Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.266
Filter
1.
Diagn Pathol ; 19(1): 138, 2024 Oct 15.
Article in English | MEDLINE | ID: mdl-39407268

ABSTRACT

BACKGROUND: Diabetic retinopathy (DR) is a major ocular complication of diabetes mellitus, and a significant cause of visual impairment and blindness in adults. Phosphoserine aminotransferase 1 (PSAT1) is an enzyme participating in serine synthesis, which might improve insulin signaling and insulin sensitivity. Furthermore, it has been reported that the m6A methylation in mRNA controls gene expression under many physiological and pathological conditions. Nevertheless, the influences of m6A methylation on PSAT1 expression and DR progression at the molecular level have not been reported. METHODS: High-glucose (HG) was used to treat human retinal pigment epithelial cells (ARPE-19) to construct a cell injury model. PSAT1 and Methyltransferase-like 3 (METTL3) levels were detected by real-time quantitative polymerase chain reaction (RT-qPCR). PSAT1, B-cell lymphoma-2 (Bcl-2), Bcl-2 related X protein (Bax), and METTL3 protein levels were examined by western blot assay. Cell viability and apoptosis were detected by Cell Counting Kit-8 (CCK-8) and TUNEL assays. Reactive oxygen species (ROS), malondialdehyde (MDA), and Glutathione peroxidase (GSH-Px) levels were examined using special assay kits. Interaction between METTL3 and PSAT1 was verified using methylated RNA immunoprecipitation (MeRIP) and dual-luciferase reporter assay. RESULTS: PSAT1 and METTL3 levels were decreased in DR patients and HG-treated ARPE-19 cells. Upregulation of PSAT1 might attenuate HG-induced cell viability inhibition and apoptosis and oxidative stress promotion in ARPE-19 cells. Moreover, PSAT1 was identified as a downstream target of METTL3-mediated m6A modification. METTL3 might improve the stability of PSAT1 mRNA via m6A methylation. CONCLUSION: METTL3 might mitigate HG-induced ARPE-19 cell damage partly by regulating the stability of PSAT1 mRNA, providing a promising therapeutic target for DR.


Subject(s)
Apoptosis , Diabetic Retinopathy , Glucose , Methyltransferases , Oxidative Stress , Retinal Pigment Epithelium , Up-Regulation , Humans , Methyltransferases/metabolism , Methyltransferases/genetics , Apoptosis/drug effects , Oxidative Stress/drug effects , Retinal Pigment Epithelium/metabolism , Retinal Pigment Epithelium/drug effects , Retinal Pigment Epithelium/pathology , Glucose/pharmacology , Glucose/metabolism , Diabetic Retinopathy/metabolism , Diabetic Retinopathy/pathology , Cell Line , Epithelial Cells/metabolism , Epithelial Cells/drug effects , Epithelial Cells/pathology , Cell Survival/drug effects , Reactive Oxygen Species/metabolism
2.
Sci Rep ; 14(1): 24044, 2024 10 14.
Article in English | MEDLINE | ID: mdl-39402106

ABSTRACT

Diabetic encephalopathy (DE) is a severe complication of diabetes, but its pathogenesis remains unclear. This study aimed to investigate the roles and underlying mechanisms of high glucose (HG)- and advanced glycosylation end product (AGE)-induced oxidative stress (OS) in the cognitive decline in DE. The DE mouse model was established using a high-fat diet and streptozotocin, and its cognitive functions were evaluated using the Morris Water Maze, novel object recognition, and Y-maze test. The results revealed increased reactive oxygen species (ROS) generation, mitophagy inhibition, and decreased prohibitin 2 (PHB2) expression in the hippocampal neurons of DE mice and HG- or AGE-treated HT-22 cells. However, overexpression of PHB2 reduced ROS generation, reversed mitophagy inhibition, and improved mitochondrial function in the HG- or AGE-treated HT-22 cells and ameliorated cognitive decline, improved mitochondrial structural damage, and reversed mitophagy inhibition of hippocampal neurons in DE mice. Further analysis revealed that the Kelch-like ECH-associated protein 1 (Keap1)-nuclear factor erythroid 2-related factor 2 (Nrf2) pathway was involved in the HG- or AGE-mediated downregulation of PHB2 in HT-22 cells. These results demonstrate that HG- or AGE-induced OS inhibits the mitophagy of hippocampal neurons via the Keap1-Nrf2-PHB2 pathway, thereby contributing to the cognitive decline in DE.


