Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters








Database
Language
Publication year range
1.
Mater Sci Eng C Mater Biol Appl ; 62: 787-94, 2016 May.
Article in English | MEDLINE | ID: mdl-26952485

ABSTRACT

Traditional treatment for bone diseases limits their clinical application due to undesirable host immune rejection, limited donator sources and severe pain and suffering for patients. Bone tissue engineering therefore is expected to be a more effective way in treating bone diseases. In the present study, hybrid calcium alginate/bone powder gel-beads with a uniform size distribution, good biocompatibility and osteoinductive capability, were prepared to be used as an in-vitro niche-like matrix. The beads were optimized using 2.5% (w/v) sodium alginate solution, 4.5% (w/v) CaCl2 solution and 5.0mg/mL bone powder using an easy-to-use method. Human ADSCs were cultured and induced into chondrocytes and osteoblasts, respectively. The cells were characterized by histological staining showing the ADSCs were able to maintain their characteristic morphology with multipotent differentiation ability. ADSCs at density of 5 × 10(6)cells/mL were encapsulated into the gel-beads aiming to explore cell expansion under different conditions and the osteogenic induction of ADSCs was verified by specific staining. Results demonstrated that the encapsulated ADSCs expanded 5.6 folds in 10 days under dynamic condition via spinner flask, and were able to differentiate into osteoblasts (OBs) with extensive mineralized nodules forming the bone aggregates over 3 weeks postosteogenic induction. In summary, hybrid gel-beads encapsulating ADSCs are proved to be feasible as a new method to fabricate tissue engineered bone aggregation with potential to treat skeletal injury in the near future.


Subject(s)
Alginates/chemistry , Calcium Chloride/chemistry , Adipose Tissue/cytology , Adipose Tissue/metabolism , Alkaline Phosphatase/metabolism , Biocompatible Materials/chemistry , Biocompatible Materials/pharmacology , Bone and Bones/chemistry , Bone and Bones/physiology , Cell Differentiation/drug effects , Cells, Cultured , Gels/chemistry , Glucuronic Acid/chemistry , Hexuronic Acids/chemistry , Humans , Osteoblasts/cytology , Osteoblasts/metabolism , Osteogenesis/drug effects , Particle Size , Tissue Engineering
SELECTION OF CITATIONS
SEARCH DETAIL