Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 101
Filter
1.
Heliyon ; 10(15): e35718, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-39170216

ABSTRACT

Ground heat exchanger (GHE) is the most crucial element of a ground source heat pump (GSHP) system for building cooling and heating by the utilization of geothermal energy. Therefore, intending to enhance the performance of GHE, the present study conducts a computational investigation of the thermal performance of modified spiral tube vertical GHEs. Several modifications of uniform-pitched spiral GHE are made to increase its thermal performance. Some modifications are introduced as variable-pitched spiral tube GHE where spiral inlet pipes are densified in the lower part of GHEs by reducing pitch distance. Conversely, in some modifications, the position of the outlet straight pipe is changed. Water is considered as the working fluid and the inlet temperature of the water is maintained fixed at 300.15 K. After extensive analysis, it is evident that, when the outlet pipe is placed outside of the spiral coil, there is a 7.67 % enhancement in the thermal performance than a traditional uniform-pitched spiral tube GHE. However, modifications like variable-pitched spiral tube GHEs are not significant to improve the thermal performance due to the quick saturation of the ground soil temperature around the GHE pipes. To have a balance between heat transfer rate and pressure drop, thermal performance capability (TPC) and coefficient of performance improvement (COP imprvt ) criterion were evaluated and it is found that the uniform-pitched spiral tube GHE along with the outlet pipe at the outside of the spiral provides maximum thermal performance with a maximum TPC value of 1.062 and provides the positive value of COP imprvt criterion. The positive values of COP imprvt indicate that the spiral tube GHEs are energy efficient based on heat transfer and pressure drop. Moreover, spiral GHE with high-density polyethylene (HDPE), concrete pile, and sandy clay outperform the other materials for pipe, backfill, and soil, respectively. Specifically, HDPE pipe, concrete backfill, and sandy clay as soil offer around 7 %, 5 %, and 7.8 % higher thermal performance compared to polyethylene, sand silica, and clay, respectively.

2.
Environ Technol ; : 1-15, 2024 Jul 30.
Article in English | MEDLINE | ID: mdl-39079752

ABSTRACT

Heat pump can be used to recover abundant thermal energy contained in the discharge of municipal wastewater treatment plants. While there are some design standards for common heat pump systems, the design of a sewage source heat pump (SSHP) system is still often based on a fixed heat load and neglects the interdependencies between the equipment sizing and operating parameters. To address the issue that previous design methods have not balanced investment and operational costs well from a global optimisation perspective, this work formulates the simultaneous optimisation of SSHP design and operation as a non-linear programming problem. The proposed model features the consideration of multiple working conditions caused by the impact of ambient temperature variation on the heat load of the SSHP system. The feasibility and potential benefits of the optimised SSHP system are also evaluated by incorporating techno-economic performances and environmental impact analyses into the mathematical framework. A case study is carried out to demonstrate the effectiveness of the proposed methodology. The results show that the total annual cost of the optimally designed and operated SSHP in Harbin could be 9% lower than in Beijing and 39% lower than in Shanghai, suggesting that constructing and running the SSHP system in severe cold regions with great heating demands might be more economical than in less cold regions. The CO2, SO2, and NOx emissions of the SSHP could be approximately 50% less than that of coal-fired boiler heating, and 80% less than that of direct electric heating with coal-fired electricity.

3.
Front Nutr ; 11: 1382296, 2024.
Article in English | MEDLINE | ID: mdl-38835959

ABSTRACT

A new dryer, integrating infrared and heat pump drying technologies, was designed to enhance licorice processing standardization, aiming at improved drying efficiency and product quality. Numerical simulation using COMSOL software validated the air distribution model through prototype data comparison. To address uneven air distribution, a spoiler was strategically placed based on CFD simulation to optimize its size and position using the velocity deviation ratio and non-uniformity coefficient as indices. Post-optimization, the average velocity deviation ratio decreased from 0.5124 to 0.2565%, and the non-uniformity coefficient dropped from 0.5913 to 0.3152, achieving a more uniform flow field in the drying chamber. Testing the optimized dryer on licorice demonstrated significant improvements in flow field uniformity, reducing licorice drying time by 23.8%. Additionally, optimized drying enhanced licorice color (higher L* value) and increased retention rates of total phenol, total flavone, and vitamin C. This research holds substantial importance for advancing licorice primary processing, fostering efficiency, and improving product quality.

