Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.599
Filter
1.
Heliyon ; 10(19): e38339, 2024 Oct 15.
Article in English | MEDLINE | ID: mdl-39391468

ABSTRACT

Traditional Chinese medicine (TCM) and dietary compounds have a profound influence on the regulation of gut microbiota (GM) in hepatic fibrosis (HF). Certain substances found in both food and herbs that are edible and medicinal, such as dietary fiber, polyphenols, and polysaccharides, can generate beneficial metabolites like short-chain fatty acids (SCFAs), bile acids (BAs), and tryptophan (Trp). These compounds contribute to regulate the GM, reduce levels of endotoxins in the liver, and alleviate fibrosis and inflammation in the liver. Furthermore, they enhance the composition and functionality of GM, promoting the growth of beneficial bacteria while inhibiting the proliferation of harmful bacteria. These mechanisms mitigate the inflammatory response in the intestines and maintain the integrity of the intestinal barrier. The purpose of this review is to analyze how the GM regulates the pathogenesis of HF, evaluate the regulatory effect of TCM and dietary compounds on the intestinal microflora, with a particular emphasis on modulating flora structure, enhancing gut barrier function, and addressing associated pathogenic factors, thereby provide new insights for the treatment of HF.

2.
J Ethnopharmacol ; 337(Pt 2): 118910, 2024 Oct 05.
Article in English | MEDLINE | ID: mdl-39369915

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: As a compound of traditional Chinese medicine (TCM), Bie Jia Jian pill (BJJP) is extensively used to treat the clinical chronic liver disease. Nevertheless, the specific mechanism through which BJJP affects hepatic fibrosis (HF) remains unknown. AIM OF THE STUDY: To explore the role and potential mechanism of BJJP involved in treating HF. MATERIALS AND METHODS: HF model of Sprague-Dawley (SD) rats was induced by a bile duct ligation (BDL). The function of BJJP involved in the intestinal microbiota (IM) and its metabolites in BDL-induced HF rats were explored through the 16S rRNA sequencing and untargeted metabolomics technologies. Network pharmacology was used to forecast mechanism underlying BJJP's anti-HF effects, which were validated in BDL-induced rats and trimethylamine N-oxide (TMAO)-induced LX-2 and HSC-T6 cells. RESULTS: BJJP effectively ameliorated pathological liver damage, inflammation, and fibrosis of the BDL-induced HF rats. BJJP regulated IM diversity and composition and interfered with trimethylamine (TMA)-flavin monooxygenase 3 (FMO3)-TMAO process. In vitro, BJJP significantly inhibited the TMAO-induced activation of hepatic stellate cells (HSCs) (rat HSC cell line, HSC-T6; human HSC cell line, LX-2). Network pharmacology results demonstrated that PI3K/AKT signal pathway is crucially involved in BJJP treatment of HF. Further research revealed that BJJP inhibited the PI3K/AKT signal pathway in BDL-induced HF rats. Moreover, TMAO activated the PI3K/AKT pathway, whereas BJJP suppressed TMAO-induced activation. Subsequent intervention with 740Y-P (the PI3K agonist) successfully neutralized the repression effect on PI3K/AKT signal pathway by BJJP. CONCLUSION: These results clearly show that BJJP attenuates HF by regulating the IM, as well as inhibiting PI3K/AKT pathway mediated by TMAO.

3.
Environ Res ; 263(Pt 2): 120092, 2024 Sep 30.
Article in English | MEDLINE | ID: mdl-39357638

ABSTRACT

Heavy metals and per- and polyfluoroalkyl substances (PFAS) are significantly associated with the risk of hepatic fibrosis. However, the potential mediating effect of kidney function in the relationship between heavy metals, PFAS, and hepatic fibrosis risk remains unexplored. This research gap limits the development of hepatic fibrosis prevention and treatment strategies. To address this, this study conducts a cross-sectional analysis based on data from 10,870 participants in NHANES 2005-2018 to explore the relationship between heavy metals, PFAS, and the risk of hepatic fibrosis, as well as the mediating effect of kidney function. Participants with a Fibrosis-4 index <1.45 are defined as not having hepatic fibrosis in this study. Results from generalized linear regression models and weighted quantile sum regression models indicate that both individual and combined exposures to heavy metals and PFAS are positively associated with the risk of hepatic fibrosis. Nonlinear exposure-response functions suggest that there may be a threshold for the relationship between heavy metals (except mercury) and PFAS with the risk of hepatic fibrosis. Furthermore, heavy metals and PFAS increase the risk of kidney function impairment. After stratification by kidney function stage, the relationship between heavy metals (except lead) and proteinuria is not significant, while PFAS show a significant negative association with proteinuria. The decline in kidney function has a significant mediating effect in the relationship between heavy metals and PFAS and the risk of hepatic fibrosis, with mediation effect proportions all above 20%. The findings suggest that individual or combined exposure to heavy metals and PFAS does not increase the risk of hepatic fibrosis until a certain threshold is reached, and the mediating role of declining kidney function is very important. These results highlight the need to consider kidney function in the context of hepatic fibrosis risk assessment and management.

4.
Biomed Pharmacother ; 180: 117501, 2024 Oct 03.
Article in English | MEDLINE | ID: mdl-39366030

ABSTRACT

The endocannabinoid system plays a crucial role in metabolic regulation, prompting the investigation of cannabinoid type 1 receptor (CB1R) antagonists for obesity and its complications like non-alcoholic fatty liver disease (NAFLD). Concerns over psychiatric side effects led to the development of peripheral CB1R antagonists that circumvent the blood-brain barrier (BBB). In this study, we synthesized PMG-505-010 and PMG-505-013 as peripherally restricted CB1 receptor antagonists by modifying rimonabant to minimize BBB penetration. Physicochemical analysis confirmed their reduced lipophilicity and increased polarity compared to rimonabant, indicating limited brain exposure. Molecular docking studies revealed similar binding modes to rimonabant at CB1R, characterized by robust hydrophobic interactions. Functionally, they acted as CB1R antagonists and inverse agonists, effectively reversing CP55,940-induced cAMP inhibition. In a murine model of obesity-related NAFLD, PMG-505-010 and -013 improved metabolic profiles, including fasting blood glucose levels and dyslipidemia. They also ameliorated hepatic injury, steatosis, and inflammation, evidenced by reduced liver enzymes, lipid peroxidation, hepatic lipid levels, and inflammatory cytokine levels. Notably, these compounds inhibited hepatic fibrosis by reducing extracellular matrix (ECM) deposition and altering fibrosis-related gene and protein expressions. In conclusion, PMG-505-010 and PMG-505-013 hold promise for treating obesity-related liver diseases, including NAFLD and fibrosis, through selective peripheral CB1R targeting, potentially avoiding CNS-related side effects seen with earlier CB1R antagonists.

5.
Parasit Vectors ; 17(1): 413, 2024 Oct 03.
Article in English | MEDLINE | ID: mdl-39363237

ABSTRACT

BACKGROUND: Schistosoma japonicum infection causes hepatic fibrosis, a primary cause of morbidity and mortality associated with the disease, and effective treatments are still lacking. Long non-coding RNAs (lncRNAs) have been implicated in the pathogenic process of various tissue fibroses. However, the role of lncRNAs in schistosomiasis hepatic fibrosis (HF) is poorly understood. Understanding the role of lncRNAs in schistosomiasis HF will enhance knowledge of disease processes and aid in the discovery of therapeutic targets and diagnostic biomarkers. METHODS: Differentially expressed lncRNA profiles in primary hepatic stellate cells (HSCs) of mice infected with S. japonicum were identified using high-throughput lncRNA sequencing. Primary HSCs were isolated from infected mice using collagenase digestion and density-gradient centrifugation, cultured in DMEM with 10% fetal bovine serum. Dual-luciferase reporter assays, nuclear cytoplasm fractionation and RIP assays were employed to assess the relationship between Malat1 and miRNA-96. Malat1 lentivirus and ASO-Malat1 were constructed for forced expression and downregulated expression of Malat1. The Malat1-KO mouse was constructed by CRISPR/Cas9 technology. Pathological features of the liver were evaluated by hematoxylin-eosin (HE), Masson's trichrome staining and immunohistochemistry (IHC). The expression levels of fibrosis-related genes were determined by quantitative real-time PCR (qRT-PCR) and Western blot. RESULTS: A total of 1561 differentially expressed lncRNAs were identified between infected and uninfected primary HSCs. Among the top altered lncRNAs, the downregulated Malat1 was observed in infected HSCs and verified by qPCR. Treatment of infected mice with praziquantel (PZQ) significantly increased the Malat1 expression. Elevated Malat1 expression in infected primary HSC reduced the expressions of profibrogenic genes, whereas Malat1 knockdown had the opposite effect. Moreover, Malat1 was found to interact with miR-96, a profibrotic miRNA, by targeting Smad7. Forced Malat1 expression reduced miR-96 levels in infected primary HSCs, attenuating fibrogenesis and showing negative correlation between Malat1 expression and the expression levels of miR-96 and profibrogenic genes α-SMA and Col1α1. Notably, in Malat1-KO mice, knockout of Malat1 aggravates schistosomiasis HF, while restored Malat1 expression in the infected HSCs reduced the expression of profibrogenic genes. CONCLUSIONS: We demonstrate that lncRNA is involved in regulation of schistosomiasis HF. Elevated lncRNA Malat1 expression in infected HSCs reduces fibrosis via the Malat1/miR-96/Smad7 pathway, thus providing a novel therapeutic target for schistosomiasis HF. Furthermore, Malat1 expression is sensitive to PZQ treatment, thus offering a potential biomarker for assessing the response to chemotherapy.


Subject(s)
Down-Regulation , Hepatic Stellate Cells , Liver Cirrhosis , MicroRNAs , RNA, Long Noncoding , Schistosoma japonicum , Schistosomiasis japonica , Animals , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , MicroRNAs/genetics , MicroRNAs/metabolism , Schistosomiasis japonica/parasitology , Mice , Liver Cirrhosis/parasitology , Liver Cirrhosis/genetics , Schistosoma japonicum/genetics , Hepatic Stellate Cells/metabolism , Hepatic Stellate Cells/parasitology , Smad7 Protein/genetics , Smad7 Protein/metabolism , Mice, Knockout , Signal Transduction
6.
Hepatol Res ; 2024 Oct 15.
Article in English | MEDLINE | ID: mdl-39405205

ABSTRACT

AIM: To assess the preoperative disease characteristics and indications for living donor liver transplantation (LDLT), complications, patient survival, and prognosis after LDLT for fibropolycystic liver disease (FLD) in children. METHODS: We undertook a cross-sectional survey of patients who underwent LDLT for FLD between January 2002 and December 2020. RESULTS: A total of 35 patients (22 male and 13 female individuals) with FLD were included in this study, of whom 19 (54.3%) had isolated congenital hepatic fibrosis and 16 (45.6%) had Caroli syndrome. Refractory gastrointestinal bleeding was the most frequent symptom related to the indication for LDLT, being found in 48.6% of our patients, followed by uncontrollable cholangitis and ascites. The median age at the time of LDLT was 8.1 years old. Of the 27 patients presenting with renal involvement, 13 patients required kidney transplantation (KT). Overall, the renal function after LDLT decreased regardless of renal involvement; however, patients with renal involvement had a significantly lower estimated glomerular filtration rate than those without renal involvement throughout the course of this study (p < 0.01). The 5-year overall patient survival rate was 97.1%. Two patients died with a median follow-up of 8.9 years after LDLT; one died due to sepsis 2 weeks after simultaneous liver-kidney transplantation and the other committed suicide 10 years after LDLT. CONCLUSION: The prognosis of the pediatric patients who underwent LDLT for FLD was excellent. However, an individualized treatment approach based on the status of the renal function and liver disease is important, as a certain proportion of patients require KT.

7.
Phytomedicine ; 135: 156144, 2024 Oct 09.
Article in English | MEDLINE | ID: mdl-39405612

ABSTRACT

BACKGROUND: Astilbin (ATB), a natural dihydroflavonol compound, exists in many plants, processed and functional foods. ATB has multiple pharmacological effects, such as antioxidant, lipid-lowering, and hepatoprotective. However, its anti-hepatic fibrosis and mechanisms remain unclearly elucidated. PURPOSE: This study explored the effect of ATB against the hepatic fibrosis and its regulation of hepatic microenvironment by regulating hepatic stellate cells-macrophage crosstalk. METHOD: Thioacetamide (TAA) was intraperitoneal injected to establish hepatic fibrosis mice, and treated with ATB or curcumin by gavage, respectively. Hepatic stellate cells (HSCs) were stimulated with TGF-ß or conditioned medium (CM) from LPS-induced THP-1, then cultured with ATB, PXR agonist or antagonist. RESULTS: In TAA-induced mice, ATB improved histopathological changes, serum transaminases increase; alleviated extracellular matrix (ECM) deposition, epithelial-mesenchymal transformation (EMT), inflammatory infiltration, PTEN induced kinase 1 (PINK1)/Parkin-mediated mitophagy and activated pregnane X receptor (PXR) expression. In vitro, ATB significantly reduced ECM, inflammatory cytokines release, mitophagy, EMT, and activated PXR expression. ATB could increase PXR and decrease PINK1/Parkin, functioning as a PXR agonist. PXR deficiency in LX-2 could degrade the regulation of ATB on ECM, inflammation, EMT, and mitophagy. CM from LPS-induced THP-1 activated LX-2 and resulted in PXR decreasing, while ATB could regulate the crosstalk between HSCs and macrophages. Deficiency of PXR, whether in LX-2 or in macrophages, all weakened the inhibitory effect of ATB on α-SMA, EMT, inflammatory cytokines, and PINK1/Parkin signaling. CONCLUSION: ATB ameliorated hepatic fibrosis by inhibiting HSCs activation, inflammation and EMT through PXR-mediated PINK1/Parkin signaling. Especially, ATB targeted the hepatic microenvironment between hepatic stellate cells and macrophages, which might be a promising strategy for the treatment of hepatic fibrosis.

8.
Nutr Res ; 131: 121-134, 2024 Sep 18.
Article in English | MEDLINE | ID: mdl-39383734

ABSTRACT

The primary objective of this study was to examine the association between iron overload (IO), metabolic dysfunction-associated steatotic liver disease (MASLD), and hepatic fibrosis. We hypothesized that there is a significant association. Data from the NHANES (2017-2020) were analyzed to explore IO's impact on MASLD and hepatic fibrosis in U.S. adults. We assessed serum ferritin, controlled attenuation parameter (CAP), liver stiffness measurement (LSM), and various covariates. Gene expression data were sourced from the FerrDb V2 and GEO databases. Differential gene expression analysis, Protein-Protein Interaction (PPI) Network construction, and Gene Ontology (GO) and KEGG pathway enrichment analyses were performed. The study verified the link between MASLD, hepatic fibrosis, and iron overload hub genes. This study of 5927 participants, averaging 46.78 years of age, revealed significant correlations between serum ferritin and CAP, LSM, after adjusting for covariates. Threshold effect analysis indicated nonlinear associations between serum ferritin and CAP, LSM, with distinct patterns observed by age and gender. Moreover, the area under the ROC curve for serum ferritin with MASLD and hepatic fibrosis was 0.8272 and 0.8376, respectively, demonstrating its performance in assessing these conditions. Additionally, molecular analyses identified potential hub genes associated with iron overload and MASLD, and hepatic fibrosis, revealing the underlying mechanisms. Our study findings reveal an association between iron overload, MASLD, and hepatic fibrosis. Additionally, the hub genes may be implicated in iron overload and subsequently contribute to the progression of MASLD and hepatic fibrosis. These findings support precision nutrition strategies.

9.
Virchows Arch ; 2024 Oct 12.
Article in English | MEDLINE | ID: mdl-39395054

ABSTRACT

In hepatocellular carcinoma (HCC), CD147 expression contributes to tumor malignancy; however, its relationship with the tumor-immune microenvironment (TIME) remains unclear. This study aimed to elucidate the clinicopathological characteristics associated with CD147 expression in HCC and investigate its association with the TIME, specifically its association with tumor-infiltrating lymphocytes (TILs) and oncostatin M (OSM). Using 397 HCC specimens from patients undergoing curative-intent resection, we assessed CD147 expression in tumor cells and quantified OSM-positive cells and various TILs (CD8+, CD4+, FOXP3+, and CD20+ cells) in the TIME. Using tissue microarrays, these assessments were performed through immunohistochemical analysis. We investigated the associations between CD147 expression status, the density of OSM-positive cells, and the densities of various TILs. High CD147 expression, found in 332 specimens (83.6%), was associated with advanced clinical stage (P = 0.029), fibrosis (P = 0.036), and higher densities of FOXP3+ cells (P = 0.0039), CD4+ cells (P = 0.0012), and OSM-positive cells (P = 0.0017). In CD147-high tumors, OSM-positive cell density was associated with all assessed TIL subsets (CD8+, CD4+, FOXP3+, and CD20+ cells; all Ps < 0.001), whereas in CD147-low tumors, OSM-positive cell density was associated only with FOXP3+ cells (P = 0.0004). In HCC, CD147 expression is associated with an immunosuppressive TIME, characterized by increased FOXP3+ regulatory T cells and a correlation with OSM-positive cells. These results elucidate the potential mechanisms through which CD147 facilitates tumor-immune evasion, suggesting the CD147 - OSM axis as a promising target for therapeutic intervention in HCC.

10.
Phytomedicine ; 135: 156098, 2024 Sep 28.
Article in English | MEDLINE | ID: mdl-39395324

ABSTRACT

BACKGROUND: Hepatic fibrosis, a chronic pathological condition resulting from various forms of persistent liver injury, in the later stage, it can evolve into cirrhosis and even liver cancer. Curcumae Rhizoma (CR), traditionally recognized for its properties in line qi break blood, eliminate accumulation and relieve pain. According to traditional Chinese medicine (TCM) principles, vinegar-processing enhances CR's ability to enter the liver meridian and act on the blood level, potentially augmenting its therapeutic effects on hepatic diseases. Therefore, vinegar-processed Curcumae Rhizoma (VCR) is frequently employed in treating liver fibrosis and related hepatic conditions. However, the underlying mechanisms of vinegar processing in enhancing its therapeutic efficacy remain unclear. METHODS: The anti-liver fibrosis effects of CR and VCR were verified at individual and cellular levels. Subsequently, HPLC-Q-TOFMS and pharmacokinetic analysis were utilized to elucidate the potential bioactive substances underlying the enhanced anti-fibrotic efficacy of VCR. Building upon these findings, network pharmacology and metabolomics were integrated to screen for key effect components and regulatory pathways. Finally, the mechanisms of action were further analyzed and validated at the tissue and cellular levels through Western blotting (WB) and molecular docking studies. RESULTS: Both CR and VCR exhibited therapeutic effects against hepatic fibrosis, with VCR demonstrating enhanced efficacy after vinegar processing. 6 sesquiterpenes including furanodiene and curdione, showed significant alterations in plasma exposure and hepatic distribution post-processing. VCR significantly improved pathological liver conditions, lipid accumulation, and fibrosis severity. Additionally, VCR markedly reduced the expression of α-SMA in the liver and attenuated the elevations in liver function markers such as ALT and AST. Combined network pharmacology, metabolomics, and hepatic tissue WB analysis revealed that the reduced phosphorylation of the PI3K/Akt/mTOR pathway is a critical mechanism in VCR's anti-fibrotic effects. Experiments on LX-2 cells demonstrated that four sesquiterpenes, including furanodiene and curdione, effectively inhibited the proliferation of activated hepatic stellate cells (HSCs). Furanodiene, in particular, promoted apoptosis in activated HSCs by reducing phosphorylation levels of the PI3K/Akt/mTOR pathway proteins, increasing BAX expression, and activating downstream caspase-3 to achieve the effect of anti-liver fibrosis. CONCLUSION: Vinegar-processing significantly increases the plasma exposure and hepatic distribution of components such as furanodiene in VCR, enhancing anti-fibrotic efficacy by downregulating the phosphorylation levels of the PI3K/Akt/mTOR pathway and promoting HSC apoptosis. This study provides a comprehensive explanation of the vinegar-processing mechanism and its role in enhancing the anti-fibrotic effects of VCR, offering insights for its clinical application in liver fibrosis treatment and reference for the mechanistic study of other vinegar-processed herbal medicines.

11.
Adv Mater ; : e2406590, 2024 Oct 15.
Article in English | MEDLINE | ID: mdl-39410721

ABSTRACT

Hepatic fibrosis progresses concomitantly with a variety of biomechanical alternations, especially increased liver stiffness. These biomechanical alterations have long been considered as pathological consequences. Recently, growing evidence proposes that these alternations result in the fibrotic biomechanical microenvironment, which drives the activation of hepatic stellate cells (HSCs). Here, an inorganic ascorbic acid-oxidase (AAO) mimicking nanozyme loaded with liquiritigenin (LQ) is developed to trigger remodeling of the fibrotic biomechanical microenvironment. The AAO mimicking nanozyme is able to consume intracellular ascorbic acid, thereby impeding collagen I deposition by reducing its availability. Simultaneously, LQ inhibits the transcription of lysyl oxidase like 2 (LOXL2), thus impeding collagen I crosslinking. Through its synergistic activities, the prepared nanosystem efficiently restores the fibrotic biomechanical microenvironment to a near-normal physiological condition, promoting the quiescence of HSCs and regression of fibrosis. This strategy of remodeling the fibrotic biomechanical microenvironment, akin to "pulling the rug out from under", effectively treats hepatic fibrosis in mice, thereby highlighting the importance of tissue biomechanics and providing a potential approach to improve hepatic fibrosis treatment.

12.
Front Pharmacol ; 15: 1479503, 2024.
Article in English | MEDLINE | ID: mdl-39372196

ABSTRACT

Background: Hepatic fibrosis and its associated consequences continue to pose a substantial global health challenge. Developing novel approaches to hepatic fibrosis management and prevention is critically necessary. Radix Paeoniae Alba (RPA) is widely used in Traditional Chinese Medicine (TCM) to treat various diseases. Our earlier research found that a bioactive component of RPA had a dose-dependent effect on anti-allergic asthma. RPA reduces allergic asthma by slowing the hepatic wind, according to "Treatise on Febrile Diseases". However, this bioactive fraction's pharmacological effects and mechanisms on the liver are unknown. Aim: This study examined the bioactive fraction MP-40, the methanol extract of RPA (MRPA), on bile duct ligation (BDL) for its anti-hepatic fibrosis activity and potential mechanisms. Methods: First, the effectiveness of MP-40 in treating BDL-induced hepatic fibrosis in mice and rats was evaluated through survival rates, ALT, AST HYP, and pathological changes. Molecular assays were performed using in vitro cultures of HSC-T6 activation. The expression of α-SMA and Collagen I evaluated fibro-tropic factors with HSC activation. Furthermore, the levels of pyroptosis were assessed by examining the expression of the pyroptosis-related proteins, including NLRP3, Cleaved Caspase-1, GSDMD-N, and 1L-1ß. Additionally, the effective constituents of MP-40 were identified by extraction, separation, and identification. Finally, PF and TGG, as the delegate compounds of MP-40, were tested to confirm their inhibition effects on HSC-T6 activation. Results: The findings demonstrated that MP-40 and MRPA could lower ALT, AST, and HYP levels, boost survival rates, and reduce liver damage in BDL mice and rats. Furthermore, MP-40 outperforms MRPA. MP-40 was proven to drastically diminish fibrotic α-SMA and Collagen I. The expression of pyroptosis-related proteins NLRP3, Cleaved Caspase-1, TGF-ß1, GSDMD-N, and 1L-1ß decreased. MP-40 inhibited the synthesis of pyroptosis-related proteins more effectively than MCC950 (an NLRP3-specific inhibitor). Monoterpene glycosides and tannins were shown to be the most potent MP-40 components. Finally, the delegate compounds MP-40, PF, and TGG were shown to have substantial inhibitory effects on HSC-T6 activation. Conclusion: The results proved that MP-40 alleviates BDL-induced cholestatic hepatic fibrosis by inhibiting NLRP3-mediated pyroptosis. PF and TGG play a role in treating BDL-induced cholestatic hepatic fibrosis in MP-40.

13.
Pediatr Nephrol ; 2024 Sep 28.
Article in English | MEDLINE | ID: mdl-39340573

ABSTRACT

Ciliopathies encompass a broad spectrum of diseases stemming from dysfunction of the primary (non-motile) cilia, present on almost all cells in the human body. These disorders include autosomal dominant and recessive polycystic kidney diseases, nephronophthisis, and multisystem ciliopathies such as Joubert, Meckel, Bardet-Biedl, Alström, oral-facial-digital syndromes, and skeletal ciliopathies. The majority of these ciliopathies are associated with fibrocystic kidney disease resulting in progressive kidney dysfunction. In addition, many ciliopathies are associated with extra-renal manifestations including congenital hepatic fibrosis, retinal dystrophy, obesity, and brain and skeletal anomalies. The diagnoses may be challenging due to their overlapping clinical features and molecular heterogeneity. To date, over 190 genes encoding proteins that localize to the primary cilia have been identified as disease-causing. This review will discuss the clinical features of the most frequently encountered disorders of primary cilia.

14.
Front Biosci (Landmark Ed) ; 29(9): 321, 2024 Sep 14.
Article in English | MEDLINE | ID: mdl-39344326

ABSTRACT

Hepatic fibrosis is a major public health problem that endangers human wellbeing. In recent years, a number of studies have revealed the important impact of metabolic reprogramming on the occurrence and development of hepatic fibrosis. Among them, the Warburg effect, as an intracellular glucose metabolism reprogramming, can promote the occurrence and development of hepatic fibrosis by promoting the activation of hepatic stellate cells (HSCs) and inducing the polarization of liver macrophages (KC). Understanding the Warburg effect and its important role in the progression of hepatic fibrosis will assist in developing new strategies for the prevention and treatment of hepatic fibrosis. This review focuses on the Warburg effect and the specific mechanism by which it affects the progression of hepatic fibrosis by regulating HSCs activation and KC polarization. In addition, we also summarize and discuss the related experimental drugs and their mechanisms that inhibit the Warburg effect by targeting key proteins of glycolysis in order to improve hepatic fibrosis in the hope of providing more effective strategies for the clinical treatment of hepatic fibrosis.


Subject(s)
Glycolysis , Hepatic Stellate Cells , Liver Cirrhosis , Humans , Liver Cirrhosis/metabolism , Liver Cirrhosis/prevention & control , Hepatic Stellate Cells/metabolism , Glycolysis/drug effects , Animals , Macrophages/metabolism , Liver/metabolism , Liver/pathology , Liver/drug effects , Glucose/metabolism
15.
J Ethnopharmacol ; 337(Pt 2): 118850, 2024 Sep 24.
Article in English | MEDLINE | ID: mdl-39322020

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: The herb of Abrus cantoniensis Hance (AC) is an important Traditional Chinese Medicine (TCM) and is also used as an herbal tea with hepatoprotective action. Soyasaponin Bb is one of the pharmacodynamic substances of AC for the herb's effective pharmacological activity. This study aims to investigate the anti-fibrotic and hepatoprotective activities of soyasaponin Bb in vivo and in vitro experiments, mechanism by network pharmacology and quantification by HPLC. MATERIALS AND METHODS: High-performance liquid chromatography (HPLC) was applied to evaluate the quality of the herb and determine the contents of soyasaponin Bb from different sources and parts of the AC. In vivo experiments were conducted to induce an acute liver injury model by injecting CCl4 into mice, and an in vitro hepatic fibrosis model was established by cultivating LX-2 cells with TGF-ß1. These models were used to explore the anti-fibrotic and hepatoprotective effects of soyasaponin Bb and its underlying mechanisms. In addition, the potential target genes corresponding to soyasaponin Bb were identified using the Swiss Target Prediction database through network pharmacology methods. Meanwhile, hepatic fibrosis targets were screened using the GeneCards, TTD, and OMIM disease databases. The STING database was used to construct the protein-protein interaction (PPI) network of soyasaponin Bb-hepatic fibrosis. The soyasaponin Bb-hepatic fibrosis disease target-pathway network was constructed using Cytoscape 3.9.1 software. Gene Ontology (GO) and the Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses were performed to enrich and analyze the common targets of the drug and the disease, aiming to identify the potential targets and pathways involved in the anti-fibrotic and hepatoprotective effects of soyasaponin Bb. RESULTS: The content of soyasaponin Bb varied across different sources, with the roots containing the highest concentration, up to 0.2480%. In vivo experiments showed that soyasaponin Bb had a protective effect against CCl4-induced acute liver injury, effectively inhibiting the increase in ALT and AST levels and slowing down the hepatocyte inflammatory damage caused by CCl4. Soyasaponin Bb also down-regulated MDA levels and up-regulated SOD levels, indicating a certain antioxidant capacity. In vitro cell experiments showed that soyasaponin Bb could effectively inhibit the proliferation of HSC-LX2 cells induced by TGF-ß1 by regulating the TGF-ß1/α-SMA pathway, significantly down-regulate the protein expression of TGF-ß1 and α-SMA, while also reducing the levels of inflammatory cytokines IL-6 and IL-1ß. Further network pharmacology analysis suggested that soyasaponin Bb can exert anti-fibrosis activity by regulating the IBD signaling pathway, Th17 signaling pathway, Hepatitis B signaling pathway, and JAK-STAT signaling pathway. CONCLUSION: Soyasaponin Bb is primarily distributed in the root of AC, and it has a strong protective effect against CCl4-induced acute liver injury. It can reduce the level of inflammatory factors, relieve inflammation, and exert anti-fibrotic activity by regulating the TGF-ß1/α-SMA pathway. Its potential anti-hepatic fibrosis mechanism has been investigated through network pharmacology.

16.
Tissue Cell ; 91: 102554, 2024 Sep 14.
Article in English | MEDLINE | ID: mdl-39316936

ABSTRACT

Liver fibrosis is characterized by an excessive reparative response to various etiological factors, with the activated hepatic stellate cells (aHSCs) leading to extracellular matrix (ECM) accumulation. Senescence is a stable growth arrest, and the senescence of aHSCs is associated with the degradation of ECM and the regression of hepatic fibrosis, making it a promising approach for managing hepatic fibrosis. The role and specific mechanisms by which V-Type Proton ATPase Subunit G 3 (ATP6V1G3) influences senescence in activated HSCs during liver fibrosis remain unclear. Our preliminary results reveal upregulation of ATP6V1G3 in both human fibrotic livers and murine liver fibrosis models. Additionally, ATP6V1G3 inhibition induced senescence in aHSCs in vitro. Moreover, suppressing Notch1 reversed the senescence caused by ATP6V1G3 inhibition in HSCs. Thus, targeting ATP6V1G3, which appears to drive HSCs senescence through the Notch1 pathway, emerges as a potential therapeutic strategy for hepatic fibrosis.

17.
Zhong Nan Da Xue Xue Bao Yi Xue Ban ; 49(6): 903-913, 2024 Jun 28.
Article in English, Chinese | MEDLINE | ID: mdl-39311786

ABSTRACT

OBJECTIVES: Hepatic fibrosis is a common pathological basis for many chronic liver diseases and can progress to cirrhosis, a leading cause of mortality in liver diseases. Early identification and reversal of hepatic fibrosis are key in the treatment of chronic liver disease. This study aims to compare the expression levels of serum core fucosylated low molecular weight kininogen (LMWK-Fc) and alpha-galactosylated (α-Gal) antibodies in patients with hepatic fibrosis at different stages, and to evaluate their diagnostic efficacy for hepatic fibrosis. METHODS: A retrospective analysis was conducted on 275 patients with chronic liver disease who visited the Department of Infectious Diseases at the Second Xiangya Hospital of Central South University between June 2022 and March 2023. Among these, 115 patients underwent liver biopsy. Based on the extent of collagen deposition and its impact on liver structure and microcirculation, patients were staged from 0 to 4: S0 (no significant collagen deposition in liver tissues; liver structure and microcirculation are normal), S1 (mild collagen deposition in liver tissues, with partial disruption of lobule structure, but microcirculation remains largely normal), S2 (moderate collagen deposition in liver tissues, with partial disruption of lobule structure and microcirculation), S3 (extensive collagen deposition in liver tissues, with substantial disruption of lobule structure and microcirculation), and S4 (development of cirrhosis, with heavy collagen deposition, complete disruption of lobule structure, and severe impairment of microcirculation). Patients were grouped as no fibrosis (S0), fibrosis (S1-S2), and significant fibrosis (S3-S4). For the 160 patients without liver biopsy, they were categorized based on liver stiffness measurement (LSM) value: no fibrosis (F0: LSM<7.3 kPa), fibrosis (F1-F2: LSM 7.3-12.4 kPa), and significant fibrosis (F3-F4: LSM>12.4 kPa). Demographic data (age, gender) and laboratory indicators (alanine transaminase, aspartate transaminase, gamma-glutamyl transferase, alkaline phosphatase, alpha-fetoprotein, platelet count) were collected to calculate the fibrosis-4 index (FIB-4) and aspartate aminotransferase-to-platelet ratio index (APRI). Serum LMWK-Fc and α-Gal antibodies were measured and compared across the groups, and their correlation with fibrosis severity was analyzed. The receiver operating characteristic (ROC) curve was used to assess the predictive value of serum LMWK-Fc and α-Gal antibody levels for hepatic fibrosis. RESULTS: Among the 160 patients without complete liver biopsy, serum α-Gal antibody and LMWK-Fc levels increased progressively from the no fibrosis group to the significant fibrosis group, with statistically significant differences (P<0.05). Among the 115 patients with liver biopsy, serum LMWK-Fc levels were significantly higher in the fibrosis group and the significant fibrosis groups compared with the no fibrosis group, and α-Gal antibody levels were significantly higher in the significant fibrosis group compared with the no fibrosis group and the fibrosis group (P<0.001, P=0.032, respectively). Univariate and multivariate linear regression analyses showed that hepatic fibrosis was correlated with gender and LMWK-Fc levels (both P<0.05), but not with age, α-Gal antibody levels, FIB-4, or APRI (all P>0.05). CONCLUSIONS: The expression levels of serum LMWK-Fc and α-Gal antibodies vary across different stages of hepatic fibrosis, suggesting a potential association with fibrosis progression. LMWK-Fc levels have a certain predictive value for the diagnosis of hepatic fibrosis.


Subject(s)
Liver Cirrhosis , Humans , Retrospective Studies , Liver/pathology , Female , Male , Fucose/metabolism , Galactose , Middle Aged , Adult , Predictive Value of Tests , Antibodies/blood , Kininogens
18.
Saudi Med J ; 45(9): 911-918, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39218467

ABSTRACT

OBJECTIVES: To determine the diagnostic efficiencies of multiple diffusion-weighted imaging (DWI) techniques for hepatic fibrosis (HF) staging under the premise of high inter-examiner reliability. METHODS: Participants with biopsy-confirmed HF were recruited and divided into the early HF (EHF) and advanced HF (AHF) groups; healthy volunteers (HVs) served as controls. Two examiners analyzed intravoxel incoherent motion (IVIM) using the IVIM-DWI and diffusion kurtosis imaging (DKI) models. Intravoxel incoherent motion-DWI, DKI, and diffusion tensor imaging parameters with intraclass correlation coefficients (ICCs) of ≥0.6 were used to create regression models: HVs vs. EHF and EHF vs. AHF. RESULTS: We enrolled 48 HVs, 59 EHF patients, and 38 AHF patients. Mean, radial, and axial kurtosis; fractional anisotropy; mean, radial, and axial diffusivity; and α exhibited excellent reliability (ICCs: 0.80-0.98). Fractional anisotropy of kurtosis, f, and apparent diffusion coefficient showed good reliability (ICCs: 0.69-0.92). The real (0.58-0.67), pseudo- (0.27-0.76), and distributed diffusion coefficients (0.58-0.67) showed low reliability. In the HVs versus (vs.) EHF model, α (p=0.008) and ADC (p=0.011) presented statistical differences (area under curve [AUC]: 0.710). In the EHF vs. AHF model, α (p=0.04) and distributed diffusion coefficient (p=0.02) presented significant differences (AUC: 0.758). CONCLUSION: Under the premise of high inter-examiner reliability, DWI and IVIM-derived stretched-exponential model parameters may help stage HF.


Subject(s)
Diffusion Magnetic Resonance Imaging , Liver Cirrhosis , Humans , Liver Cirrhosis/diagnostic imaging , Liver Cirrhosis/pathology , Diffusion Magnetic Resonance Imaging/methods , Female , Male , Middle Aged , Adult , Reproducibility of Results , Observer Variation
19.
Curr Pharm Des ; 2024 Sep 10.
Article in English | MEDLINE | ID: mdl-39257141

ABSTRACT

BACKGROUND: Compound 861 (Cpd861) is a traditional Chinese herbal compound for the treatment of hepatic fibrosis (HF). In the current investigation, Cpd861 has been demonstrated to have an underlying molecular mechanism and material foundation for the treatment of HF through network pharmacology, Mendelian randomization (MR), and molecular docking. METHODS: Public databases were consulted for Cpd861 constituents and HF targets. Protein-protein interactions (PPIs) were established using STRING software, followed by Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses. To elucidate the causal relationship between potential targets and liver injury, MR was used as a methodological tool. Finally, a molecular docking analysis was conducted between the active compound and the key target. RESULTS: We obtained 174 active ingredients and 113 intersecting genes. Through the PPI network, high-degree targets were identified, namely CTNNB1, ESR1, FOS, MDM2, CCND1, TP53, RELA, and BCL2. As shown by GO and KEGG pathway enrichment analyses, Cpd861 functions through xenobiotic stimulus and oxidative stress-related genes, as well as the PI3K-AKT and non-alcoholic fatty liver disease (NAFLD) signaling pathways. The results of MR showed that MDM2 and BCL2 had a causal relationship with liver injury. Molecular docking results showed that several active compounds in Cpd861 were stably bound to BCL2. CONCLUSION: This study made predictions regarding the efficacious components, as well as potential targets and pathways of Cpd861 in the therapy of HF. This will open up a new perspective for further investigation of the molecular mechanism of Cpd861 in the treatment of HF.

20.
Nan Fang Yi Ke Da Xue Xue Bao ; 44(8): 1508-1517, 2024 Aug 20.
Article in Chinese | MEDLINE | ID: mdl-39276046

ABSTRACT

OBJECTIVE: To analyze the core functional component groups (CFCG) in Yinchenhao Decoction (YCHD) and their possible pathways for treating hepatic fibrosis based on network pharmacology. METHODS: PPI data were extracted from DisGeNET, Genecards, CMGRN and PTHGRN to construct a weighted network using Cytoscape 3.9.1. The data of the chemical components in YCHD were obtained from Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform (TCMSP), and the potential active components and targets were selected using PreADMET Web server and SwissTargetPrediction. A fusion model was constructed to obtain the functional effect space and evaluate the effective proteins to identify the CFCG followed by GO and KEGG pathway enrichment analyses for all the targets. In cultured human hepatic stellate cells (LX-2 cells), the cytotoxicity of different compounds in YCHD was tested using CCK-8 assay; the effects of these compounds on collagen α1 (Col1a1) mRNA expression and the pathways in 20 ng/mL TGF-ß1-stimulated cells were analyzed using RT-qPCR and Western blotting. RESULTS: A total of 1005 pathogenic genes, 226 potential active components and 1529 potential targets in YCHD and 52 potential targets of CFCG were obtained. Benzyl acetate, vanillic acid, clorius, polydatin, lauric acid and ferulic acid were selected for CCK-8 verification, and they all showed minimal cytotoxicity below the concentration of 200 µmol/L. Clorius, polydatin, lauric acid and ferulic acid all effectively inhibited TGF-ß1-induced LX-2 cell activation. At the concentration of 200 µmol/L, all these 4 components inhibited PI3K, p-PI3K, AKT, p-AKT, ERK, p-ERK, P38 MAPK and p-P38 MAPK expressions in TGF-ß1-induced LX-2 cells. CONCLUSION: The therapeutic effect of YCHD on hepatic fibrosis is probably mediated by its core functional components including benzyl acetate, vanillic acid, clorius, polydatin, lauric acid and ferulic acid, which inhibit the PI3K-AKT and MAPK pathways in hepatic stellate cells.


Subject(s)
Drugs, Chinese Herbal , Hepatic Stellate Cells , Liver Cirrhosis , Drugs, Chinese Herbal/pharmacology , Drugs, Chinese Herbal/therapeutic use , Humans , Liver Cirrhosis/drug therapy , Liver Cirrhosis/metabolism , Hepatic Stellate Cells/drug effects , Hepatic Stellate Cells/metabolism , Medicine, Chinese Traditional/methods , Transforming Growth Factor beta1/metabolism , Collagen Type I/metabolism , Collagen Type I/genetics , Coumaric Acids/pharmacology , Cell Line , Signal Transduction/drug effects , Network Pharmacology , Collagen Type I, alpha 1 Chain
SELECTION OF CITATIONS
SEARCH DETAIL