Subject(s)
Glucose , Hippocampus , Kelch-Like ECH-Associated Protein 1 , Mitophagy , NF-E2-Related Factor 2 , Neurons , Oxidative Stress , Prohibitins , Repressor Proteins , Animals , Hippocampus/metabolism , Hippocampus/pathology , Mice , NF-E2-Related Factor 2/metabolism , Kelch-Like ECH-Associated Protein 1/metabolism , Neurons/metabolism , Neurons/pathology , Repressor Proteins/metabolism , Repressor Proteins/genetics , Glucose/metabolism , Male , Signal Transduction , Glycation End Products, Advanced/metabolism , Reactive Oxygen Species/metabolism , Diabetes Mellitus, Experimental/metabolism , Diabetes Mellitus, Experimental/complications , Brain Diseases/metabolism , Brain Diseases/etiology , Brain Diseases/pathology , Diabetes Complications/metabolism , Diabetes Complications/pathology , Cell Line , Cognitive Dysfunction/metabolism , Cognitive Dysfunction/etiology , Mitochondria/metabolism , Mice, Inbred C57BL
3.
Br J Pharmacol ; 2024 Oct 14.
Article in English | MEDLINE | ID: mdl-39402703

ABSTRACT

BACKGROUND AND PURPOSE: MicroRNA (miR)-210 function in endothelial cells and its role in diabetes-associated endothelial dysfunction are not fully understood. We aimed to characterize the miR-210 function in endothelial cells and study its therapeutic potential in diabetes. EXPERIMENTAL APPROACH: Two different diabetic mouse models (db/db and Western diet-induced), miR-210 knockout and transgenic mice, isolated vessels and human endothelial cells were used. KEY RESULTS: miR-210 levels were lower in aortas isolated from db/db than in control mice. Endothelium-dependent relaxation (EDR) was impaired in aortas from miR-210 knockout mice, and this was restored by inhibiting miR-210 downstream protein tyrosine phosphatase 1B (PTP1B), mitochondrial glycerol-3-phosphate dehydrogenase 2 (GPD2), and mitochondrial oxidative stress. Inhibition of these pathways also improved EDR in both diabetic mouse models. High glucose reduced miR-210 levels in endothelial cells and impaired EDR in mouse aortas, effects that were reversed by overexpressing miR-210. However, plasma miR-210 levels were not affected in individuals with type 2 diabetes (T2D) following improved glycaemic status. Of note, genetic overexpression using miR-210 transgenic mice and pharmacological overexpression using miR-210 mimic in vivo ameliorated endothelial dysfunction in both diabetic mouse models by decreasing PTP1B, GPD2 and oxidative stress. Genetic overexpression of miR-210 altered the aortic transcriptome, decreasing genes in pathways involved in oxidative stress. miR-210 mimic restored decreased nitric oxide production by high glucose in endothelial cells. CONCLUSION AND IMPLICATIONS: This study unravels the mechanisms by which down-regulated miR-210 by high glucose induces endothelial dysfunction in T2D and demonstrates that miR-210 serves as a novel therapeutic target.

4.
Int J Mol Sci ; 25(19)2024 Oct 04.
Article in English | MEDLINE | ID: mdl-39409031

ABSTRACT

The high-glucose conditions caused by diabetes mellitus (DM) exert several effects on cells, including inflammation. miR-146a, a kind of miRNA, is involved in inflammation and may be regulated mutually with reactive oxygen species (ROS), which are produced under high-glucose conditions. In the present study, we used human periodontal ligament cells (hPDLCs) to determine the effects of the high-glucose conditions of miR-146a and their involvement in the regulation of oxidative stress and inflammatory cytokines using Western blotting, PCR, ELISA and other methods. When hPDLCs were subjected to high glucose (24 mM), cell proliferation was not affected; inflammatory cytokine expression, ROS induction, interleukin-1 receptor-associated kinase 1 (IRAK1) and TNF receptor-associated factor 6 (TRAF6) expression increased, but miR-146a expression decreased. Inhibition of ROS induction with the antioxidant N-acetyl-L-cysteine restored miR-146a expression and decreased inflammatory cytokine expression compared to those under high-glucose conditions. In addition, overexpression of miR-146a significantly suppressed the expression of the inflammatory cytokines IRAK1 and TRAF6, regardless of the glucose condition. Our findings suggest that oxidative stress and miR-146a expression are mutually regulated in hPDLCs under high-glucose conditions.


Subject(s)
Glucose , Interleukin-1 Receptor-Associated Kinases , MicroRNAs , Oxidative Stress , Periodontal Ligament , Reactive Oxygen Species , TNF Receptor-Associated Factor 6 , Humans , MicroRNAs/genetics , MicroRNAs/metabolism , Oxidative Stress/drug effects , Glucose/metabolism , Glucose/pharmacology , Periodontal Ligament/cytology , Periodontal Ligament/metabolism , Reactive Oxygen Species/metabolism , Interleukin-1 Receptor-Associated Kinases/metabolism , Interleukin-1 Receptor-Associated Kinases/genetics , TNF Receptor-Associated Factor 6/metabolism , TNF Receptor-Associated Factor 6/genetics , Cells, Cultured , Cytokines/metabolism , Cell Proliferation/drug effects , Gene Expression Regulation/drug effects , Intracellular Signaling Peptides and Proteins
5.
J Pers Med ; 14(9)2024 Aug 28.
Article in English | MEDLINE | ID: mdl-39338168