4.
J Sci Food Agric ; 2024 Jun 14.
Article in English | MEDLINE | ID: mdl-38877297

ABSTRACT

BACKGROUND: Goji berries, renowned for their nutritional benefits, are traditionally dried to extend shelf life and preserve quality. However, conventional drying methods often result in uneven drying, color loss and reduced rehydration capacity. This study investigates an innovative hybrid strategy combining ultrasonic-ethyl oleate (US+AEEO) pretreatment with heat pump drying (HPD) to enhance the drying process of Goji berries. RESULTS: Fresh Goji berries underwent US+AEEO pretreatment, which significantly disrupted the waxy layer, enhancing drying efficiency and water infiltration during rehydration. Compared to freeze drying (FD), HPD combined with US+AEEO pretreatment resulted in higher retention of total polyphenol content (TPC) and total flavonoid content (TFC) in the Goji soaking soup. Specifically, the HPD-US+AEEO samples exhibited the highest TPC and TFC levels, significantly outperforming FD samples. Additionally, the DPPH and ABTS antioxidant assays demonstrated higher scavenging activities in HPD-US+AEEO samples. The rehydration kinetics revealed that HPD samples had a superior rehydration rate and final moisture content compared to FD samples. Low-field nuclear magnetic resonance and magnetic resonance imaging analyses confirmed enhanced water distribution and higher mobility in HPD-US+AEEO samples. Scanning electron microscopy indicated a more porous structure in US+AEEO-treated samples, facilitating better water absorption and functional component retention. CONCLUSION: The combination of US+AEEO pretreatment with HPD significantly improves the drying process of Goji berries, enhancing nutrient retention, color preservation and rehydration properties. This innovative drying method offers a promising solution for producing high-quality dried Goji berries, benefiting both the food industry and health-conscious consumers. © 2024 Society of Chemical Industry.

5.
Int J Biometeorol ; 68(8): 1615-1624, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38683382

ABSTRACT

Individual heating systems, such as the air-source heat pump (ASHP) air-conditioner or floor heating (FH), are usually used by people living in the hot summer and cold winter (HSCW) zone of China to heat indoor climates in the winter. However, little research has been conducted in the HSCW zone on the thermal comfort difference between indoor climates heated by ASHP air-conditioners and those heated by floor heating, as well as how occupants adapt to different indoor climates. We conducted a comparative field experiment in ASHP-heated and FH-heated apartments in Nanjing to investigate how different types of heating systems influence the thermal sensation of occupants, and we conducted a comparative field experiment in ASHP-heated office buildings and naturally ventilated teaching buildings in Shanghai to investigate how occupants adapt to different indoor thermal environments. Indoor environmental parameters and body surface temperatures were measured using instruments, and occupants' thermal sensation, activity level, and clothing were evaluated using the questionnaire. The results show that floor heating improves thermal comfort by raising foot temperature compared to the ASHP air-conditioner, and that occupants become acclimatized to different indoor climates by adjusting neutral operative temperature. According to the findings, there is no need to overheat the indoor environment in the HSCW zone because occupants can adapt to their experienced thermal environment and it is critical to maintain warm foot temperature in the cool/cold indoor environment.


Subject(s)
Heating , Seasons , Thermosensing , Humans , China , Adult , Male , Female , Housing , Air Conditioning , Acclimatization , Young Adult , Temperature , Hot Temperature
6.
J Environ Manage ; 358: 120861, 2024 May.
Article in English | MEDLINE | ID: mdl-38603848

ABSTRACT

In electric vehicles, the Heating, Ventilation and Air-Conditioning (HVAC) function is often performed by a heat pump. Heating and cooling the cabin air drains energy directly from the vehicle's battery. In addition, these vehicles may operate in environments with high level of air pollution. In the cabin, passengers are confined to a small space where particles and harmful gases can accumulate. In addition, the ventilation system must also handle the air which does not enter the cabin through blower operation. This "infiltration" is a function of the vehicle speed and allows pollution to enter the cabin without being filtered or thermally treated. The objective of the study is to optimize the competing goals of the HVAC system: achieving the best air quality while maintaining good thermal comfort, at minimum energy costs. A system simulation tool is calibrated to represent the heating and cooling of an electric car. With this model, the influence of key factors is evaluated. Depending on ambient conditions and other parameters (number of occupants, vehicle speed, etc.), the blower flow rate and recirculation ratio can be adjusted to reach the objectives. The management of the proportion of fresh and recirculated air allows to regulate the humidity and carbon dioxide levels. Optimum controls are proposed as good trade-offs to reduce the power consumption, while maintaining a safe and comfortable environment for occupants. Compared to the full fresh air mode, the driving range gains are estimated in cold (-15 °C) and hot (30 °C) scenarios at 9 and 26 km respectively.


Subject(s)
Air Conditioning , Air Pollution , Ventilation , Air Pollution/prevention & control , Electricity , Carbon Dioxide/analysis
7.
Sci Rep ; 14(1): 5286, 2024 Mar 04.
Article in English | MEDLINE | ID: mdl-38438502

ABSTRACT

Based on the advantages of energy saving, environmental protection and high efficiency, carbon dioxide heat pump system has great application prospects. However, there are still many technical problems to be solved, especially the design and optimization of carbon dioxide centrifugal compressor. In this paper, a centrifugal compressor in carbon dioxide heat pump system is designed. The compressor is directly driven by a high-speed permanent magnet synchronous motor. Two-stage impellers are installed on both sides of the motor, and the bearings are active magnetic bearings. The influences of inlet pressure and temperature on compressor performance are analyzed. In the range of inlet temperature from 35 to 55 °C, with the decrease of inlet temperature, the compressor pressure ratio increases by 12-29.8%, the power increases by 2.7-8.6%. In the range of inlet pressure from 4 to 6 MPa, with the increase of inlet pressure, the compressor pressure ratio increases by 12.3-38.6%, and the power increases by 8.7-17.8%. In addition, the calculation method of compressor axial force is introduced, the axial force is calculated, analyzed and optimized. Furthermore, the rotor dynamics of compressor rotor and the influences of bearing stiffness and diameter of motor rotor on rotor dynamics are studied. With the increase of bearing stiffness, the first-order critical speed and maximum displacement of the rotor increase. The research provides a theoretical reference for the design and optimization of centrifugal compressor in carbon dioxide heat pump system.

8.
Heliyon ; 10(6): e26929, 2024 Mar 30.
Article in English | MEDLINE | ID: mdl-38501014

ABSTRACT

80% of current UK housing stock is expected to still be in use in 2050. Difficult, intrusive and expensive, refurbishment measures are required to achieve the level of insulation required for current low temperature heat pumps. Transcritical CO2 heat pumps can achieve higher efficiencies, with higher output temperatures, than current, Carnot limited, synthetic gas heat pumps, with less environmental impact. Widely deployed in water heating and supermarket chilling systems, CO2 heat pumps need heating return temperatures of 30 °C or less to function effectively. This has impeded their adoption with hydronic heating systems which have high return temperatures. This study identified system modifications external to the refrigeration cycle that address return temperatures. It modelled a transcritical CO2 air source heat pump with a hydronic heating system in a solid wall semi-detached house. Full year system coefficients of performance over 3 were achieved in four UK locations by using space heating return fluids to defrost the air source heat exchanger and to pre-heat inlet water, recovering any remaining excess return fluid heat as a source for the heat pump. Solar panels boosted this to 5.1. The levelized cost of energy for the system was calculated (with heat pump grant) at 22p/kWh, lower than a gas boiler, with 9.45 tonnes CO2 emission savings over a fifteen-year life.

9.
Environ Sci Pollut Res Int ; 31(10): 15627-15647, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38300498

ABSTRACT

A sustainable, affordable, and eco-friendly solution has been proposed to address water heating, electricity generation, space cooling, and photovoltaic (PV) cooling requirements in scorching climates. The photovoltaic thermal system (PV/T) and the direct expansion PV/T heat pump (PV/T DXHP) were numerically studied using MATLAB. A butterfly serpentine flow collector (BSFC) and phase change material (PCM) were assimilated in the PV system and MATLAB model was developed to evaluate the economic and enviroeconomic performance of the PV/T water system (PV/T-W), PV/T PCM water system (PV/T PCM-W), the PV/T DXHP system, and the PV/T PCM heat pump system (PV/T-PCM-DXHP). In this study, annual energy production, socioeconomic factors, enviro-economic indicators, and environmental characteristics are assessed and compared. Also, an economic, environmental, and enviro-economic analysis was conducted to assess the commercial viability of the suggested system. The PV/T PCM-DXHP demonstrated the highest electrical performance of 53.69%, which is comparatively higher than the other three configurations. The discounted levelized cost of energy (DLCOE) and payback period (DPP) of the PV/T PCM-DXHP were ₹2.87 per kW-h and 3-4 years, respectively, resulting in a total savings of ₹67,7403 over its lifetime. Furthermore, installing this system mitigated 280.72 tonnes of CO2 emissions and saved the mitigation cost by ₹329,700 throughout its operational lifecycle.


Subject(s)
Hot Temperature , Water , Feasibility Studies , Socioeconomic Factors , Phase Transition
10.
Heliyon ; 10(4): e24634, 2024 Feb 29.
Article in English | MEDLINE | ID: mdl-38380015

ABSTRACT

An air-source heat pump simulation model, accounting for evaporator and condenser pressure drop, has been developed. The model is capable of computing the heat pump's coefficient of performance (COP) under different ambient temperatures and relative humidities above frosting conditions. This research extends an existing iterative simulation method that relies on the equalization of logarithmic mean temperature differences (LMTDs) calculated through two different approaches by adding a pressure drop simulation. Frictional and acceleration pressure drop is considered, computed iteratively. Simulation results for three different refrigerants, R410A, R32 and R290, are compared. The model's accuracy is validated by comparing simulated COP values with measured COP values from the reference heat pump datasheet. The model closely replicates the measured COP values above frosting conditions, with only a slight underestimation of approximately 1.5%. Results show a substantial impact of ambient temperature on the COP. For instance, an ambient temperature of 20 ◦C, compared to 7 ◦C, results in a COP increase of up to 35%, while an ambient temperature of -10 ◦C leads to a 26% reduction in COP. Relative humidity enhances the COP if air moisture condensation becomes possible. Higher condenser capacities negatively affect the COP. The study highlights the differences in pressure drop characteristics between the condenser and the evaporator for the modeled heat pump, with maximum pressure drops of 220 kPa and 50 kPa for the condenser and evaporator, respectively. Additionally, the choice of refrigerant significantly influences pressure drop, with R32 displaying the lowest pressure drop, R410A showing the highest condenser pressure drop, and R290 causing the highest evaporator pressure drop.

11.
Food Sci Nutr ; 12(2): 952-970, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38370039

ABSTRACT

Postharvest losses (PHLs) of biomaterials, such as vegetables and fruits, significantly impact food security and economic stability in developing nations. In Tanzania, PHLs are estimated to range between 30% and 40% for cereal crops and even higher for perishable crops such as fruits and vegetables. Open-sun drying (OSD) is the most extensively employed method because of its affordability and simplicity. However, OSD has several drawbacks, including difficulties in managing drying parameters, long drying times owing to adverse weather, and product contamination. The solar-assisted heat pump dryer (SAHPD) is a technology designed as an alternative solution for drying biomaterials and reducing PHL. A limited number of SAHPDs have been constructed in developing nations. Most of the works have concentrated on the performance analysis of the systems. This neglects the techno-economic assessment, which is important to provide both a quantitative and qualitative understanding of the financial viability of the technology. The present study therefore investigates the techno-economic analysis of a novel SAHPD for drying agricultural products, particularly vegetables and fruits. To determine whether the SAHPD technology is technically and economically viable, tomatoes and carrots were dried and analyzed to determine their thermal and economic performance. The results show that the initial moisture contents of tomatoes (Lycopersicum esculentum) and carrots (Daucus carota) were reduced from 93% and 88% to 10% in 11 and 12 h, respectively. The coefficient of performance (COP), drying time (DT), specific moisture extraction ration (SMER) and thermal efficiency (ηT) were found to be 3.4, 2.3 kg/h, 1.33 kg/kWh and 54.0%, respectively. The economic analysis was assessed using the annualized cost, lifecycle savings, and payback period for the dryer's life span of 15 years. The initial investment of the SAHPD was $5221.8 and the annualized cost was $1076.5. The cumulative present worth for 15 years was found to be $23,828.8 and $27,553.1 for tomatoes and carrots, respectively. The payback period for tomatoes was found to be 3 years, whereas for carrots it was 2.6 years. Based on thermal and economic performance assessment results, the developed SAHPD is technically and economically viable to be considered for further investments.

12.
Water Res ; 250: 121068, 2024 Feb 15.
Article in English | MEDLINE | ID: mdl-38154337

ABSTRACT

The efficient operation of activated sludge systems is frequently hindered by low temperatures, and extensive research has been conducted to overcome this difficulty. However, the effect of varying temperatures on heat generation during substrate degradation remains unclear. In this study, results from laboratory-scale reactors show that sludge generated 5.36 ± 0.58 J/mg COD, 4.45 ± 0.24 J/mg COD, and 4.22 ± 0.26 J/mg COD at 10 °C, 20 °C, and 30 °C under aerobic conditions, respectively. Similarly, the sludge generated 4.05 ± 0.31 J/mg COD, 2.37 ± 0.15 J/mg COD, and 2.89 ± 0.18 J/mg COD under anoxic conditions. Despite the decreased respiration rates and hence reduced pollutant removal efficiency, sludge exhibited effective heat generation at low temperatures. Results from the full-scale plant also show a negative correlation between the heat generation capacity of microorganisms and the temperatures. 14.2 °C is considered the critical wastewater temperature for microorganisms' heat generation to offset the investigated plant's heat dissipation. This observation verified that thermal compensation for low temperatures was also significant in the full-scale plant. The mechanism of low-temperature compensation is attributed to non-growth processes being less dependent on temperature than growth processes, resulting in slow microbial growth but high heat generation at low temperatures. These findings provide valuable insights into the design and sustainable operation of wastewater treatment plants.


Subject(s)
Hot Temperature , Sewage , Sewage/chemistry , Temperature , Waste Disposal, Fluid/methods , Bioreactors
13.
Environ Technol ; : 1-15, 2023 Sep 05.
Article in English | MEDLINE | ID: mdl-37651210

ABSTRACT

As China's economy and society continue to advance, there has been a notable enhancement in the quality of life for its people. However, the escalating energy consumption in buildings, particularly for heating and cooling purposes, has emerged as a pressing concern, accounting for nearly 60% of the overall energy consumption. In response to this challenge, heat pumps have emerged as a promising solution by efficiently meeting the demand for heating and cooling. Among these options, wastewater-source heat pumps (WWSHP) have garnered attention as an innovative choice, harnessing the waste heat in available wastewater resources in China to provide efficient heating and cooling services. The objective of this study was to comprehensively investigate the decarbonisation potential associated with sewage source heat pumps in China. By employing both techno-economic analysis and life cycle assessment methods, we conducted a thorough comparison between conventional heating and cooling systems and various heat pump systems. The results of our analysis demonstrate that WWSHPs not only exhibit the lowest greenhouse gas (GHG) emissions but also yield the lowest production costs. Our findings reveal that the potential capacity of WWSHPs amounted to a total of 2.4 EJ in 2020, with the capability to mitigate 99 Mt CO2-eq emissions and achieve cost savings of 24 billion RMB. Importantly, WWSHPs' maximum potential cannot be fully realised by replacing heating alone. However, by replacing both heating and cooling options, WWSHPs unlock substantial decarbonisation potential and cost savings.

14.
Turk J Chem ; 47(3): 572-582, 2023.
Article in English | MEDLINE | ID: mdl-37529227

ABSTRACT

The MgCl2-NH3 reactive system is investigated in terms of heat and mass transfer coupled with chemical reaction through numerical simulation. The reversible nature of the chemical reaction is captured by including adsorption and desorption terms in the rate expression simultaneously. The kinetic coefficients of the adsorption are directly adopted from the literature, while those for the desorption reaction are calculated based on the thermodynamic relations. The impact of changing pressure and pellet porosity are also investigated in the simulations. The initial temperature of the pellet is 300 K in all simulations. Temperature, NH3 pressure, and conversion distributions in the pellets, along with pellet swelling are obtained and presented as a function of time. The results indicated strong effects of heat transfer resistances in the pellets.

15.
Sci Total Environ ; 904: 166382, 2023 Dec 15.
Article in English | MEDLINE | ID: mdl-37595916

ABSTRACT

Solar heating is generally regarded as a clean and low-carbon heating method, while its high initial investment hinders its promotion in economically underdeveloped areas. With the implementation of the clean heating policy and the proposal of the carbon neutralization target, rural bulk coal heating in northern China is restricted. The Chinese government proposes to widely adopt solar heating to meet the heating demands of rural residents. In this research, the application of solar assisted heat pump systems in Beijing, Tianjin, Hebei and its surrounding areas in China is numerically simulated. A new evaluation method under the same initial investment constraint is proposed to verify its benefits throughout the entire life cycle. The results indicate that although solar thermal heating has the lowest environmental impact and carbon emissions among various heating methods, it is not the best solution to rural clean heating. The reason is that equal investment in other projects can bring much more benefits, such as roof solar photovoltaic. In contrast to the air source heat pump and photovoltaic panel scheme with the same initial investment, solar heating has obvious negative environmental impact, 53.3 % higher economic cost, 35.9 tons more carbon emissions, and 105.9 % higher roof area occupation. The sensitivity analysis of solar fraction, geographical coordinates, and energy price also supports the above findings. The recommendation is proposed to promote air source heat pumps or solar photovoltaic, rather than solar thermal collectors, so as to reduce the cost of rural clean heating and carbon emission reduction.

16.
Chemosphere ; 338: 139453, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37429384

ABSTRACT

To address the issues with solar water heating systems taking up a lot of space, unstable hot water supply, air source heat pumps susceptible to frost in the winter, and low energy efficiency. The TRNSYS tool is employed in this work to simulate a solar-coupled air source heat pump system. The heat pump operation is first investigated using the inverse Carnot cycle. The performance coefficient is then calculated by the second law of thermodynamics without considering the pipeline's pressure drop and heat loss. The output temperature of the hot water that the heat pump circulates is then determined. The daily hot water needs can be estimated roughly based on information about solar radiation. The heat balance equation for flat plate solar collectors was used to compute the intensity of solar diffused radiation. The Berlage calculation was used to determine the solar radiation received on the collector's surface. After a qualitative analysis of the heat from the heat source, the efficiency of the linked heat pump and the conventional air source heat pump was compared. Analyzing the water temperature change graph for each month's data reveals that the system can achieve 50 °C during the water supply time each month. The heat pump's annual energy consumption is 6252.01 kWh, while the system's annual energy consumption is 9100.47 kWh. The study findings may be used as a guide to improving the design and management of the whole system. In addition, they may improve the solar water supply system's performance.


Subject(s)
Hot Temperature , Solar Energy , Sunlight , Water , Water Supply
17.
Data Brief ; 48: 109256, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37383787

ABSTRACT

The use of energy piles as heat exchangers for Ground Source Heat Pump (GSHP) systems, providing heating and cooling, is a well researched application worldwide [1]. However, a broader implementation in practice still faces resistance, mainly because of the lack of accessible, easy to implement design methods and uncertainty regarding the thermo-mechanical effects. These issues need to be addressed to close the gap between research and practice. This work presents data of a full-scale thermal response test (TRT) undertaken in a group of eight energy screw piles connected in series, that are part of an operational GSHP system of a building located in Melbourne, Australia. The temperature was measured in the inlet and outlet of the pipe circuit (circulating water temperature) and at the bottom of each pile (external pipe wall temperature). Besides providing insights regarding the thermal performance of short energy pile groups, the test was used to validate a finite element numerical model (FEM). The model was then used to expand the database of thermal performance of energy pile groups by simulating several long thermal response tests, considering different energy pile group geometries, configurations and material properties. The experimental data presented can be used for analyses and validation of thermal modelling methodologies that consider the group effect of energy piles, given the lack of TRTs performed in groups of energy piles reported in literature. Moreover, the extensive set of simulated data can be analysed to understand the thermal behaviour of energy pile groups and evaluate how alternative simpler heat transfer models, feasibly applied in industry practice, perform in a range of scenarios that could be encountered in daily practice.

18.
Heliyon ; 9(6): e16485, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37274689

ABSTRACT

Two major problems for the vapor injection heat pump systems with the flash tank are the high discharge temperature and the lack of flash tank design theoretical basis, which would limit its wide application in extreme operating conditions. One possible way to overcome these problems is to effectively control the two-phase injection in the flash tank by optimizing its structure. The use of the proposed novel flash tank in the quasi-two-stage vapor injection cycle represents an economic and controllable solution. This research experimentally analyzes the influences of flash tank structure and volume on the system heating performance under different compressor frequencies and injection pressures at the ambient temperature of -10 °C. The comparative analysis is done finding that the novel flash tank could maximumly improve the system Coefficient of Performance (COPh) by 6.4% in this test, compared with the traditional type A flash tank cycle. In the meanwhile, a bad design of novel flash tank size could represent a loss of COPh improvement between 5.73% and 13.5%. Due to the particular structure, the implementation of the novel flash tank also allows the injection mass flow ratio can keep a linear relationship with the injection pressure. Moreover, the refrigerant liquid can be regularly injected into the compression chamber to control discharge temperature under 100 °C. From all the analysis, guidelines for optimizing the control strategy and the flash tank design are put forward, which can be used to perfect the real thermodynamic model of the flash tank rather than the ideal two-phase separation model.

19.
Micromachines (Basel) ; 14(5)2023 May 22.
Article in English | MEDLINE | ID: mdl-37241717

ABSTRACT

This paper presents the results of an experimental study on the heat transfer and pressure drop characteristics of a novel spiral plate mini-channel gas cooler designed for use with supercritical CO2. The CO2 channel of the mini-channel spiral plate gas cooler has a circular spiral cross-section with a radius of 1 mm, while the water channel has an elliptical cross-section spiral channel with a long axis of 2.5 mm and a short axis of 1.3 mm. The results show that increasing the mass flux of CO2 can effectively enhance the overall heat transfer coefficient when the water side mass flow rate is 0.175 kg·s-1 and the CO2 side pressure is 7.9 MPa. Increasing the inlet water temperature can also improve the overall heat transfer coefficient. The overall heat transfer coefficient is higher when the gas cooler is vertically oriented compared to horizontally oriented. A Matlab program was developed to verify that the correlation based on Zhang's method has the highest accuracy. The study found a suitable heat transfer correlation for the new spiral plate mini-channel gas cooler through experimental research, which can provide a reference for future designs.

20.
Environ Technol ; 44(16): 2357-2373, 2023 Jun.
Article in English | MEDLINE | ID: mdl-34962183

ABSTRACT

Groundwater heat pumps (GWHP) are an efficient utilisation of shallow geothermal energy technology and of great significance in terms of promoting energy conservation and reducing emissions. However, recharge clogging has been a key problem restricting the continuous operation of GWHP. In this study, a simulation test device for sand column was designed with the aim of addressing chemical clogging induced by heat pump reinjection in a porous saline aquifer in the Huaibei Plain, China. The trend in the variation of the permeability coefficient was studied based on the detection of the sand sample composition, recharge water quality, and sand layer temperature, and the cause of formation was analysed using the saturation index (SI) and ion ratio method. The results indicated that the permeability coefficient in the sand column decreased exponentially, with a maximum and minimum decrease of 8.14% and 71.65% of the original coefficient, respectively, found in sections P2-P3 and P8-P9. Therefore, the clogging effect of the aquifer at approximately 200-400 mm from the recharge well was significant. Water-rock interactions predominantly involved the dissolution of halite, albite, chlorite, anhydrite, and dolomite and the precipitation of calcite, as well as the exchange adsorption of Ca2+ and Mg2+ to Na+, which were the key sources of ions during the water chemical evolution process. Finally, quartz was formed by the weathering and dissolution of aluminosilicate minerals such as albite, and particle migration and precipitation during the hydrodynamic disturbance were the primary causes of the front-end blockage of the column.


Subject(s)
Groundwater , Water Pollutants, Chemical , Hot Temperature , Porosity , Sand , Groundwater/chemistry , Water Quality , Water Pollutants, Chemical/analysis , Environmental Monitoring/methods
SELECTION OF CITATIONS
SEARCH DETAIL