Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 2.187
Filter
1.
Phytomedicine ; 134: 155990, 2024 Aug 31.
Article in English | MEDLINE | ID: mdl-39243750

ABSTRACT

Diabetic foot ulcers (DFUs) represent a severe complication of diabetes mellitus. Ramulus Mori (Sangzhi) alkaloids (SZ-A), an approved oral medication for type 2 diabetes, have not been explored for their potential to enhance the processes involved in diabetic wound healing. This study aims to investigate SZ-A's role in diabetic wound healing mechanisms. The in vivo experimentation involves dividing the subjects into NC and SZ-A groups, with SZ-A dosed at 200 and 400 mg/kg, to assess the therapeutic efficacy of SZ-A. The results of the animal studies show that SZ-A intervention accelerates the processes of diabetic angiogenesis and wound healing in a manner dependent on its concentration. Additionally, a pathological model using advanced glycation end products (AGEs) in HUVECs demonstrates SZ-A's cytoprotective effect. In vitro, SZ-A intervention significantly increases cell proliferation, migration and tube formation, protecting HUVECs from oxidative stress injury induced by AGEs. Mechanistically, SZ-A exerts a protective effect on HUVECs from oxidative stress damage through the activation of the NRF2/HO-1/eNOS signaling pathway. The findings suggest that SZ-A exhibits considerable potential as a promising candidate for treating DFUs, which will aid in more effectively integrating plant-based therapies into clinical settings.

2.
Biochim Biophys Acta Mol Basis Dis ; 1870(8): 167496, 2024 Sep 03.
Article in English | MEDLINE | ID: mdl-39237046

ABSTRACT

Liver ischemia-reperfusion (I/R) injury is a detrimental complication of organ transplantation, shock, and sepsis. However, the available drugs to mitigate I/R injury remain limited. Jujuboside A (JuA) is renowned for its antioxidant, anti-inflammatory, and anti-apoptotic properties; nevertheless, its potential in liver I/R injury remains unknown. Thus, this study aimed to explore the role and underlying mechanisms of JuA in liver I/R injury. Mouse models of I/R and AML12 cell models of hypoxia/reoxygenation (H/R) were constructed. Haematoxylin and eosin staining, serum alanine aminotransferase (ALT) and aspartate aminotransferase (AST) detection, and cell viability analysis were used to assess liver injury. To evaluate oxidative stress, inflammation, apoptosis, and mitochondrial damage, immunofluorescence staining, transmission electron microscopy analysis, enzyme-linked immunosorbent assay, and flow cytometry were conducted. Moreover, molecular docking techniques and western blot were employed to identify downstream target molecules and pathways affected by JuA. The results showed that JuA pretreatment effectively attenuated liver necrosis and ALT and AST level elevations induced by I/R while enhancing AML12 cell viability following H/R. Furthermore, JuA pretreatment suppressed oxidative stress triggered by I/R and H/R, thereby inhibiting the level of pro-inflammatory factors and NLRP3 inflammasome activation. Notably, JuA pretreatment alleviated mitochondrial damage and apoptosis. Mechanistically, JuA pretreatment resulted in the activation of the AKT/NRF2/HO-1 signalling pathways, whereas MK2206, the inhibitor of AKT, partially reversed the hepatoprotective effects of JuA during liver I/R. Collectively, our findings illustrated that JuA mitigated oxidative stress, inflammation, apoptosis, and mitochondrial damage by facilitating the AKT/NRF2/HO-1 signalling pathway, thereby alleviating liver I/R injury.

3.
Front Pharmacol ; 15: 1450211, 2024.
Article in English | MEDLINE | ID: mdl-39263574

ABSTRACT

Pyroptosis induced by oxidative stress is a significant contributor to mental health disorders, including depression (+)-Catechin (CA), a polyphenolic compound prevalent in various food sources, has been substantiated by prior research to exhibit potent antioxidant properties and potential antidepressant effects. Nonetheless, the precise antidepressive mechanisms and effects of CA remain incompletely elucidated. In this study, we employed corticosterone (CORT) and PC12 cells to develop a cellular model of depression, aiming to investigate the protective effects of CA against CORT-induced cellular damage. Our objective was to elucidate the underlying mechanisms of protective action. We utilized transcriptomic analysis to identify differentially expressed genes and employed bioinformatics approaches to predict the potential mechanisms of CA's protective effects in PC12 cells. These transcriptomic predictions were subsequently validated through western blot analysis. The findings indicated that CA possesses the capacity to mitigate oxidative stress and suppress pyroptosis in PC12 cells via the activation of the PI3K/AKT signaling pathway. This activation subsequently modulates the Nrf2/HO1/NF-κB pathways, thereby providing protection to PC12 cells against damage induced by CORT. Furthermore, we investigated the interaction between CA and the Keap1 protein employing molecular docking and protein thermal shift assays. We propose that CA can activate Nrf2 through two mechanisms to decrease reactive oxygen species (ROS) levels and inhibit pyroptosis: one mechanism involves the activation of the PI3K/AKT signaling pathway, and the other involves direct binding to Keap1, leading to an increase in p-Nrf2.

4.
ACS Nano ; 2024 Sep 13.
Article in English | MEDLINE | ID: mdl-39268926

ABSTRACT

Retinal neovascular disease is a leading cause of vision loss and blindness globally. It occurs when abnormal new blood vessels form in the retina. In this study, we utilized tetrahedral framework nucleic acids (tFNAs) as vehicles to load quercetin (QUE), a small-molecule flavonoid, forming a deoxyribonucleic acid (DNA) nanocomplex, tFNAs-QUE. Our data show this nanocomplex inhibits pathological neovascularization, reduces the area of retinal nonperfusion area, protects retinal neurons, and preserves the visual function. Further, we discovered that tFNAs-QUE selectively upregulates the AKT/Nrf2/HO-1 signaling pathway, which can suppress pathological vascular growth and exert antioxidative effects. Therefore, this study presents a promising small-molecule-loading mechanism for the treatment of ischemic retinal diseases.

5.
Iran J Basic Med Sci ; 27(10): 1323-1330, 2024.
Article in English | MEDLINE | ID: mdl-39229579

ABSTRACT

Objectives: Hepatic ischemia-reperfusion (HIR) is a severe process in pathophysiology that occurs clinically in hepatectomy, and hepatic transplantations. The present study aimed to investigate the effect of PKC θ deletion against HIR injury and elucidate its mechanism in pathophysiology. Materials and Methods: HIR injury was induced in wild-type and PKC θ deletion mice treated with or without heme. The ALT and AST levels were determined to evaluate liver function. HIR injury was observed via histological examination. Oxidative stress and inflammatory response markers, and their signaling pathways were detected. Results: The study found that PKC θ knockout decreased serum AST and ALT levels when compared to the WT mice. Furthermore, heme treatment significantly reduced the ALT and AST levels of the PKC θ deletion mice compared with the untreated PKC θ deletion mice. PKC θ deletion markedly elevated superoxide dismutase activity in the liver tissue, reduced malondialdehyde content in the tissue, and the serum TNF-α and IL-6 levels compared with the WT mice. Heme treatment was observed to elevate the activity of SOD and reduced MDA content and serum of TNF-α and IL 6 in the PKC θ deletion animals. Meanwhile, heme treatment increased HO-1 and Nrf 2 protein expression, and reduced the levels of TLR4, phosphorylated NF-κB, and IKB-α. Conclusion: These findings suggested that PKC θ deletion ameliorates HIR, and heme treatment further improves HIR, which is related to regulation of PKC θ deletion on Nrf 2/HO-1 and TLR4/NF-κB/IKB α pathway.

6.
J Orthop Surg Res ; 19(1): 531, 2024 Sep 02.
Article in English | MEDLINE | ID: mdl-39218922

ABSTRACT

BACKGROUND: Bone loss caused by microgravity exposure presents a serious threat to the health of astronauts, but existing treatment strategies have specific restrictions. This research aimed to investigate whether salidroside (SAL) can mitigate microgravity-induced bone loss and its underlying mechanism. METHODS: In this research, we used hindlimb unloading (HLU) and the Rotary Cell Culture System (RCCS) to imitate microgravity in vivo and in vitro. RESULTS: The results showed that salidroside primarily enhances bone density, microstructure, and biomechanical properties by stimulating bone formation and suppressing bone resorption, thereby preserving bone mass in HLU rats. In MC3T3-E1 cells cultured under simulated microgravity in rotary wall vessel bioreactors, the expression of osteogenic genes significantly increased after salidroside administration, indicating that salidroside can promote osteoblast differentiation under microgravity conditions. Furthermore, the Nrf2 inhibitor ML385 diminished the therapeutic impact of salidroside on microgravity-induced bone loss. Overall, this research provides the first evidence that salidroside can mitigate bone loss induced by microgravity exposure through stimulating the Nrf2/HO-1 pathway. CONCLUSION: These findings indicate that salidroside has great potential for treating space-related bone loss in astronauts and suggest that Nrf2/HO-1 is a viable target for counteracting microgravity-induced bone damage.


Subject(s)
Glucosides , NF-E2-Related Factor 2 , Phenols , Weightlessness Simulation , Glucosides/pharmacology , Glucosides/therapeutic use , Animals , Phenols/pharmacology , Phenols/therapeutic use , NF-E2-Related Factor 2/metabolism , Mice , Weightlessness Simulation/adverse effects , Rats , Male , Heme Oxygenase-1/metabolism , Rats, Sprague-Dawley , Signal Transduction/drug effects , Weightlessness/adverse effects , Osteogenesis/drug effects , Osteoblasts/drug effects , Osteoblasts/metabolism , Hindlimb Suspension , Bone Resorption/prevention & control , Bone Resorption/etiology , Bone Resorption/metabolism , Bone Density/drug effects , Membrane Proteins
7.
Plants (Basel) ; 13(17)2024 Sep 06.
Article in English | MEDLINE | ID: mdl-39273990

ABSTRACT

This study investigates the composition characteristics and anti-inflammatory activity mechanisms of the essential oil from the leaves of Crossostephium chinense. C. chinense is a perennial herb commonly found in East Asia, traditionally used to treat various ailments. The essential oil extracted through water distillation, primarily contains 1,8-cineole (13.73%), santolina triene (13.53%), and germacrene D (10.67%). Three compounds were identified from the essential oil, namely 1-acetoxy-2-(2-hydroxypropyl)-5-methylhex-3,5-diene, 1-acetoxy-isopyliden-hex-5-en-4-one, and chrysanthemyl acetate, with the first two being newly discovered compounds. Then, the essential oil of C. chinense exhibits significant anti-inflammatory effects on RAW264.7 macrophages, effectively inhibiting the production of NO and ROS, with the IC50 value of 10.3 µg/mL. Furthermore, the essential oil reduces the expression of pro-inflammatory cytokines such as TNF-α, IL-6, and IL-1ß. Mechanistic studies indicate that the essential oil affects the inflammatory response by inhibiting the expression of iNOS but has no significant impact on COX-2. Further analysis suggests that the essential oil may regulate the inflammatory response through the ERK protein in the MAPK pathway and IκBα in the NF-κB pathway, while also promoting the activity of the NRF2/HO-1 antioxidant pathway, enhancing the cell's antioxidant capacity, thereby achieving an effect of inhibiting the inflammatory response. These results highlight the potential application value of C. chinense leaf essential oil in the medical and healthcare fields.

8.
Arch Biochem Biophys ; : 110153, 2024 Sep 11.
Article in English | MEDLINE | ID: mdl-39271097

ABSTRACT

Myocardial infarction (MI) is the primary source of death in cardiovascular diseases. Myricitrin (MYR) is a phenolic compound known for its antioxidant properties. This study aimed to investigate the impact of MYR alone or combined with exercise on a rat model of MI and its underlying mechanism. Sprague-Dawley rats were randomized into 5 groups: sham-operated (Sham), MI-sedentary (MI-Sed), MI-exercise (MI-Ex), MI-sedentary + MYR (MI-Sed-MYR) and MI-exercise + MYR (MI-Ex-MYR). MI was induced through ligation of left anterior descending coronary artery. The treatment with exercise or MYR (30 mg/kg/d) gavage began one week after surgery, either individually or in combination. After 8 weeks, the rats were assessed for cardiac function. Myocardial injuries were estimated using triphenyltetrazolium chloride, sirius red and Masson staining. Changes in reactive oxygen species (ROS) levels, mitochondrial membrane potential (ΔΨm), apoptosis and Nrf2/HO-1 pathway were analyzed by ROS kit, JC-1 kit, TUNEL assay, western blot and immunohistochemistry. Both MYR and exercise treatments improved cardiac function, reduced infarct size, suppressed collagen deposition, and decreased myocardial fibrosis. Additionally, both MYR and exercise treatments lowered ROS production induced by MI, restored ΔΨm, and attenuated oxidative stress and apoptosis in cardiomyocytes. Importantly, the combination of MYR and exercise showed greater efficacy compared to individual treatments. Mechanistically, the combined intervention activated the Nrf2/HO-1 signaling pathway. These findings suggest that the synergistic effect of MYR and exercise may offer a promising therapeutic approach for alleviating MI.

9.
Int J Mol Sci ; 25(17)2024 Aug 24.
Article in English | MEDLINE | ID: mdl-39273143

ABSTRACT

Prostate cancer (PC) is a significant cause of mortality in men worldwide, hence the need for a comprehensive understanding of the molecular mechanisms underlying its progression and resistance to treatment. Heme oxygenase-1 (HO-1), an inducible enzyme involved in heme catabolism, has emerged as a critical player in cancer biology, including PC. This review explores the multifaceted role of HO-1 in PC, encompassing its function, regulation, and implications in cancer therapy. HO-1 influences cell proliferation, anti-apoptotic pathways, angiogenesis, and the tumor microenvironment, thereby influencing tumor growth and metastasis. HO-1 has also been associated with therapy resistance, affecting response to standard treatments. Moreover, HO-1 plays a significant role in immune modulation, affecting the tumor immune microenvironment and potentially influencing therapy outcomes. Understanding the intricate balance of HO-1 in PC is vital for developing effective therapeutic strategies. This review further explores the potential of targeting HO-1 as a therapeutic approach, highlighting challenges and opportunities. Additionally, clinical implications are discussed, focusing on the prognostic value of HO-1 expression and the development of novel combined therapies to augment PC sensitivity to standard treatment strategies. Ultimately, unraveling the complexities of HO-1 in PC biology will provide critical insights into personalized treatment approaches for PC patients.


Subject(s)
Heme Oxygenase-1 , Prostatic Neoplasms , Tumor Microenvironment , Humans , Heme Oxygenase-1/metabolism , Heme Oxygenase-1/genetics , Prostatic Neoplasms/drug therapy , Prostatic Neoplasms/pathology , Prostatic Neoplasms/metabolism , Prostatic Neoplasms/therapy , Prostatic Neoplasms/genetics , Male , Gene Expression Regulation, Neoplastic , Animals , Cell Proliferation
10.
Br J Pharmacol ; 2024 Sep 04.
Article in English | MEDLINE | ID: mdl-39233316

ABSTRACT

BACKGROUND AND PURPOSE: Skin flaps are among the most important means of wound repair in clinical settings. However, partial or even total distal necrosis may occur after a flap operation, with severe consequences for both patients and doctors. This study investigated whether tert-butylhydroquinone (TBHQ), a known agonist of the transcription factor nuclear factor erythroid 2-related factor 2 (Nrf2), and an antioxidant, could promote skin flap survival. EXPERIMENTAL APPROACH: McFarlane skin flap models were established in male Sprague-Dawley rats and then randomly divided into control, low-dose TBHQ, and high-dose TBHQ treatment groups. On postoperative day 7, the survival and blood flow of the skin flaps were assessed. Using flap tissue samples, angiogenesis, inflammation, apoptosis, autophagy, and Nrf2/haem oxygenase 1 (HO-1) signalling pathway activity were measured with immunohistochemical techniques and western blotting. KEY RESULTS: TBHQ dose-dependently stimulated the Nrf2/HO-1 signalling pathway, inducing autophagy through the up-regulation of LC3B and beclin 1 and concurrently suppressing p62 expression. Additionally, TBHQ hindered apoptosis by enhancing Bcl-2 expression while inhibiting the expression of Bax. It suppressed inflammation by inhibiting the expression of interleukin 1ß, interleukin 6, and tumour necrosis factor-α and enhanced angiogenesis by promoting the expression of vascular endothelial growth factor. CONCLUSION AND IMPLICATIONS: In summary, TBHQ promoted flap survival in rats by up-regulating the Nrf2/HO-1 signalling pathway. As TBHQ is already widely used as a food additive, it could offer an acceptable means of improving clinical outcomes following skin flap surgery in patients.

11.
Food Sci Biotechnol ; 33(11): 2631-2641, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39144189

ABSTRACT

Nootkatone (NK) is an aromatic compound derived from grapefruit. This study aimed to investigate the inhibitory effect of NK on lipid accumulation and its underlying mechanism in adipocytes. NK effectively inhibited adipogenic lipid storage by downregulating C/EBPα and PPARγ, while upregulating KLF2, an early inhibitory factor, downregulating C/EBPß, an early promoting factor. In addition, NK inhibited the JAK2-STAT signaling pathway by decreasing the phosphorylation of STAT3 and STAT5 in the early adipogenic stage. NK significantly reduced ROS generation while elevating antioxidant enzymes such as catalase and glutathione peroxidase. It activated NRF2-HO-1 signaling, responsible for antioxidant response, by increasing protein levels. Furthermore, NK regulated adipokines, increasing adiponectin and visfatin, while downregulating resistin. Collectively, NK inhibited adipogenic lipid accumulation through the suppression of JAK2-STAT signaling and the augmentation of antioxidant response. This study highlights the potential of NK as an edible agent to alleviate obesity and its associated metabolic diseases. Supplementary Information: The online version contains supplementary material available at 10.1007/s10068-024-01522-2.

12.
Int Immunopharmacol ; 141: 112882, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-39151383

ABSTRACT

Recent research found artesunate could inhibit ocular fibrosis; however, the underlying mechanisms are not fully known. Since the ocular fibroblast is the main effector cell in fibrosis, we hypothesized that artesunate may exert its protective effects by inhibiting the fibroblasts proliferation. TGF-ß1-induced ocular fibroblasts and glaucoma filtration surgery (GFS)-treated rabbits were used as ocular fibrotic models. Firstly, we analyzed fibrosis levels by assessing the expression of fibrotic marker proteins, and used Ki67 immunofluorescence, EdU staining, flow cytometry to determine cell cycle status, and SA-ß-gal staining to assess cellular senescence levels. Then to predict target genes and pathways of artesunate, we analyzed the differentially expressed genes and enriched pathways through RNA-seq. Western blot and immunohistochemistry were used to detect the pathway-related proteins. Additionally, we validated the dependence of artesunate's effects on HO-1 expression through HO-1 siRNA. Moreover, DCFDA and MitoSOX fluorescence staining were used to examine ROS level. We found artesunate significantly inhibits the expression of fibrosis-related proteins, induces cell cycle arrest and cellular senescence. Knocking down HO-1 in fibroblasts with siRNA reverses these regulatory effects of artesunate. Mechanistic studies show that artesunate significantly inhibits the activation of the Cyclin D1/CDK4-pRB pathway, induces an increase in cellular and mitochondrial ROS levels and activates the Nrf2/HO-1 pathway. In conclusion, the present study identifies that artesunate induces HO-1 expression through ROS to activate the antioxidant Nrf2/HO-1 pathway, subsequently inhibits the cell cycle regulation pathway Cyclin D1/CDK4-pRB in an HO-1-dependent way, induces cell cycle arrest and senescence, and thereby resists periorbital fibrosis.

13.
J Biochem Mol Toxicol ; 38(9): e23809, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39148263

ABSTRACT

Nonalcoholic fatty liver disease (NAFLD) is an alarming ailment that leads to severe liver damage and increases the risk of serious health conditions. The prevalence of NAFLD due to oxidative stress could be mitigated by plant-derived antioxidants. This study aims to investigate the effects of syringic acid (SA) on NAFLD in a high-fat diet (HFD) rat model. Twenty-four rats were randomly divided into four groups (n = 6): normal control, HFD, SA-administered HFD, and positive control SA on a normal diet. Rats in the normal control and positive control groups received a normal diet, and the remaining groups received an HFD for 8 weeks. SA (20 mg/kg b.w.) was orally (gavage) administered for 8 weeks. Lipid profiles were controlled by SA against HFD-fed rats (p < 0.05). SA reduced the serum aspartate aminotransferase and alanine aminotransferase levels by 70%-190%. SA also suppressed pro-inflammatory cytokines and attenuated histopathological and immunohistochemical changes against HFD-fed rats. SA reversed oxidative stress by suppressing the malondialdehyde formation by 82% and replenished the nonenzymatic and enzymatic antioxidant activities (p < 0.05). Gene expressions of nuclear factor-erythroid 2-related factor/heme oxygenase 1 (Nrf2/HO-1) were elevated in SA-treated rats. Ameliorative effects of SA on NAFLD induced by an HFD in rats were prominent through the reversal of oxidative stress and inflammation, regulated by an intrinsic mechanism of defense against oxidative stress, the Nrf2/HO-1 pathway.


Subject(s)
Gallic Acid , Heme Oxygenase (Decyclizing) , NF-E2-Related Factor 2 , Non-alcoholic Fatty Liver Disease , Signal Transduction , Animals , NF-E2-Related Factor 2/metabolism , Non-alcoholic Fatty Liver Disease/metabolism , Non-alcoholic Fatty Liver Disease/drug therapy , Non-alcoholic Fatty Liver Disease/etiology , Non-alcoholic Fatty Liver Disease/pathology , Non-alcoholic Fatty Liver Disease/prevention & control , Rats , Male , Signal Transduction/drug effects , Gallic Acid/analogs & derivatives , Gallic Acid/pharmacology , Heme Oxygenase (Decyclizing)/metabolism , Oxidative Stress/drug effects , Heme Oxygenase-1/metabolism , Diet, High-Fat/adverse effects , Rats, Sprague-Dawley , Antioxidants/pharmacology , Liver/metabolism , Liver/drug effects , Liver/pathology
14.
Chem Biol Interact ; 401: 111188, 2024 Sep 25.
Article in English | MEDLINE | ID: mdl-39121897

ABSTRACT

The random flap is one of the commonly used techniques for tissue defect repair in surgery and orthopaedics, however the risk of ischaemic necrosis at the distal end of the flap limits its size and clinical application. Metformin (Met) is a first-line medication in the treatment of type 2 diabetes, with additional effects such as anti-tumor, anti-aging, and neuroprotective properties. In this study, we aimed to investigate the biological effects and potential mechanisms of Met in improving the survival of random skin flaps. Twenty-four male Sprague-Dawley rats and 12 male C57BL/6J mice underwent McFarlane flap surgery and divided into control (Ctrl) and Met groups (100 mg/kg). The survival rate of the flap were evaluated on day 7. Angiography, Laser doppler blood flow imaging, and H&E staining were used to assess blood flow supply and the levels of microvascular density. Then, reactive oxygen species (ROS) and malondialdehyde (MDA) levels, and the activities of superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px) were measured by test kits. Immunohistochemistry analysis was conducted to evaluate the expression of Vascular Endothelial Growth Factor A (VEGFA), Vascular endothelial cadherin (VE-cadherin) and CD31. Rats and mice in the Met group exhibited higher flap survival rate, microcirculatory flow, and higher expression levels of VEGFA and VE-cadherin compared with the Ctrl group. In addition, the level of oxidative stress was significantly lower in the met group. And then we demonstrated that the human umbilical vein endothelial cells (HUVECs) treated with Met can alleviate tert-butyl hydroperoxide (TBHP)-stimulated cellular dysfunction and oxidative stress injury. Mechanistically, Met markedly stimulated the expression of nuclear factor erythroid 2-related factor 2 (Nrf2) and heme oxygenase-1 (HO-1), and promoted Nrf2 nuclear translocation. Silencing of Nrf2 partially abolished the antioxidant and therapeutic effects of Met. In summary, our data have confirmed that Met has a positive effect on flap survival and reduces necrosis. The mechanism of action involves the regulation of the Nrf2/HO-1 signaling pathway to combat oxidative stress and reduce damage.


Subject(s)
Metformin , Mice, Inbred C57BL , NF-E2-Related Factor 2 , Rats, Sprague-Dawley , Signal Transduction , Animals , NF-E2-Related Factor 2/metabolism , Metformin/pharmacology , Male , Signal Transduction/drug effects , Rats , Mice , Humans , Surgical Flaps/pathology , Skin/drug effects , Skin/metabolism , Vascular Endothelial Growth Factor A/metabolism , Reactive Oxygen Species/metabolism , Oxidative Stress/drug effects , Heme Oxygenase-1/metabolism , Malondialdehyde/metabolism , Human Umbilical Vein Endothelial Cells/metabolism , Human Umbilical Vein Endothelial Cells/drug effects , Superoxide Dismutase/metabolism
15.
Toxicol Sci ; 2024 Aug 07.
Article in English | MEDLINE | ID: mdl-39110510

ABSTRACT

Hyperoxia-induced acute lung injury (HALI) is a complication of oxygen therapy. Ferroptosis is a vital factor in HALI. This paper was anticipated to investigate the underlying mechanism of Wedelolactone (WED) on ferroptosis in HALI. The current study used hyperoxia to injure two models, one HALI mouse model and one MLE-12 cell injury model. We found that WED treatment attenuated HALI by decreasing the lung injury score and lung wet/dry weight ratio and alleviating pathomorphological changes. Then, the inflammatory reaction and apoptosis in HALI mice and hyperoxia-mediated MLE-12 cells were inhibited by WED treatment. Moreover, WED alleviated ferroptosis with less iron accumulation and reversed expression alterations of ferroptosis markers, including MDA, GSH, GPX4, SLC7A11, FTH1, and TFR1 in hyperoxia-induced MLE-12 cells in vitro and in vivo. Nrf2-KO mice and Nrf2 inhibitor (ML385) decreased WED's ability to protect against apoptosis, inflammatory response, and ferroptosis in hyperoxia-induced MLE-12 cells. Collectively, our data highlighted the alleviatory role of WED in HALI by activating the Nrf2/HO-1 pathway.

16.
Int J Mol Sci ; 25(15)2024 Aug 02.
Article in English | MEDLINE | ID: mdl-39126007

ABSTRACT

Diabetic retinopathy (DR) is one of the most prevalent secondary complications associated with diabetes. Specifically, Type 1 Diabetes Mellitus (T1D) has an immune component that may determine the evolution of DR by compromising the immune response of the retina, which is mediated by microglia. In the early stages of DR, the permeabilization of the blood-retinal barrier allows immune cells from the peripheral system to interact with the retinal immune system. The use of new bioactive molecules, such as 3-(2,4-dihydroxyphenyl)phthalide (M9), with powerful anti-inflammatory activity, might represent an advance in the treatment of diseases like DR by targeting the immune systems responsible for its onset and progression. Our research aimed to investigate the molecular mechanisms involved in the interaction of specific cells of the innate immune system during the progression of DR and the reduction in inflammatory processes contributing to the pathology. In vitro studies were conducted exposing Bv.2 microglial and Raw264.7 macrophage cells to proinflammatory stimuli for 24 h, in the presence or absence of M9. Ex vivo and in vivo approaches were performed in BB rats, an animal model for T1D. Retinal explants from BB rats were cultured with M9. Retinas from BB rats treated for 15 days with M9 via intraperitoneal injection were analyzed to determine survival, cellular signaling, and inflammatory markers using qPCR, Western blot, or immunofluorescence approaches. Retinal structure images were acquired via Spectral-Domain-Optical Coherence Tomography (SD-OCT). Our results show that the treatment with M9 significantly reduces inflammatory processes in in vitro, ex vivo, and in vivo models of DR. M9 works by inhibiting the proinflammatory responses during DR progression mainly affecting immune cell responses. It also induces an anti-inflammatory response, primarily mediated by microglial cells, leading to the synthesis of Arginase-1 and Hemeoxygenase-1(HO-1). Ultimately, in vivo administration of M9 preserves the retinal integrity from the degeneration associated with DR progression. Our findings demonstrate a specific interaction between both retinal and systemic immune cells in the progression of DR, with a differential response to treatment, mainly driven by microglia in the anti-inflammatory action. In vivo treatment with M9 induces a switch in immune cell phenotypes and functions that contributes to delaying the DR progression, positioning microglial cells as a new and specific therapeutic target in DR.


Subject(s)
Diabetes Mellitus, Type 1 , Diabetic Retinopathy , Disease Models, Animal , Microglia , Animals , Diabetic Retinopathy/drug therapy , Diabetic Retinopathy/pathology , Diabetic Retinopathy/immunology , Rats , Diabetes Mellitus, Type 1/drug therapy , Diabetes Mellitus, Type 1/immunology , Diabetes Mellitus, Type 1/metabolism , Diabetes Mellitus, Type 1/complications , Mice , Microglia/drug effects , Microglia/metabolism , Retina/drug effects , Retina/pathology , Retina/metabolism , RAW 264.7 Cells , Male , Benzofurans/pharmacology , Benzofurans/therapeutic use , Immunomodulation/drug effects , Inflammation/drug therapy , Inflammation/pathology , Diabetes Mellitus, Experimental/drug therapy , Diabetes Mellitus, Experimental/complications , Rats, Inbred BB
17.
Exp Cell Res ; 441(2): 114195, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-39098466

ABSTRACT

Chondrocyte ferroptosis induces the occurrence of osteoarthritis (OA). As a key gene of OA, C5a receptor 1 (C5AR1) is related to ferroptosis. Here, we investigated whether C5AR1 interferes with chondrocyte ferroptosis during OA occurrence. C5AR1 was downregulated in PA-treated chondrocytes. Overexpression of C5AR1 increased the cell viability and decreased ferroptosis in chondrocytes. Moreover, Tumor necrosis factor superfamily member 13B (TNFSF13B) was downregulated in PA-treated chondrocytes, and knockdown of TNFSF13B eliminated the inhibitory effect of C5AR1 on ferroptosis in chondrocytes. More importantly, the PI3K/Akt/GSK3ß/Nrf2/HO-1 pathway inhibitor LY294002 reversed the inhibition of C5AR1 or TNFSF13B on ferroptosis in chondrocytes. Finally, we found that C5AR1 alleviated joint tissue lesions and ferroptosis in rats and inhibited the progression of OA in the rat OA model constructed by anterior cruciate ligament transection (ACLT), which was reversed by interfering with TNFSF13B. This study shows that C5AR1 reduces the progression of OA by upregulating TNFSF13B to activate the PI3K/Akt/GSK3ß/Nrf2/HO-1 pathway and thereby inhibiting chondrocyte sensitivity to ferroptosis, indicating that C5AR1 may be a potential therapeutic target for ferroptosis-related diseases.


Subject(s)
Chondrocytes , Ferroptosis , Glycogen Synthase Kinase 3 beta , NF-E2-Related Factor 2 , Osteoarthritis , Phosphatidylinositol 3-Kinases , Proto-Oncogene Proteins c-akt , Rats, Sprague-Dawley , Receptor, Anaphylatoxin C5a , Animals , Ferroptosis/drug effects , Proto-Oncogene Proteins c-akt/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Chondrocytes/metabolism , Chondrocytes/pathology , Chondrocytes/drug effects , NF-E2-Related Factor 2/metabolism , NF-E2-Related Factor 2/genetics , Rats , Osteoarthritis/metabolism , Osteoarthritis/pathology , Osteoarthritis/genetics , Glycogen Synthase Kinase 3 beta/metabolism , Glycogen Synthase Kinase 3 beta/genetics , Male , Receptor, Anaphylatoxin C5a/metabolism , Receptor, Anaphylatoxin C5a/genetics , Signal Transduction , Heme Oxygenase-1/metabolism , Heme Oxygenase-1/genetics , Heme Oxygenase (Decyclizing)
18.
Toxicol Res (Camb) ; 13(4): tfae129, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39148957

ABSTRACT

In the present study, we investigated the protective effect of magnolin (MAG) against oxidative stress induced by cyclophosphamide (CP) and its role in the Nrf2/HO-1 signaling pathway. Rats were administered MAG (1 mg/kg, i.p.) for 14 days and CP (75 mg/kg, i.p.) on the 14th day. CP administration increased tissue damage, as evidenced by elevated levels of transaminases (aspartate and alanine), alkaline phosphatase, and renal parameters (blood urea nitrogen and creatinine). Additionally, 8-hydroxy-2'-deoxyguanosine and malondialdehyde levels were increased, whereas glutathione levels, along with catalase and superoxide dismutase activities, decreased in CP-treated rats. CP also down-regulated the expression of Bcl-2, HO-1, Nrf2, and NQO-1, while up-regulating Bax, Cas-3, TNF-α, Cox-2, iNOS, IL-6, IL-1ß, and NFκB in liver and kidney tissues. In addition, CP treatment caused histopathological changes in heart, lung, liver, kidney, brain, and testis tissues. Treatment with MAG improved biochemical and oxidative stress parameters and prevented histopathological changes in CP-treated rats. Moreover, MAG suppressed the expression of inflammatory cytokines and apoptosis markers. In conclusion, MAG effectively prevented CP-induced toxicity by reducing oxidative stress, inflammation, and apoptosis, with its protective efficacy associated with the up-regulation of Nrf2/HO-1 signaling.

19.
Nat Prod Bioprospect ; 14(1): 44, 2024 Aug 12.
Article in English | MEDLINE | ID: mdl-39133435

ABSTRACT

Xiaoyankangjun tablet (XYKJP) is a traditional Chinese medicine formulation used to treat intestinal disorders in clinical practice. However, the specific therapeutic mechanism of action of XYKJP in colitis has not yet been elucidated. This study aimed to reveal the multifaceted mechanisms of action of XYKJP in treating colitis. The model established based on DSS-induced colitis in C57BL/6 mice was employed to estimate the effect of XYKJP on colitis, which was then followed by histological assessment, 16S rRNA sequencing, RT-qPCR, ELISA, and Western blot. XYKJP alleviated the symptoms of DSS-induced colitis mainly by reducing oxidative stress, inflammatory responses, and intestinal mucosal repair in colitis tissues. In addition, XYKJP regulated the intestinal flora by increasing the relative abundance of Akkermansia and Bifidobacterium and reducing the relative abundance of Coriobacteriaceae_UCG-002. Mechanistically, XYKJP increased the content of short-chain fatty acids (SCFAs) in the feces, particularly propanoic acid and butyric acid, activated their specific receptor GPR43/41, furthermore activated the Nrf2/HO-1 pathway, and suppressed the JAK2/STAT3 pathway. XYKJP significantly alleviated the symptoms of experimental colitis and functioned synergistically by regulating the intestinal flora, increasing the production of SCFAs, and activating their specific receptors, thereby repressing oxidative stress and inflammation.

20.
Cell Biochem Biophys ; 2024 Aug 26.
Article in English | MEDLINE | ID: mdl-39187743

ABSTRACT

Sepsis patients are highly prone to sepsis-associated encephalopathy (SAE) complications, resulting in a high mortality rate. Recently, there has been no specific treatment for long-term improvement of cerebral function. Ginsenoside Rh2 is a form of steroidal saponins isolated from plant ginseng and has been shown to possess anti-inflammatory as well as neuroprotective characteristics; yet, the effect of ginsenoside Rh2 on SAE treatment is obscure. Accordingly, we proposed to investigate the effect of ginsenoside Rh2 in alleviating SAE damage. We established and utilized the SAE mouse model to determine the effect of Rh2 treatment on alleviating SAE. We determined the expression levels of Heme oxygenase-1(HO-1) and Nuclear factor erythroid 2-related factor 2 (Nrf2) as well as measured neural apoptosis by flow cytometry. Also, we quantified the levels of caspase-3, malondialdehyde (MDA), GSH-Px superoxide dismutase (SOD) and evaluated the animals' neural reflex function. First, used Rh2 to treat microglia BV2 and mouse neuron MN-c whether LPS exist or not, and then measured expression level of Iba-1, apoptotic rate, and ROS content applying flow cytometry. Also, we quantified the levels of tumor necrosis factor-α (TNF-α), interleukin-1ß (IL-1ß), and interleukin-6 (IL-6). In comparison with the Sham group, the SAE model exhibited an elevated MDA content, caspase-3 activity, and cell apoptosis. On the other hand, the GSH-Px activity and SOD level were decreased along with a decreased neural reflex score. Our investigation concluded that Rh2 treatment significantly alleviated SAE damage and inhibited LPS-induced response via up-regulation of the Nrf2/HO-1 pathway to promote anti-oxidative stress capacity and inhibit neural cell apoptosis.

SELECTION OF CITATIONS
SEARCH DETAIL