ABSTRACT

Increased activity of transforming growth factor-beta (TGF-ß) is a key factor mediating kidney impairment in diabetes. Glomerular podocytes, the crucial component of the renal filter, are a direct target of TGF-ß action, resulting in irreversible cell loss and progression of chronic kidney disease (CKD). Urolithin A (UA) is a member of the family of polyphenol metabolites produced by gut microbiota from ellagitannins and ellagic acid-rich foods. The broad spectrum of biological activities of UA makes it a promising candidate for the treatment of podocyte disorders. In this in vitro study, we investigated whether UA influences the changes exerted in podocytes by TGF-ß and high glucose. Following a 7-day incubation in normal (NG, 5.5 mM) or high (HG, 25 mM) glucose, the cells were treated with UA and/or TGF-ß1 for 24 h. HG and TGF-ß1, each independent and in concert reduced expression of nephrin, increased podocyte motility, and up-regulated expression of b3 integrin and fibronectin. These typical-for-epithelial-to-mesenchymal transition (EMT) effects were inhibited by UA in both HG and NG conditions. UA also reduced the typically elevated HG expression of TGF-ß receptors and activation of the TGF-ß signal transducer Smad2. Our results indicate that in podocytes cultured in conditions mimicking the diabetic milieu, UA inhibits and reverses changes underlying podocytopenia in diabetic kidneys. Hence, UA should be considered as a potential therapeutic agent in podocytopathies.

6.
Zhongguo Zhong Yao Za Zhi ; 49(17): 4734-4743, 2024 Sep.
Article in Chinese | MEDLINE | ID: mdl-39307808

ABSTRACT

This study aims to explore the inhibitory effect of daidzein on macrophage inflammation induced by high glucose via regulating the NOD-like receptor protein 3(NLRP3) inflammasome signaling pathway. The cell counting kit-8(CCK-8) assay was employed to detect the effects of daidzein at different concentrations on the viability of RAW264.7 cells. Western blot was employed to determine the protein level of tumor necrosis factor(TNF)-α in macrophages exposed to different concentrations of glucose for different time periods as well as the expression levels of proteins involved in the polarization and Toll-like receptor 4(TLR4)-myeloid differentiation factor(MyD88)-NLRP3 inflammasome pathway of the macrophages exposed to high glucose. Enzyme-linked immunosorbent assay was employed to measure the levels of TNF-α, interleukin(IL)-18, and IL-1ß secreted by macrophages. The expression level of nuclear factor-kappa B(NF-κB) p65 in macrophages exposed to high glucose was detected by immunofluorescence, and the level of intracellular reactive oxygen species(ROS) was detected by the DCFH-DA fluorescent probe. The mRNA levels of NLRP3, TNF-α, and IL-18 in macrophages were determined by qRT-PCR. The results showed that treatment with 30 mmol·L~(-1) glucose for 48 h was the best condition for the modeling of macrophage injury. Compared with the blank group, the model group showed improved polarization of macrophages, increased secretion of TNF-α, IL-18, and IL-1ß, elevated ROS level, and up-regulated expression of NF-κB p65. In addition, the modeling up-regulated the mRNA levels of NLRP3, TNF-α, and IL-18 and the protein levels of TLR4, MyD88, NLRP3, NF-κB p65, p-NF-κB p65, I-κB, p-I-κB, ASC, pro-caspase-1, pro-IL-1ß, cleaved IL-1ß, and pro-IL-18. Compared with the model group, daidzein(10, 20, and 40 µmol·L~(-1)) lowered the levels of inflammatory cytokines and down-regulated the mRNA levels of NLRP3, TNF-α, and IL-18 as well as the protein levels of TLR4, MyD88, NLRP3, NF-κB p65, p-NF-κB p65, I-κB, p-I-κB, ASC, pro-caspase-1, pro-IL-1ß, cleaved IL-1ß, and pro-IL-18. In addition, daidzein reduced intracellular ROS. According to the available reports and the experimental results, high glucose can induce the polarization of macrophages and promote the secretion of inflammatory cytokines. Daidzein can inhibit the expression of ROS in macrophages by regulating the NLRP3 inflammasome signaling pathway, thereby reducing the inflammation of macrophages exposed to high glucose.


Subject(s)
Glucose , Inflammasomes , Isoflavones , Macrophages , NLR Family, Pyrin Domain-Containing 3 Protein , Signal Transduction , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/genetics , Animals , Mice , Macrophages/drug effects , Macrophages/immunology , Macrophages/metabolism , Signal Transduction/drug effects , Glucose/adverse effects , Isoflavones/pharmacology , Inflammasomes/drug effects , Inflammasomes/metabolism , RAW 264.7 Cells , Inflammation/drug therapy , Inflammation/metabolism , Inflammation/chemically induced , Reactive Oxygen Species/metabolism , Tumor Necrosis Factor-alpha/genetics , Tumor Necrosis Factor-alpha/metabolism , Tumor Necrosis Factor-alpha/immunology , Interleukin-1beta/genetics , Interleukin-1beta/immunology , Interleukin-1beta/metabolism , Interleukin-18/genetics , Interleukin-18/metabolism , Interleukin-18/immunology
7.
3 Biotech ; 14(9): 216, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39220826

ABSTRACT

This study aimed to explore the protective mechanism of Banxia Xiexin Tang (BXXXT) on liver cell damage caused by high glucose (H-G) and to clarify its molecular regulatory pathways. First, the main components in BXXXT-containing serum were analyzed by high-performance liquid chromatography (HPLC) to provide basic data for subsequent experiments. Subsequently, the effect of BXXXT on high glucose (H-G)-induced hepatocyte activity was evaluated through screening of the optimal concentration of drug-containing serum. Experimental results showed that BXXXT significantly reduced the loss of cell activity caused by high glucose. Further research focuses on the regulatory effect of BXXXT on high glucose-induced hepatocyte apoptosis, especially its effect on the PGC-1α (peroxisome proliferator-activated receptor γ coactivator-1α) pathway. Experimental results showed that BXXXT reduced high-glucose-induced hepatocyte apoptosis and exerted its protective effect by upregulating the activity of the PGC-1α pathway. BXXXT significantly increased the expression level of IGFBP1 (insulin-like growth factor-binding proteins) in hepatocytes under a high-glucose environment. It cleared mitochondrial ROS (reactive oxygen species) by enhancing SOD2 (superoxide dismutase) enzyme activity and maintained the survival of hepatocytes under a high-glucose environment. Finally, the regulation of PGC-1α by BXXXT is indeed involved in the regulation of IGFBP1 expression in hepatocytes and its downstream SOD2 effector signaling. Taken together, this study provides an in-depth explanation of the protective mechanism of BXXXT on hepatocytes in a high-glucose environment, focusing on regulating the expression of the PGC-1α pathway and IGFBP1, and reducing cell damage by scavenging ROS. This provides an experimental basis for further exploring the potential of BXXXT in the treatment of diabetes-related liver injury. Supplementary Information: The online version contains supplementary material available at 10.1007/s13205-024-04060-0.

8.
Heliyon ; 10(17): e37028, 2024 Sep 15.
Article in English | MEDLINE | ID: mdl-39281534

ABSTRACT

Background: Endothelial dysfunction is a complication of diabetes mellitus (DM), characterized by impaired endothelial function in both microvessels and macrovessels, closely linked to atherosclerosis (AS). Endothelial dysfunction, characterized by impaired endothelial cell (EC) function, is a pivotal factor in AS and DM. Circular RNAs (circRNAs) are endogenous non-coding RNAs that can act as competing endogenous RNAs (ceRNAs) and regulate gene expression. However, the role of circRNAs in ECs dysfunction and AS under high glucose (HG) condition remains elusive. Methods: We performed high-throughput sequencing to identify differentially expressed (DE) circRNAs in human umbilical vein endothelial cells (HUVEC) exposed to HG, one risk factors of endothelial dysfunction and AS. We then validated eight candidate circRNAs by qRT-PCR and functional analysis, directing our attention to hsa_circ_0122319. Moreover, microarray analysis identified the differential expression profiles of miRNAs and mRNAs regulated by hsa_circ_0122319. Subsequently, the construction of the ceRNAs network employed bioinformatic analysis and Cytoscape software. Furthermore, the role of the PI3K-Akt signaling pathway in regulating ceRNAs was evaluated. Results: We detected 917 DE circRNAs in HG treated HUVEC. The parental genes of these circRNAs were enriched in cell cycle, cellular senescence and endocytosis related pathways. The differential expression of hsa_circ_0122319 was confirmed to be most obvious at the cellular level and in clinical samples by qPCR experiments. After overexpression of hsa_circ_0122319, 49 DE miRNAs and 459 DE mRNAs were identified using microarray analysis. Subsequently, a ceRNAs network was constructed, comprising hsa_circ_0122319, 8 miRNAs, and 41 mRNAs. Conclusion: In summary, our study delves into the role of circRNAs in endothelial dysfunction associated with DM and AS. Through high-throughput sequencing and validation, we identified hsa_circ_0122319 as a pivotal regulator of ECs function under HG conditions. It also showed that hsa_circ_0123319 has the potential to serve as a biomarker for DM and its vascular complications, and provides new evidence for future exploration of the intricate molecular mechanisms of endothelial dysfunction in the progression of DM and AS.

9.
Int J Mol Sci ; 25(18)2024 Sep 18.
Article in English | MEDLINE | ID: mdl-39337519

ABSTRACT

The Mongolian sheep, emblematic of the Inner Mongolian grasslands, is renowned for its exceptional stress resistance and adaptability to harsh environments, drawing considerable attention. Recent research has unveiled the novel role of γ-aminobutyric acid (GABA) in combating oxidative stress. This investigation examined how GABA impacts renal-cortex and medulla cells from Mongolian sheep exposed to high-glucose stress conditions, utilizing gene expression analysis and non-targeted metabolomics. Elevated glucose levels significantly reduced the viability of Mongolian sheep renal cells and increased reactive oxygen species (ROS) levels. Conversely, the introduction of GABA notably enhanced cell viability, reduced ROS production, and stimulated the expression of antioxidant genes (e.g., Gpx, SOD, CAT) in the renal cortex. In the renal medulla, CAT expression increased, while Gpx gene expression showed mixed responses. Metabolomics analysis indicated that high-glucose exposure altered various metabolites, whereas GABA alleviated the metabolic stress induced by high glucose through modulating glycolysis and the tricarboxylic acid cycle. In Mongolian sheep renal cells, GABA effectively mitigated oxidative damage triggered by high-glucose stress by upregulating antioxidant genes and regulating metabolic pathways, revealing insights into its potential mechanism for adapting to extreme environments. This finding offers a fresh perspective on understanding the stress resilience of Mongolian sheep and may provide valuable insights for research across diverse disciplines.


Subject(s)
Glucose , Oxidative Stress , Reactive Oxygen Species , gamma-Aminobutyric Acid , Animals , Oxidative Stress/drug effects , Glucose/metabolism , gamma-Aminobutyric Acid/metabolism , Sheep , Reactive Oxygen Species/metabolism , Kidney/metabolism , Kidney/drug effects , Antioxidants/pharmacology , Antioxidants/metabolism , Cell Survival/drug effects , Cells, Cultured , Metabolomics/methods
10.
World J Diabetes ; 15(9): 1916-1931, 2024 Sep 15.
Article in English | MEDLINE | ID: mdl-39280180

ABSTRACT

BACKGROUND: Diabetic nephropathy (DN) is the most frequent chronic microvascular consequence of diabetes, and podocyte injury and malfunction are closely related to the development of DN. Studies have shown that corilagin (Cor) has hepatoprotective, anti-inflammatory, antibacterial, antioxidant, anti-hypertensive, anti-diabetic, and anti-tumor activities. AIM: To explore the protective effect of Cor against podocyte injury in DN mice and the underlying mechanisms. METHODS: Streptozotocin and a high-fat diet were combined to generate DN mice models, which were then divided into either a Cor group or a DN group (n = 8 in each group). Mice in the Cor group were intraperitoneally injected with Cor (30 mg/kg/d) for 12 wk, and mice in the DN group were treated with saline. Biochemical analysis was used to measure the blood lipid profiles. Hematoxylin and eosin staining was used to detect pathological changes in kidney tissue. Immunohistochemistry and Western blotting were used to assess the protein expression of nephrin and podocin. Mouse podocyte cells (MPC5) were cultured and treated with glucose (5 mmol/L), Cor (50 µM), high glucose (HG) (30 mmol/L), and HG (30 mmol/L) plus Cor (50 µM). Real-time quantitative PCR and Western blotting were performed to examine the effects of Cor on podocyte autophagy. RESULTS: Compared with the control group, the DN mice models had increased fasting blood glucose, glycosylated hemoglobin, triglycerides, and total cholesterol, decreased nephrin and podocin expression, increased apoptosis rate, elevated inflammatory cytokines, and enhanced oxidative stress. All of the conditions mentioned above were alleviated after intervention with Cor. In addition, Cor therapy improved SIRT1 and AMPK expression (P < 0.001), inhibited reactive oxygen species and oxidative stress, and elevated autophagy in HG-induced podocytes (P < 0.01). CONCLUSION: Cor alleviates podocyte injury by regulating autophagy via the SIRT1-AMPK pathway, thereby exerting its protective impact on renal function in DN mice.

11.
Int J Mol Sci ; 25(17)2024 Aug 30.
Article in English | MEDLINE | ID: mdl-39273388

ABSTRACT

Gestational diabetes mellitus (GDM) is a worldwide pregnancy complication. Gestational diabetes can significantly impact fetus development. However, the effects of high glucose on embryological development post-fertilization are yet to be researched. Danio rerio embryos are a great model for studying embryonic development. In this study, the effects on embryological (morphological and genetic) development were examined in the presence of a high-glucose environment that mimics the developing fetus in pregnant women with GDM. Fertilized zebrafish embryos were treated with normal media and high glucose for 5 days from 3 h post-fertilization (hpf) to 96 hpf, respectively, as control and experimental groups. Morphological changes are recorded with microscope images. Hatch rate and heart rate are compared between groups at set time points. RNA-Seq is performed to examine the gene changes in the experimental group. Glucose delayed the zebrafish embryo development by slowing the hatch rate by about 24 h. The brain, heart, and tail started showing smaller morphology in the glucose group compared to the control group at 24 hpf. Heart rate was faster in the glucose group compared to the control group on days 2 and 3 with a statistically significant difference. Among the zebrafish whole genome, the significantly changed genes were 556 upregulated genes and 1118 downregulated genes, respectively, in the high-glucose group. The metabolic and Wnt pathways are altered under high-glucose conditions. These conditions contribute to significant physiological differences that may provide insight into the functionality of post-embryological development.


Subject(s)
Embryonic Development , Gene Expression Regulation, Developmental , Glucose , Wnt Signaling Pathway , Zebrafish , Animals , Zebrafish/embryology , Zebrafish/genetics , Zebrafish/metabolism , Wnt Signaling Pathway/drug effects , Glucose/metabolism , Embryonic Development/drug effects , Embryonic Development/genetics , Gene Expression Regulation, Developmental/drug effects , Embryo, Nonmammalian/metabolism , Embryo, Nonmammalian/drug effects , Female , Zebrafish Proteins/genetics , Zebrafish Proteins/metabolism
12.
J Pharm Pharmacol ; 2024 Sep 22.
Article in English | MEDLINE | ID: mdl-39306802

ABSTRACT

OBJECTIVES: To use H9c2 cardiomyocytes to establish a diabetic cardiomyopathic model by exposing these cells to high glucose (HG), followed by treating them with melatonin (MEL) or plasmid vectors overexpressing FUN14 Domain Containing 1 (FUNDC1). METHODS: We employed quantitative real-time PCR, mitochondrial staining, and biochemical assays to measure the activity of various antioxidant and mitochondrial complex functions under various treatment conditions. KEY FINDINGS: Our results showed that HG induced the expression of FUNDC1 and increased mitochondrial oxidative stress and fragmentation, while MEL treatment reversed most of these pathological effects. Moreover, HG exposure activated dynamin-related protein 1 expression and its translocation to mitochondria. Modulation of AMP-activated protein kinase level was found to be another pathological hallmark. In silico molecular docking, analysis revealed that MEL could directly bind the catalytic groove of FUNDC1 through Van der Waal's force and hydrogen bonding. Finally, MEL ameliorated diabetic cardiomyopathy-induced mitochondrial injury through FUNDC1 in vivo. CONCLUSIONS: Hyperglycemia induced mitochondrial fragmentation and altered electron transport chain complex functions, which could be ameliorated by MEL treatment, suggesting its potential as a cardiovascular therapeutic.

13.
Biochem Pharmacol ; 229: 116552, 2024 Sep 20.
Article in English | MEDLINE | ID: mdl-39307319

ABSTRACT

Mitochondrial dysfunction is associated with hyperglycemic conditions and insulin resistance leading to cellular damage and apoptosis of cardiomyocytes in diabetic cardiomyopathy. The dysregulation of glucagon-like peptide-1 (GLP-1) receptor and mammalian target of rapamycin (mTOR) is linked to cardiomyopathies and myocardial dysfunctions mediated by hyperglycemia. However, the involvements of mTOR for GLP-1 receptor-mediated cardioprotection against high glucose (HG)-induced mitochondrial disturbances are not clearly identified. The present study demonstrated that HG-induced cellular stress and mitochondrial damage resulted in impaired ATP production and oxidative defense markers such as catalase and SOD2, along with a reduction in survival markers such as Bcl-2 and p-Akt, while an increased expression of pro-apoptotic marker Bax was observed in H9c2 cardiomyoblasts. In addition, the autophagic marker LC3-II was considerably reduced, together with the disruption of autophagy regulators (p-mTOR and p-AMPKα) under the hyperglycemic state. Furthermore, there was a dysregulated expression of several indicators related to mitochondrial homeostasis, including MFN2, p-DRP1, FIS1, MCU, UCP3, and Parkin. Remarkably, treatment with either exendin-4 (GLP-1 receptor agonist) or rapamycin (mTOR inhibitor) significantly inhibited HG-induced mitochondrial damage while co-treatment of exendin-4 and rapamycin completely reversed all mitochondrial abnormalities. Antagonism of GLP-1 receptors using exendin-(9-39) abolished these cardioprotective effects of exendin-4 and rapamycin under HG conditions. In addition, exendin-4 attenuated HG-induced phosphorylation of mTOR, and this inhibitory effect was antagonized by exendin-(9-39), indicating the regulation of mTOR by GLP-1 receptor. Therefore, improvement of mitochondrial dysfunction by stimulating the GLP-1 receptor/AMPK/Akt pathway and inhibiting mTOR signaling could ameliorate cardiac abnormalities caused by hyperglycemic conditions.

14.
BMC Nephrol ; 25(1): 297, 2024 Sep 09.
Article in English | MEDLINE | ID: mdl-39251943

ABSTRACT

BACKGROUND: Diabetic nephropathy (DN) is a common complication of diabetes mellitus, and Prolyl 4-Hydroxylase Subunit Beta (P4HB) expression is increased in high glucose (HG)-induced renal tubular epithelial cells (TECs). But it's role in HG-induced TECs remains to be elucidated. METHODS: The HK-2 cells were induced using HG and transfected with SiRNA-P4HB. DCFH-DA staining was utilized for the detection of cellular levels of ROS. WB and immunofluorescence were utilized to detect the expression of P4HB, epithelial-mesenchymal transition (EMT), fibrosis, and TGFß/SMAD3-related proteins in HK-2 cells. Online databases were utilized for predicting the interaction target of P4HB, and immunoprecipitation (IP) experiments were employed to validate the binding of P4HB with the target. SiRNA and overexpression vectors of target gene were used to verify the mechanism of action of P4HB. RESULTS: HG induced an increase in the expression of P4HB and TGFß, p-SMAD3, and ROS in HK-2 cells. Furthermore, HG downregulated the expression of E-cadherin and upregulated the expression of N-cadherin, Vimentin, α-SMA, Fibronectin, Collagen IV, SNAIL, and SLUG in HK-2 cells. Interfering with P4HB significantly reversed the expression of these proteins. Database predictions and IP experiments showed that P4HB interacts with PRMT1, and the expression of PRMT1 was increased in HG-induced HK-2 cells. Interfering with PRMT1 inhibited the changes in expression of EMT and fibrosis related proteins induced by HG. However, overexpression of PRMT1 weakened the regulatory effect of P4HB interference on the EMT, fibrosis, and TGFß/SMAD3-related proteins in HK-2 cells. CONCLUSION: P4HB regulated the TGFß/SMAD3 signaling pathway through PRMT1 and thus participates in HG-induced EMT and fibrosis in HK-2 cells.


Subject(s)
Epithelial Cells , Epithelial-Mesenchymal Transition , Fibrosis , Glucose , Kidney Tubules , Protein-Arginine N-Methyltransferases , Repressor Proteins , Signal Transduction , Smad3 Protein , Transforming Growth Factor beta , Humans , Smad3 Protein/metabolism , Epithelial Cells/metabolism , Epithelial Cells/pathology , Glucose/pharmacology , Glucose/toxicity , Glucose/metabolism , Protein-Arginine N-Methyltransferases/metabolism , Protein-Arginine N-Methyltransferases/genetics , Transforming Growth Factor beta/metabolism , Kidney Tubules/pathology , Kidney Tubules/metabolism , Repressor Proteins/metabolism , Repressor Proteins/genetics , Cell Line , Diabetic Nephropathies/metabolism , Diabetic Nephropathies/pathology , Reactive Oxygen Species/metabolism
15.
Heliyon ; 10(15): e35423, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-39170432

ABSTRACT

Introduction: In prior reports, Jie-Du-Tong-Luo (JDTL) was reported to help control insulin secretion and blood glucose in patients with diabetes, while also protecting liver and pancreatic islet cells against injury caused by exposure to high glucose (HG) levels. This study was thus developed to assess the effects of JDTL on HG and palmitic acid (PA)-induced muscle injury and to explore the mechanistic basis for these effects. Methods: A model of muscle injury was established using mouse C2C12 myotubes treated with HG + PA. A proteomics approach was used to assess changes in protein levels following JDTL treatment, after which Western immunoblotting was employed to validate significantly affected pathways. Results: JDTL was able to protect against HG + PA-induced muscle cell injury in this experimental system, altering lipid metabolism and inflammatory activity in these injured C2C12 myotubes. Western blotting suggested that JDTL is capable of activating PI3K/Akt/PPARγ signaling to control lipid metabolism without any corresponding impact on the inflammatory NF-κB pathway. Conclusions: These data highlight the ability of JDTL to protect against HG + PA-induced injury to muscle cells, and suggest that the underlying basis for such efficacy is related to the PI3K/Akt/PPARγ pathway-mediated modulation of lipid metabolism.

19.
Exp Eye Res ; 247: 110046, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39147191

ABSTRACT

Diabetic retinopathy, a leading cause of vision impairment, is marked by microvascular complications in the retina, including pericyte loss, a key indicator of early-stage disease. This study explores the therapeutic potential of exosomes derived from immortalized adipose-mesenchymal stem cells differentiated into pericyte-like cells in restoring the function of mouse retinal microvascular endothelial cells damaged by high glucose conditions, thereby contributing to the understanding of early diabetic retinopathy intervention strategies. To induce immortalized adipose-mesenchymal stem cells differentiation into pericyte-like cells, the study employed pericyte growth supplement. And confirmed the success of cell differentiation through the detection of α-smooth muscle actin and neural/glial antigen 2 expression by Western blot and immunofluorescence. Exosomes were isolated from the culture supernatant of immortalized adipose-mesenchymal stem cells using ultracentrifugation and characterized through Western blot for exosomal markers (CD9, CD81, and TSG101), transmission electron microscopy, and nanoparticle tracking analysis. Their influence on mouse retinal microvascular endothelial cells under high glucose stress was assessed through various functional assays. Findings revealed that exosomes, especially those from pericyte-like immortalized adipose-mesenchymal stem cells, were efficiently internalized by retinal microvascular endothelial cells and effectively counteracted high glucose-induced apoptosis. These exosomes also mitigated the rise in reactive oxygen species levels and suppressed the migratory and angiogenic properties of retinal microvascular endothelial cells, as demonstrated by Transwell and tube formation assays, respectively. Furthermore, they preserved endothelial barrier function, reducing hyperglycemia-induced permeability. At the molecular level, qRT-PCR analysis showed that exosome treatment modulated the expression of critical genes involved in angiogenesis (VEGF-A, ANG2, MMP9), inflammation (IL-1ß, TNF-α), gap junction communication (CX43), and cytoskeletal regulation (ROCK1), with the most prominent effects seen with exosomes from pericyte-like immortalized adipose-mesenchymal stem cells. High glucose increased the expression of pro-angiogenic and pro-inflammatory markers, which were effectively normalized post-exosome treatment. In conclusion, this research highlights the reparative capacity of exosomes secreted by pericyte-like differentiated immortalized adipose-mesenchymal stem cells in reversing the detrimental effects of high glucose on retinal microvascular endothelial cells. By reducing apoptosis, oxidative stress, inflammation, and abnormal angiogenic behavior, these exosomes present a promising avenue for therapeutic intervention in early diabetic retinopathy. Future studies can focus on elucidating the precise molecular mechanisms and exploring their translational potential in vivo.


Subject(s)
Blotting, Western , Cell Differentiation , Diabetic Retinopathy , Exosomes , Glucose , Mesenchymal Stem Cells , Pericytes , Retinal Vessels , Exosomes/metabolism , Pericytes/metabolism , Animals , Mesenchymal Stem Cells/metabolism , Mesenchymal Stem Cells/cytology , Mice , Retinal Vessels/cytology , Retinal Vessels/metabolism , Glucose/pharmacology , Diabetic Retinopathy/metabolism , Cells, Cultured , Adipose Tissue/cytology , Adipose Tissue/metabolism , Endothelium, Vascular/metabolism , Endothelium, Vascular/cytology , Microscopy, Electron, Transmission , Mice, Inbred C57BL , Apoptosis , Endothelial Cells/metabolism
20.
Int J Mol Sci ; 25(15)2024 Jul 28.
Article in English | MEDLINE | ID: mdl-39125805

ABSTRACT

A previous study showed that high-glucose (HG) conditions induce mitochondria fragmentation through the calcium-mediated activation of extracellular signal-regulated kinase 1/2 (ERK 1/2) in H9C2 cells. This study tested whether empagliflozin could prevent HG-induced mitochondria fragmentation through this pathway. We found that exposing H9C2 cells to an HG concentration decreased cell viability and increased cell apoptosis and caspase-3. Empagliflozin could reverse the apoptosis effect of HG stimulation on H9C2 cells. In addition, the HG condition caused mitochondria fragmentation, which was reduced by empagliflozin. The expression of mitochondria fission protein was upregulated, and fusion proteins were downregulated under HG stimulation. The expression of fission proteins was decreased under empagliflozin treatment. Increased calcium accumulation was observed under the HG condition, which was decreased by empagliflozin. The increased expression of ERK 1/2 under HG stimulation was also reversed by empagliflozin. Our study shows that empagliflozin could reverse the HG condition, causing a calcium-dependent activation of the ERK 1/2 pathway, which caused mitochondria fragmentation in H9C2 cells.


Subject(s)
Apoptosis , Benzhydryl Compounds , Calcium , Glucose , Glucosides , MAP Kinase Signaling System , Mitochondria , Apoptosis/drug effects , Benzhydryl Compounds/pharmacology , Glucosides/pharmacology , Glucose/metabolism , Mitochondria/metabolism , Mitochondria/drug effects , Calcium/metabolism , Animals , Rats , Cell Line , MAP Kinase Signaling System/drug effects , Cell Survival/drug effects , Mitochondrial Dynamics/drug effects , Caspase 3/metabolism , Mitogen-Activated Protein Kinase 3/metabolism , Mitogen-Activated Protein Kinase 1/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL