Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters








Database
Language
Publication year range
1.
Oncol Lett ; 24(2): 290, 2022 Aug.
Article in English | MEDLINE | ID: mdl-35928802

ABSTRACT

The transcription factor or tumor suppressor protein p53 regulates numerous cellular functions, including cell proliferation, invasion, migration, senescence and apoptosis, in various types of cancer. HS-1793 is an analog of resveratrol, which exhibits anti-cancer effects on various types of cancer, including breast, prostate, colon and renal cancer, and multiple myeloma. However, to the best of our knowledge, the role of HS-1793 in lung cancer remains to be examined. The present study aimed to investigate the anti-cancer effect of HS-1793 on lung cancer and to determine its association with p53. The results revealed that HS-1793 reduced cell proliferation in lung cancer and increased p53 stability, thereby elevating the expression levels of the target genes p21 and mouse double minute 2 homolog (MDM2). When the levels of MDM2, a negative regulator of p53, are increased under normal conditions, MDM2 binds and degrades p53; however, HS-1793 inhibited this binding, confirming that p53 protein stability was increased. In conclusion, the findings of the present study provide new evidence that HS-1793 may inhibit lung cancer proliferation by disrupting the p53-MDM2 interaction.

2.
Food Sci Biotechnol ; 31(4): 433-441, 2022 Apr.
Article in English | MEDLINE | ID: mdl-35464242

ABSTRACT

Resveratrol is known to have anti-inflammatory properties. However, high-dose resveratrol is required for optimal anti-inflammatory effects. HS-1793 is a derivative designed to be metabolically stable and more effective than resveratrol. We tested whether HS-1793 also has anti-inflammatory activity. HS-1793 effectively inhibited the mRNA and protein expression of lipopolysaccharide (LPS)-induced inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) in macrophages. Therefore, the production of nitric oxide (NO) and prostaglandin E2 (PGE2) was significantly attenuated. In addition, HS-1793 completely suppressed the production of inflammatory cytokines enhanced by LPS treatment along with a decrease in Toll-like receptor 4 (TLR4) expression. At the same time, the expression of myeloid differentiation factor 88 (MyD88), IL-1 receptor-associated kinase 1 (IRAK1), and TNF receptor-associated factor 6 (TRAF6) signaling molecules and the nuclear translocation of nuclear factor kappa B (NF-κB)/p65 were also downregulated. We conclusively suggest that HS-1793 also exhibits anti-inflammatory properties by effectively inhibiting TLR4-mediated NF-κB activation.

3.
Int J Oncol ; 56(6): 1405-1416, 2020 06.
Article in English | MEDLINE | ID: mdl-32236622

ABSTRACT

Radiotherapy can induce the infiltration of immune suppressive cells which are involved in promoting tumor progression and recurrence. A number of natural products with immunomodulating abilities have been gaining attention as complementary cancer treatments. This attention is partly due to therapeutic strategies which have proven to be ineffective as a result of tumor­induced immunosuppressive cells found in the tumor microenvironment. The present study investigated whether HS­1793, a resveratrol analogue, can enhance the antitumor effects by inhibiting lymphocyte damage and immune suppression by regulatory T cells (Tregs) and tumor­associated macrophages (TAMs), during radiation therapy. FM3A cells were used to determine the role of HS­1793 in the radiation­induced tumor immunity of murine breast cancer. HS­1793 treatment with radiation significantly increased lymphocyte proliferation with concanavalin A (Con A) stimulation and reduced the DNA damage of lymphocytes in irradiated tumor­bearing mice. The administration of HS­1793 also decreased the number of Tregs, and reduced interleukin (IL)­10 and transforming growth factor (TGF)­ß secretion in irradiated tumor­bearing mice. In addition, HS­1793 treatment inhibited CD206+ TAM infiltration in tumor tissue when compared to the controls or irradiation alone. Mechanistically, HS­1793 suppressed tumor growth via the activation of effector T cells in irradiated mice. On the whole, the findings of the present study reveal that HS­1793 treatment improves the outcome of radiation therapy by enhancing antitumor immunity. Indeed, HS­1793 appears to be a good therapeutic candidate for use in combination with radiotherapy in breast cancer.


Subject(s)
Interleukin-10/metabolism , Mammary Neoplasms, Experimental/therapy , Naphthols/administration & dosage , Radiation-Sensitizing Agents/administration & dosage , Resorcinols/administration & dosage , Transforming Growth Factor beta/metabolism , Animals , Cell Line, Tumor , Cell Proliferation/drug effects , Cell Survival/drug effects , Chemoradiotherapy , Concanavalin A/pharmacology , Female , Mammary Neoplasms, Experimental/immunology , Mice , Naphthols/pharmacology , Radiation-Sensitizing Agents/pharmacology , Resorcinols/pharmacology , T-Lymphocytes, Regulatory/drug effects , T-Lymphocytes, Regulatory/radiation effects , Treatment Outcome , Xenograft Model Antitumor Assays
4.
Cancer Lett ; 432: 205-215, 2018 09 28.
Article in English | MEDLINE | ID: mdl-29933047

ABSTRACT

Multiple myeloma (MM) is a neoplastic plasma cell disorder with high disease recurrence rates. Novel therapeutic approaches capable of improving outcomes in patients with MM are urgently required. The AKT signalling plays a critical regulatory role in MM pathophysiology, including survival, proliferation, metabolism, and has emerged as a key therapeutic target. Here, we identified a novel AKT inhibitor, HS1793, and defined its mechanism of action and clinical significance in MM. HS1793 disrupted the interaction between AKT and heat shock protein 90, resulting in protein phosphatase 2A-modulated phosphorylated-AKT (p-AKT) reduction. Moreover, we observed reductions in the kinase activity of the AKT downstream target, IκB kinase alpha, and the transcriptional activity of nuclear factor kappa B, which induced mitochondria-mediated cell death in MM cells exclusively. We confirmed the cytotoxicity and specificity of HS1793 via PET-CT imaging of a metastatic mouse model generated using human MM cells. We also evaluated the cytotoxic effects of HS1793 in primary and relapsed MM cells isolated from patients. Thus, HS1793 offers great promise in eliminating MM cells and improving therapeutic responses in primary and relapsed/refractory MM patients.


Subject(s)
Gene Expression Regulation, Neoplastic/drug effects , Multiple Myeloma/pathology , Naphthols/pharmacology , Neoplasm Recurrence, Local/pathology , Proto-Oncogene Proteins c-akt/antagonists & inhibitors , Resorcinols/pharmacology , Aged , Animals , Apoptosis , Cell Proliferation , Female , HSP90 Heat-Shock Proteins/genetics , HSP90 Heat-Shock Proteins/metabolism , Humans , Mice , Mice, Inbred NOD , Mice, SCID , Multiple Myeloma/drug therapy , Multiple Myeloma/metabolism , NF-kappa B/genetics , NF-kappa B/metabolism , Neoplasm Recurrence, Local/drug therapy , Neoplasm Recurrence, Local/metabolism , Phosphorylation , Protein Kinase Inhibitors/pharmacology , Signal Transduction , Tumor Cells, Cultured , Xenograft Model Antitumor Assays
5.
Toxicol Res ; 30(3): 211-20, 2014 Sep.
Article in English | MEDLINE | ID: mdl-25343016

ABSTRACT

Resveratrol has received considerable attention as a polyphenol with various biological effects such as anti-inflammatory, anti-oxidant, anti-mutagenic, anti-carcinogenic, and cardioprotective properties. As part of the overall safety assessment of HS-1793, a novel resveratrol analogue free from the restriction of metabolic instability and the high dose requirement of resveratrol, we assessed genotoxicity in three in vitro assays: a bacterial mutation assay, a comet assay, and a chromosomal aberration assay. In the bacterial reverse mutation assay, HS-1793 did not increase revertant colony numbers in S. typhimurium strains (TA98, TA100, TA1535 and TA1537) or an E. coli strain (WP2 uvrA) regardless of metabolic activation. HS-1793 showed no evidence of genotoxic activity such as DNA damage on L5178Y Tk(+/-) mouse lymphoma cells with or without the S9 mix in the in vitro comet assay. No statistically significant differences in the incidence of chromosomal aberrations following HS-1793 treatment was observed on Chinese hamster lung cells exposed with or without the S9 mix. These results provide additional evidence that HS-1793 is non-genotoxic at the dose tested in three standard tests and further supports the generally recognized as safe determination of HS-1793 during early drug development.

6.
Int Immunopharmacol ; 22(2): 303-10, 2014 Oct.
Article in English | MEDLINE | ID: mdl-25042796

ABSTRACT

Macrophages are capable of both inhibiting and promoting the growth and spread of cancers, depending on their activation state. Tumor-associated macrophages (TAM) are a kind of alternatively activated M2 macrophage, which may contribute to tumor progression. Following our previous study to evaluate the anti-tumor effect of a synthetic resveratrol analog HS-1793, the current study demonstrated that HS-1793 treatment significantly increased IFN-γ secreting cells in splenocytes and decreased CD206+ macrophage infiltration compared to CD68+ cells in the tumor site with a higher expression of IFN-γ. As these results suggested that IFN-γ increased locally at the tumor sites could modulate the status of TAM, we designed an in vitro model to study macrophage morphology and functions in relation to the tumor microenvironment. Human monocytic cell line THP-1 cells stimulated with phorbol-12-myristate-13-acetate (PMA) differentiated to macrophages with M2-like phenotypes. TAM-like properties of CD206(high), CD204(high), IL-10(high), TGF-ß(high), IL-6(low), IL-12(low), VEGF(high), and MMP-9(high) and promotion of tumor cell invasion were more pronounced in M-2-polarized THP-1 macrophages generated by differentiating THP-1 cells with PMA and subsequently polarizing them with Th2 cytokines (IL-4/IL-13). Upon IFN-γ exposure, THP-1-derived TAM changed their phenotypes to the M-1-like morphology and intracellular granular pattern with an expression of an increased level of proinflammatory and immunostimulatory cytokines and a reduced level of immunosuppressive and tumor progressive mediators. These results explain the underlying mechanism of the anti-tumor activity of HS-1793. The elevated level of IFN-γ production after HS-1793 treatment evoked reprogramming of M-2 phenotype TAM, which efficiently countered the immunosuppressive and tumor progressive influences of TAM.


Subject(s)
Interferon-gamma/immunology , Macrophages/drug effects , Naphthols/pharmacology , Neoplasms/immunology , Resorcinols/pharmacology , Animals , Cell Line, Tumor , Cell Movement , Female , Macrophages/immunology , Mice , Mice, Inbred C3H , Neoplasm Invasiveness , Neoplasms/pathology , Resveratrol , Stilbenes
7.
J Radiat Res ; 55(3): 464-75, 2014 May.
Article in English | MEDLINE | ID: mdl-24403520

ABSTRACT

Resveratrol has received considerable attention as a polyphenol with anti-oxidant, anti-carcinogenic, and anti-inflammatory effects. Radiation is an important component of therapy for a wide range of malignant conditions. However, it causes damage to normal cells and, hence, can result in adverse side effects. This study was conducted to examine whether HS-1793, a novel resveratrol analogue free from the restriction of metabolic instability and the high dose requirement of resveratrol, induces a protective effect against radiation-induced DNA damage. HS-1793 effectively scavenged free radicals and inhibited radiation-induced plasmid DNA strand breaks in an in vitro assay. HS-1793 significantly decreased reactive oxygen species and cellular DNA damage in 2 Gy-irradiated Chinese hamster ovary (CHO)-K1 cells. In addition, HS-1793 dose-dependently reduced the levels of phosphorylated H2AX in irradiated CHO-K1 cells. These results indicate that HS-1793 has chemical radioprotective activity. Glutathione levels and superoxide dismutase activity in irradiated CHO-K1 cells increased significantly following HS-1793 treatment. The enhanced biological anti-oxidant activity and chemical radioprotective activity of HS-1793 maintained survival of irradiated CHO-K1 cells in a clonogenic assay. Therefore, HS-1793 may be of value as a radioprotector to protect healthy tissue surrounding tumor cells during radiotherapy to obtain better tumor control with a higher dose.


Subject(s)
Cell Survival/genetics , Cell Survival/radiation effects , Cesium Radioisotopes/pharmacology , DNA Damage/drug effects , DNA Damage/genetics , Naphthols/administration & dosage , Radiation Tolerance/physiology , Resorcinols/administration & dosage , Animals , CHO Cells , Cell Survival/drug effects , Cricetinae , Cricetulus , Dose-Response Relationship, Drug , Radiation Dosage , Radiation Tolerance/drug effects , Radiation-Protective Agents/administration & dosage
SELECTION OF CITATIONS
SEARCH DETAIL