trends in males are often mirrored in females. Instead of global male-specific reduction of X-genes in Set2/H3K36 mutants, the effects were heterogeneous. We identified cohorts of genes whose expression was significantly altered following loss of H3K36 or Set2, but the changes were in opposite directions, suggesting that H3K36me states have reciprocal functions. In contrast to H4K16R controls, analysis of combined H3.2K36R/H3.3K36R mutants neither showed consistent reduction in X-gene expression, nor any correlation with MSL3 binding. Examination of other developmental stages/tissues revealed additional layers of context-dependence. Our studies implicate BEAF-32 and other insulator proteins in Set2/H3K36-dependent regulation. Overall, the data are inconsistent with the prevailing model wherein H3K36me3 directly recruits the MSL complex. We propose that Set2 and H3K36 support DC indirectly, via processes that are utilized by MSL but common to both sexes.

3.
Arch Toxicol ; 98(5): 1253-1269, 2024 May.
Article in English | MEDLINE | ID: mdl-38483583

ABSTRACT

Since the 1940s, patch tests in healthy volunteers (Human Predictive Patch Tests, HPPTs) have been used to identify chemicals that cause skin sensitization in humans. Recently, we reported the results of a major curation effort to support the development of OECD Guideline 497 on Defined Approaches (DAs) for skin sensitization (OECD in Guideline No. 497: Defined Approaches on Skin Sensitisation, 2021a. https://doi.org/10.1787/b92879a4-en ). In the course of this work, we compiled and published a database of 2277 HPPT results for 1366 unique test substances (Strickland et al. in Arch Toxicol 97:2825-2837, 2023. https://doi.org/10.1007/s00204-023-03530-3 ). Here we report a detailed analysis of the value of HPPT data for classification of chemicals as skin sensitizers under the United Nations' Globally Harmonized System of Classification and Labelling of Chemicals (GHS). As a result, we propose the dose per skin area (DSA) used for classification by the GHS to be replaced by or complemented with a dose descriptor that may better reflect sensitization incidence [e.g., the DSA causing induction of sensitization in one individual (DSA1+) or the DSA leading to an incidence of induction in 5% of the tested individuals (DSA05)]. We also propose standardized concepts and workflows for assessing individual HPPT results, for integrating multiple HPPT results and for using them in concert with Local Lymph Node Assay (LLNA) data in a weight of evidence (WoE) assessment. Overall, our findings show that HPPT results are often not sufficient for deriving unambiguous classifications on their own. However, where they are, the resulting classifications are reliable and reproducible and can be integrated well with those from other skin sensitization data, such as the LLNA.


Subject(s)
Dermatitis, Allergic Contact , Humans , Patch Tests , Dermatitis, Allergic Contact/etiology , Allergens/toxicity , Skin , Local Lymph Node Assay
4.
Arch Gerontol Geriatr ; 123: 105411, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38493525

ABSTRACT

BACKGROUND: Balance-related gait patterns in older adults can be objectively discerned through the examination of gait parameters, maximum leg torques, and their interconnections. OBJECTIVE: To investigate the correlation between leg muscle strength and balance during gait concerning functional performance in healthy older adults. METHODS: Participants included 117 adults aged 60-95 years were recruited from the Baltimore Longitudinal Study of Aging (BLSA). They underwent evaluations of gait, balance, and maximum isometric leg torque (for both hamstrings and quadriceps). Analyses examined the association between leg torque and functional performance among those with higher and lower balances. RESULTS: Individuals with lower balance (n = 43) were older, more prone to experiencing a fear of falling, and exhibited lower functional performance (gait speeds and Generalized Gait Stability Scores (GGSS), ps < 0.001) compared to their counterparts with higher balance (n = 74). At a usual walking pace, the GGSS showed a positive association with concentric Quadriceps Maximum Torque (QMT) in participants with lower balance (p = 0.013). Conversely, it displayed a positive association with eccentric QMT in those with higher balance (p = 0.014). At a fast walking pace, only individuals with higher balance demonstrated a positive muscle torque association with both gait speed and GGSS, encompassing concentric and eccentric actions in both the quadriceps and hamstrings (ps < 0.050). CONCLUSION: Evaluating muscle strength capacity in both concentric and eccentric phases during dynamic high-effort events, along with investigating their associations with gait performance, can be beneficial for identifying subtle gait deficits. This comprehensive approach may assist in the early detection of gait deterioration among healthy older adults, given the intricate muscle activations involved in lower body functional performance.


Subject(s)
Gait , Hamstring Muscles , Muscle Strength , Postural Balance , Quadriceps Muscle , Torque , Humans , Aged , Male , Female , Postural Balance/physiology , Longitudinal Studies , Muscle Strength/physiology , Gait/physiology , Quadriceps Muscle/physiology , Aged, 80 and over , Middle Aged , Hamstring Muscles/physiology , Baltimore , Aging/physiology
5.
Neurophotonics ; 11(1): 015005, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38298609

ABSTRACT

Significance: A fleeting flash aligned vertically with an object remaining stationary in the head-centered space would be perceived as lagging behind the object during the observer's horizontal head rotation. This perceptual mislocalization is an illusion named head-rotation-induced flash-lag effect (hFLE). While many studies have investigated the neural mechanism of the classical visual FLE, the hFLE has been hardly investigated. Aim: We measured the cortical activity corresponding to the hFLE on participants experiencing passive head rotations using functional near-infrared spectroscopy. Approach: Participants were asked to judge the relative position of a flash to a fixed reference while being horizontally rotated or staying static in a swivel chair. Meanwhile, functional near-infrared spectroscopy signals were recorded in temporal-parietal areas. The flash duration was manipulated to provide control conditions. Results: Brain activity specific to the hFLE was found around the right middle/inferior temporal gyri, and bilateral supramarginal gyri and superior temporal gyri areas. The activation was positively correlated with the rotation velocity of the participant around the supramarginal gyrus and negatively related to the hFLE intensity around the middle temporal gyrus. Conclusions: These results suggest that the mechanism underlying the hFLE involves multiple aspects of visual-vestibular interactions including the processing of multisensory conflicts mediated by the temporoparietal junction and the modulation of vestibular signals on object position perception in the human middle temporal complex.

6.
Int J Biol Macromol ; 254(Pt 1): 127748, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38287591

ABSTRACT

Banana starch has a highly resistant starch (RS) and slow-digested starch (SDS) content, making it attractive as a functional ingredient. Unfortunately, banana starch requires modification processes due to the loss of RS and SDS during gelatinization because of its thermolabile characteristics. This study explores the effect of banana starch modification by enzymatic, heat moisture treatment (HMT) and dual modification (HMT+ enzymatic) on its nutritional (RS, SDS) and functional properties (hydration, structural, gelation, rheological). HMT and dual modifications decrease RS (from 44.62 g/100 g to 16.62 and 26.66 g/100 g, respectively) and increase SDS (from 21.72 g/100 g to 33.91 and 26.95 g/100 g, respectively) in raw starch but induce structural changes that enhance RS (from 3.10 g/100 g to 3.94 and 4.4 g/100 g, respectively) and SDS (from 2.58 g/100 g to 9.58 and 11.48 g/100 g) thermo-resistance in gelled starch. Also, changes in the functional properties of starches were evidenced, such as weaker gels (hardness < 41 g), lower water absorption (<12.35 g/g), high starch solubility (>1.77 g/100 g) and increased gelatinization temperature. Improved gelatinization temperature and RS thermostability resulted from modifications that could expand banana starch applications as a beverage and compote thickener agent.


Subject(s)
Musa , Starch , Starch/chemistry , Musa/chemistry , Chemical Phenomena , Solubility , Temperature , Resistant Starch , Hot Temperature
7.
Int J Biol Macromol ; 259(Pt 1): 129173, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38181923

ABSTRACT

Modified starch was prepared from japonica starch (JS) by heat-moisture treatments (HMT). Under the same moisture content and HMT temperature, the effects of various HMT times on the structural, properties of JS and its in vitro digestibility properties were investigated. The results showed that adhesion occurred between the particles of japonica starch after the HMT, and there were depressions on the surface. The size of the JS particles increased, the short-range ordering and relative crystallinity of the HMT-modified starch increased and gradually decreased, reaching a peak of 36.51 % at 6 h, as the HMT time was extended. The pasting indexes of HMT-modified starch decreased and then increased with the increase of the HMT time; compared with JS, the thermal stability of HMT-modified starch increased while the pasting enthalpy decreased. All the HMT-modified starches were weakly gelatinous systems and pseudoplastic fluids. Following HMT, the amount of resistant starch (RS) and slowly digested starch (SDS) grew initially before declining. The amount of RS in HMT-modified starch peaked at 24.28 % when the HMT time was 6 h. The results of this research can serve as a theoretical foundation for the creation of modified japonica starch and its use in the food industry.


Subject(s)
Hot Temperature , Starch , Starch/chemistry , Temperature , Thermodynamics , Resistant Starch
8.
Entropy (Basel) ; 25(10)2023 Oct 09.
Article in English | MEDLINE | ID: mdl-37895550

ABSTRACT

Recent advancements in artificial intelligence (AI) technology have raised concerns about the ethical, moral, and legal safeguards. There is a pressing need to improve metrics for assessing security and privacy of AI systems and to manage AI technology in a more ethical manner. To address these challenges, an AI Trust Framework and Maturity Model is proposed to enhance trust in the design and management of AI systems. Trust in AI involves an agreed-upon understanding between humans and machines about system performance. The framework utilizes an "entropy lens" to root the study in information theory and enhance transparency and trust in "black box" AI systems, which lack ethical guardrails. High entropy in AI systems can decrease human trust, particularly in uncertain and competitive environments. The research draws inspiration from entropy studies to improve trust and performance in autonomous human-machine teams and systems, including interconnected elements in hierarchical systems. Applying this lens to improve trust in AI also highlights new opportunities to optimize performance in teams. Two use cases are described to validate the AI framework's ability to measure trust in the design and management of AI systems.

9.
Biochemistry (Mosc) ; 88(7): 968-978, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37751867

ABSTRACT

Epigenetic genome regulation during malignant cell transformation is characterized by the aberrant methylation and acetylation of histones. Vorinostat (SAHA) is an epigenetic modulator actively used in clinical oncology. The antitumor activity of vorinostat is commonly believed to be associated with the inhibition of histone deacetylases, while the impact of this drug on histone methylation has been poorly studied. Using HeLa TI cells as a test system allowing evaluation of the effect of epigenetically active compounds from the expression of the GFP reporter gene and gene knockdown by small interfering RNAs, we showed that vorinostat not only suppressed HDAC1, but also reduced the activity of EZH2, SUV39H1, SUV39H2, and SUV420H1. The ability of vorinostat to suppress expression of EZH2, SUV39H1/2, SUV420H1 was confirmed by Western blotting. Vorinostat also downregulated expression of SUV420H2 and DOT1L enzymes. The data obtained expand our understanding of the epigenetic effects of vorinostat and demonstrate the need for a large-scale analysis of its activity toward other enzymes involved in the epigenetic genome regulation. Elucidation of the mechanism underlying the epigenetic action of vorinostat will contribute to its more proper use in the treatment of tumors with an aberrant epigenetic profile.


Subject(s)
Epigenesis, Genetic , Vorinostat/pharmacology , Histone Methyltransferases , Genes, Reporter , Blotting, Western
10.
Cereb Cortex ; 33(13): 8693-8711, 2023 06 20.
Article in English | MEDLINE | ID: mdl-37254796

ABSTRACT

Cortical columns of direction-selective neurons in the motion sensitive area (MT) have been successfully established as a microscopic feature of the neocortex in animals. The same property has been investigated at mesoscale (<1 mm) in the homologous brain area (hMT+, V5) in living humans by using ultra-high field functional magnetic resonance imaging (fMRI). Despite the reproducibility of the selective response to axis-of-motion stimuli, clear quantitative evidence for the columnar organization of hMT+ is still lacking. Using cerebral blood volume (CBV)-sensitive fMRI at 7 Tesla with submillimeter resolution and high spatial specificity to microvasculature, we investigate the columnar functional organization of hMT+ in 5 participants perceiving axis-of-motion stimuli for both blood oxygenation level dependent (BOLD) and vascular space occupancy (VASO) contrast mechanisms provided by the used slice-selective slab-inversion (SS-SI)-VASO sequence. With the development of a new searchlight algorithm for column detection, we provide the first quantitative columnarity map that characterizes the entire 3D hMT+ volume. Using voxel-wise measures of sensitivity and specificity, we demonstrate the advantage of using CBV-sensitive fMRI to detect mesoscopic cortical features by revealing higher specificity of axis-of-motion cortical columns for VASO as compared to BOLD contrast. These voxel-wise metrics also provide further insights on how to mitigate the highly debated draining veins effect. We conclude that using CBV-VASO fMRI together with voxel-wise measurements of sensitivity, specificity and columnarity offers a promising avenue to quantify the mesoscopic organization of hMT+ with respect to axis-of-motion stimuli. Furthermore, our approach and methodological developments are generalizable and applicable to other human brain areas where similar mesoscopic research questions are addressed.


Subject(s)
Brain Mapping , Neocortex , Animals , Humans , Brain Mapping/methods , Reproducibility of Results , Cerebrovascular Circulation/physiology , Magnetic Resonance Imaging/methods
11.
Int J Mol Sci ; 24(9)2023 Apr 28.
Article in English | MEDLINE | ID: mdl-37175750

ABSTRACT

In this study, based on the OneKP database and through comparative genetic analysis, we found that HMT and HDM may originate from Chromista and are highly conserved in green plants, and that during the evolution from algae to land plants, histone methylation modifications gradually became complex and diverse, which is more conducive to the adaptation of plants to complex and variable environments. We also characterized the number of members, genetic similarity, and phylogeny of HMT and HDM families in barley using the barley pangenome and the Tibetan Lasa Goumang genome. The results showed that HMT and HDM were highly conserved in the domestication of barley, but there were some differences in the Lasa Goumang SDG subfamily. Expression analysis showed that HvHMTs and HvHDMs were highly expressed in specific tissues and had complex expression patterns under multiple stress treatments. In summary, the amplification and variation of HMT and HDM facilitate plant adaptation to complex terrestrial environments, while they are highly conserved in barley and play an important role in barley growth and development with abiotic stresses. In brief, our findings provide a novel perspective on the origin and evolutionary history of plant HvHMTs and HvHDMs, and lay a foundation for further investigation of their functions in barley.


Subject(s)
Hordeum , Humans , Hordeum/metabolism , Histones/genetics , Histones/metabolism , Methylation , Plants/metabolism , Phylogeny , Evolution, Molecular , Gene Expression Regulation, Plant , Plant Proteins/genetics , Plant Proteins/metabolism , Genome, Plant
12.
Int J Hematol ; 118(4): 477-482, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37219678

ABSTRACT

Vaccination with a coronavirus disease-2019 (COVID-19) vaccine is an effective public health measure for reducing the risk of infection and severe complications from COVID-19. However, serious hematological complications after COVID-19 vaccination have been reported. Here, we report a case of new-onset hypomegakaryocytic thrombocytopenia (HMT) with the potential for progression to aplastic anemia (AA) that developed in a 46-year-old man 4 days after the fourth mRNA COVID-19 vaccination. Platelet count rapidly decreased after vaccination and white blood cell count declined subsequently. Bone marrow examination immediately after disease onset showed severely hypocellular marrow (cellularity of almost 0%) in the absence of fibrosis, findings that were consistent with AA. Since the severity of pancytopenia did not meet the diagnostic criteria for AA, the patient was diagnosed with HMT that could progress to AA. Treatment with eltrombopag and cyclosporine was started immediately after diagnosis and cytopenia improved. Although it is difficult to determine whether the post-vaccination cytopenia was vaccine induced or accidental because the association was chronological, vaccination with an mRNA-based COVID-19 vaccine may be associated with development of HMT/AA. Therefore, physicians should be aware of this rare, but serious adverse event and promptly provide appropriate treatment.


Subject(s)
Anemia, Aplastic , COVID-19 Vaccines , COVID-19 , Thrombocytopenia , Humans , Male , Middle Aged , BNT162 Vaccine , COVID-19/prevention & control , COVID-19 Vaccines/adverse effects , Thrombocytopenia/etiology , Vaccination/adverse effects
13.
Front Cell Dev Biol ; 11: 1181764, 2023.
Article in English | MEDLINE | ID: mdl-37228649

ABSTRACT

During the last decades, male urogenital cancers (including prostate, renal, bladder and testicular cancers) have become one of the most frequently encountered malignancies affecting all ages. While their great variety has promoted the development of various diagnosis, treatment and monitoring strategies, some aspects such as the common involvement of epigenetic mechanisms are still not elucidated. Epigenetic processes have come into the spotlight in the past years as important players in the initiation and progression of tumors, leading to a plethora of studies highlighting their potential as biomarkers for diagnosis, staging, prognosis, and even as therapeutic targets. Thus, fostering research on the various epigenetic mechanisms and their roles in cancer remains a priority for the scientific community. This review focuses on one of the main epigenetic mechanisms, namely, the methylation of the histone H3 at various sites and its involvement in male urogenital cancers. This histone modification presents a great interest due to its modulatory effect on gene expression, leading either to activation (e.g., H3K4me3, H3K36me3) or repression (e.g., H3K27me3, H3K9me3). In the last few years, growing evidence has demonstrated the aberrant expression of enzymes that methylate/demethylate histone H3 in cancer and inflammatory diseases, that might contribute to the initiation and progression of such disorders. We highlight how these particular epigenetic modifications are emerging as potential diagnostic and prognostic biomarkers or targets for the treatment of urogenital cancers.

14.
Cell Signal ; 106: 110660, 2023 06.
Article in English | MEDLINE | ID: mdl-36990334

ABSTRACT

Eukaryotic genomes are organised in a structure called chromatin, comprising of DNA and histone proteins. Chromatin is thus a fundamental regulator of gene expression, as it offers storage and protection but also controls accessibility to DNA. Sensing and responding to reductions in oxygen availability (hypoxia) have recognised importance in both physiological and pathological processes in multicellular organisms. One of the main mechanisms controlling these responses is control of gene expression. Recent findings in the field of hypoxia have highlighted how oxygen and chromatin are intricately linked. This review will focus on mechanisms controlling chromatin in hypoxia, including chromatin regulators such as histone modifications and chromatin remodellers. It will also highlight how these are integrated with hypoxia inducible factors and the knowledge gaps that persist.


Subject(s)
Chromatin , Histones , Humans , Histones/metabolism , Hypoxia , Oxygen/metabolism , Protein Processing, Post-Translational , Acetylation
15.
Sensors (Basel) ; 23(4)2023 Feb 15.
Article in English | MEDLINE | ID: mdl-36850785

ABSTRACT

In the biometric field, vein identification is a vital process that is constrained by the invisibility of veins as well as other unique features. Moreover, users generally do not wish to have their personal information uploaded to the cloud, so edge computing has become popular for the sake of protecting user privacy. In this paper, we propose a low-complexity and lightweight convolutional neural network (CNN) and we design intellectual property (IP) for shortening the inference time in finger vein recognition. This neural network system can operate independently in client mode. After fetching the user's finger vein image via a near-infrared (NIR) camera mounted on an embedded system, vein features can be efficiently extracted by vein curving algorithms and user identification can be completed quickly. Better image quality and higher recognition accuracy can be obtained by combining several preprocessing techniques and the modified CNN. Experimental data were collected by the finger vein image capture equipment developed in our laboratory based on the specifications of similar products currently on the market. Extensive experiments demonstrated the practicality and robustness of the proposed finger vein identification system.


Subject(s)
Algorithms , Neural Networks, Computer , Humans , Biometry , Extremities , Laboratories
16.
Hum Brain Mapp ; 44(5): 2050-2061, 2023 04 01.
Article in English | MEDLINE | ID: mdl-36637226

ABSTRACT

Perception of dynamic scenes in our environment results from the evaluation of visual features such as the fundamental spatial and temporal frequency components of a moving object. The ratio between these two components represents the object's speed of motion. The human middle temporal cortex hMT+ has a crucial biological role in the direct encoding of object speed. However, the link between hMT+ speed encoding and the spatiotemporal frequency components of a moving object is still under explored. Here, we recorded high resolution 7T blood oxygen level-dependent BOLD responses to different visual motion stimuli as a function of their fundamental spatial and temporal frequency components. We fitted each hMT+ BOLD response with a 2D Gaussian model allowing for two different speed encoding mechanisms: (1) distinct and independent selectivity for the spatial and temporal frequencies of the visual motion stimuli; (2) pure tuning for the speed of motion. We show that both mechanisms occur but in different neuronal groups within hMT+, with the largest subregion of the complex showing separable tuning for the spatial and temporal frequency of the visual stimuli. Both mechanisms were highly reproducible within participants, reconciling single cell recordings from MT in animals that have showed both encoding mechanisms. Our findings confirm that a more complex process is involved in the perception of speed than initially thought and suggest that hMT+ plays a primary role in the evaluation of the spatial features of the moving visual input.


Subject(s)
Motion Perception , Animals , Humans , Motion Perception/physiology , Magnetic Resonance Imaging , Photic Stimulation/methods , Temporal Lobe/diagnostic imaging , Temporal Lobe/physiology , Neurons/physiology
17.
Int J Biol Macromol ; 226: 927-934, 2023 Jan 31.
Article in English | MEDLINE | ID: mdl-36528142

ABSTRACT

The molecular structure has an important influence on the surface adhesion of starch gel. In the present study, the surface adhesiveness of vermicelli after cooking was reduced by heat-moisture treatment (HMT), and the mechanism underlying the increased thermal stability was explored by measuring the changes in short-range order, crystallinity, the thickness of the crystalline layer, and the length of the double helix in the dry starch gel. The surface adhesiveness decreased by 72.12 % when the moisture content was 26 %. HMT increased the crystallinity, and the thickness of the crystalline layer of the starch gel increased from 14.61 nm to 14.83-17.30 nm at 20-26 % moisture content. The molecular rearrangement and destruction of unstable short double helixes increased the proportion of long double helixes, resulting in an increased crystallinity and layer thickness.


Subject(s)
Hot Temperature , Starch , Starch/chemistry , Adhesiveness , Food , Molecular Structure , Triticum
18.
Foods ; 12(23)2023 Nov 24.
Article in English | MEDLINE | ID: mdl-38231690

ABSTRACT

Rice starch-hydrophilic colloid complexes (SHCs) were prepared by incorporating xanthan gum and locust bean gum into natural rice starch. Subsequently, they underwent hygrothermal treatment (H-SHC) to investigate their structural and digestive properties with varying colloid types and added amounts of H-SHC. The results demonstrated that heat-moisture treatment (HMT) led to an increase in resistant starch (RS) content in rice starch. This effect was more pronounced after the addition of hydrophilic colloid, causing RS content to surge from 8.42 ± 0.39% to 38.36 ± 3.69%. Notably, the addition of locust bean gum had a more significant impact on enhancing RS content, and the RS content increased with the addition of hydrophilic colloids. Enzyme digestion curves indicated that H-SHC displayed a lower equilibrium concentration (C∞), hydrolysis index (HI), and gluconeogenesis index (eGI). Simultaneously, HMT reduced the solubility and swelling power of starch. However, the addition of hydrophilic colloid led to an increase in the solubility and swelling power of the samples. Scanning electron microscopy revealed that hydrophilic colloid encapsulated the starch granules, affording them protection. X-ray diffraction (XRD) showed that HMT resulted in the decreased crystallinity of the starch granules, a trend mitigated by the addition of hydrophilic colloid. Infrared (IR) results demonstrated no formation of new covalent bonds but indicated increased short-range ordering in H-SHC. Rapid viscosity analysis and differential scanning calorimetry indicated that HMT substantially decreased peak viscosity and starch breakdown, while it significantly delayed the onset, peak, and conclusion temperatures. This effect was further amplified by the addition of colloids. Rheological results indicated that H-SHC displayed lower values for G', G″, and static rheological parameters compared to natural starch. In summary, this study offers valuable insights into the development of healthy, low-GI functional foods.

19.
Front Genet ; 13: 1032958, 2022.
Article in English | MEDLINE | ID: mdl-36425063

ABSTRACT

Cutaneous T-cell lymphomas (CTCLs) are a subset of T-cell malignancies presenting in the skin. The treatment options for CTCL, in particular in advanced stages, are limited. One of the emerging therapies for CTCL is treatment with histone deacetylase (HDAC) inhibitors. We recently discovered an evolutionarily conserved crosstalk between HDAC1, one of the targets of HDAC inhibitors, and the histone methyltransferase DOT1L. HDAC1 negatively regulates DOT1L activity in yeast, mouse thymocytes, and mouse thymic lymphoma. Here we studied the functional relationship between HDAC inhibitors and DOT1L in two human CTCL cell lines, specifically addressing the question whether the crosstalk between DOT1L and HDAC1 observed in mouse T cells plays a role in the therapeutic effect of clinically relevant broad-acting HDAC inhibitors in the treatment of human CTCL. We confirmed that human CTCL cell lines were sensitive to treatment with pan-HDAC inhibitors. In contrast, the cell lines were not sensitive to DOT1L inhibitors. Combining both types of inhibitors did neither enhance nor suppress the inhibitory effect of HDAC inhibitors on CTCL cells. Thus our in vitro studies suggest that the effect of commonly used pan-HDAC inhibitors in CTCL cells relies on downstream effects other than DOT1L misregulation.

20.
Subcell Biochem ; 100: 3-65, 2022.
Article in English | MEDLINE | ID: mdl-36301490

ABSTRACT

Altered metabolism has become an emerging feature of cancer cells impacting their proliferation and metastatic potential in myriad ways. Proliferating heterogeneous tumor cells are surrounded by other resident or infiltrating cells, along with extracellular matrix proteins, and other secretory factors constituting the tumor microenvironment. The diverse cell types of the tumor microenvironment exhibit different molecular signatures that are regulated at their genetic and epigenetic levels. The cancer cells elicit intricate crosstalks with these supporting cells, exchanging essential metabolites which support their anabolic processes and can promote their survival, proliferation, EMT, angiogenesis, metastasis and even therapeutic resistance. In this context, carbohydrate metabolism ensures constant energy supply being a central axis from which other metabolic and biosynthetic pathways including amino acid and lipid metabolism and pentose phosphate pathway are diverged. In contrast to normal cells, increased glycolytic flux is a distinguishing feature of the highly proliferative cancer cells, which supports them to adapt to a hypoxic environment and also protects them from oxidative stress. Such rewired metabolic properties are often a result of epigenetic alterations in the cancer cells, which are mediated by several factors including, DNA, histone and non-histone protein modifications and non-coding RNAs. Conversely, epigenetic landscapes of the cancer cells are also dictated by their diverse metabolomes. Altogether, this metabolic and epigenetic interplay has immense potential for the development of efficient anti-cancer therapeutic strategies. In this book chapter we emphasize upon the significance of reprogrammed carbohydrate metabolism in regulating the tumor microenvironment and cancer progression, with an aim to explore the different metabolic and epigenetic targets for better cancer treatment.


Subject(s)
Neoplasms , Tumor Microenvironment , Humans , Neoplasms/drug therapy , Glycolysis/physiology , Carbohydrate Metabolism , Histones/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL