Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.258
Filter
1.
Prostate ; 2024 Aug 07.
Article in English | MEDLINE | ID: mdl-39113225

ABSTRACT

BACKGROUND: To analyze the expression of interleukin-33 (IL-33), growth-stimulated expression gene 2 (ST2), nuclear factor-kappaB (NF-κB) and immune cell infiltration in prostate cancer, this study aims to provide an experimental basis for the clinical prevention and treatment of prostate cancer. METHODS: The expression of IL-33 in PCa tissues was analyzed using TCGA, TIMER and HPA databases. Using the UALCAN database, the systematic exploration of the relationship between IL-33 and various clinicopathological parameters was conducted. The correlation between IL-33 expression and immune cell infiltration was investigated using TIMER, CIBERSORT and GEPIA databases. To verify these analyses, 22 cases of normal prostate (NP), 76 cases of benign prostatic hyperplasia (BPH), and 100 cases of PCa were recruited. Immunohistochemical staining was performed to examine the expression of IL-33, ST2, NF-κB, and the infiltration of immune cells. Correlations between these factors were then determined. RESULTS: The expression of IL-33, ST2 and NF-κB was significantly lower in PCa tissues compared with NP (p < 0.05). IL-33 was not associated with age in PCa but showed associations with race, molecular characteristics, lymph node metastatic status, TP53 mutation and tumor grade. Furthermore, IL-33 was associated with immune cell infiltration. Positive correlations were observed between IL-33 and ST2 expressions, as well as between IL-33 and CD68+ macrophages in BPH and PCa. CONCLUSIONS: IL-33, ST2 and NF-κB are lowly expressed in PCa tissues, their expression decreases with the increasing malignancy of cancer. IL-33, ST2 and NF-κB are factors associated with PCa immune infiltration. IL-33 has an inhibitory effect on prostate cancer through the IL-33/ST2/NF-κB signalling pathway.

2.
Immunology ; 2024 Aug 12.
Article in English | MEDLINE | ID: mdl-39132816

ABSTRACT

Interleukin (IL)-33 released from airway epithelial cells plays a vital role in shaping type 2 immune responses by binding to the ST2 receptor present in many immune cells, including mast cells (MCs). Intranasal administration of IL-33 in mice induces type 2 lung inflammation, an increase in lung MC progenitors, and transepithelial migration of leukocytes to the bronchoalveolar space. The aim of this study was to determine the contribution of MCs in IL-33-induced lung pathology. Four daily intranasal administrations of IL-33 reduced spirometry-like lung function parameters, induced airway hyperresponsiveness, and increased leukocytes in bronchoalveolar lavage fluid (BAL) in an ST2-dependent manner. MC-deficient (Cpa3cre/+) mice, which lack MCs, had intact spirometry-like lung function but slightly reduced airway hyperresponsiveness, possibly related to reduced IL-33 or serotonin. Strikingly, Cpa3cre/+ mice exposed to IL-33 had 50% reduction in BAL T-cells, and CXCL1 and IL-33 were reduced in the lung. Intranasal IL-33 induced CXCR2 expression in T-cells in a MC-independent fashion. Furthermore, IL-33-induced lung MCs were immunopositive for CXCL1 and localized in the epithelium of wild-type mice. These results suggest that MCs are required to sustain intact lung IL-33 and CXCL1 levels in mice with IL-33-induced airway inflammation, thereby facilitating T-cell accumulation in the bronchoalveolar space.

3.
Cell Mol Immunol ; 2024 Aug 12.
Article in English | MEDLINE | ID: mdl-39134801

ABSTRACT

Epithelial-derived cytokines, especially type 2 alarmins (TSLP, IL-25, and IL-33), have emerged as critical mediators of type 2 inflammation. IL-33 attracts more interest for its strong association with allergic asthma, especially in childhood asthma. However, the age-dependent role of IL-33 to the development of allergic asthma remains elusive. Here, using OVA-induced allergic asthma model in neonatal and adult mice, we report that IL-33 is the most important alarmin in neonatal lung both at steady state or inflammation. The deficiency of IL-33/ST2 abrogated the development of allergic asthma only in neonates, whereas in adults the effect was limited. Interestingly, the deficiency of IL-33/ST2 equally dampened the ILC2 responses in both neonatal and adult models. However, the effect of IL-33/ST2 deficiency on Th2 responses is age-dependent, which is only blocked in neonates. Furthermore, IL-33/ST2 signaling is dispensable for OVA sensitization. Following OVA challenge in adults, the deficiency of IL-33/ST2 results in compensational more TSLP, which in turn recruits and activates lung DCs and boosts Th2 responses. The enriched γδ T17 cells in IL-33/ST2 deficient neonatal lung suppress the expression of type 2 alarmins, CCL20 and GM-CSF via IL-17A, thus might confer the inhibition of allergic asthma. Finally, on the basis of IL-33 deficiency, the additive protective effects of TSLP blocking is much more pronounced than IL-25 blocking in adults. Our studies demonstrate that the role of IL-33 for ILC2 and Th2 responses varies among ages in OVA models and indicate that the factor of age should be considered for intervention of asthma.

4.
Immunology ; 2024 Aug 10.
Article in English | MEDLINE | ID: mdl-39126327

ABSTRACT

Chronic obstructive pulmonary disease (COPD) is a highly prevalent chronic respiratory disease characterised by irreversible airways obstruction associated with chronic airways inflammation and remodelling, while the pathogenesis and the mechanistic differences between patients remain to be fully elucidated. We previously reported that alarmin cytokine IL-33 may contribute to the production of autoantibodies against respiratory epithelial cells. Here we expand the hypothesis that pulmonary autoimmune responses induced by airway microbiota also contribute to the progression of COPD. We focused on Edwardsiella tarda which we detected uniquely in the induced sputum of patients with acute exacerbations of COPD. Pernasal challenge of the airways of WT mice with supernatants of cultured E. tarda induced marked, elevated expression of IL-33 in the lung tissues. Immunisation of animals with supernatants of cultured E. tarda resulted in significantly elevated airways inflammation, the formation of tertiary lymphatic structures and significantly elevated proportions of T follicular helper T cells in the lung tissue and mediastinal lymph nodes. Interestingly, such challenge also induced production of IgG autoantibodies directed against lung tissue lysate, alveolar epithelial cell proteins and elastin fragment, while putrescine, one of metabolites generated by the bacterium, might play an important role in the autoantibody production. Furthermore, all of these effects were partly but significantly abrogated in mice with deletion of the IL-33 receptor ST2. Collectively, these data support the hypothesis that COPD is progressed at least partly by airways microbiota such as E. tarda initiating autoimmune attack of the airways epithelium mediated at least partly through the IL-33-ST2 axis.

5.
Adv Exp Med Biol ; 1448: 553-563, 2024.
Article in English | MEDLINE | ID: mdl-39117838

ABSTRACT

Interleukin-1 is a prototypic proinflammatory cytokine that is elevated in cytokine storm syndromes (CSSs), such as secondary hemophagocytic lymphohistiocytosis (sHLH) and macrophage activation syndrome (MAS). IL-1 has many pleotropic and redundant roles in both innate and adaptive immune responses. Blockade of IL-1 with recombinant human interleukin-1 receptor antagonist has shown efficacy in treating CSS. Recently, an IL-1 family member, IL-18, has been demonstrated to be contributory to CSS in autoinflammatory conditions, such as in inflammasomopathies (e.g., NLRC4 mutations). Anecdotally, recombinant IL-18 binding protein can be of benefit in treating IL-18-driven CSS. Lastly, another IL-1 family member, IL-33, has been postulated to contribute to CSS in an animal model of disease. Targeting of IL-1 and related cytokines holds promise in treating a variety of CSS.


Subject(s)
Cytokine Release Syndrome , Interleukin-1 , Humans , Cytokine Release Syndrome/immunology , Cytokine Release Syndrome/drug therapy , Interleukin-1/antagonists & inhibitors , Interleukin-1/immunology , Interleukin-1/genetics , Interleukin-1/metabolism , Animals , Interleukin 1 Receptor Antagonist Protein/therapeutic use , Interleukin 1 Receptor Antagonist Protein/genetics , Calcium-Binding Proteins/genetics , Interleukin-18/genetics , Interleukin-18/immunology , Macrophage Activation Syndrome/immunology , Macrophage Activation Syndrome/drug therapy , Macrophage Activation Syndrome/genetics , Lymphohistiocytosis, Hemophagocytic/immunology , Lymphohistiocytosis, Hemophagocytic/genetics , Lymphohistiocytosis, Hemophagocytic/drug therapy , CARD Signaling Adaptor Proteins
6.
J Mol Med (Berl) ; 2024 Aug 13.
Article in English | MEDLINE | ID: mdl-39138828

ABSTRACT

Fibrosis is an important pathological change in inflammatory bowel disease (IBD), but the mechanism has yet to be elucidated. WNT2B high­expressed fibroblasts are enriched in IBD intestinal tissues, although the precise function of this group of fibroblasts remains unclear. This study investigated whether WNT2B high­expressed fibroblasts aggravated intestinal tissue damage and fibrosis. Our study provides evidence that WNT2B high­expressed fibroblasts and NK cells were enriched in colitis tissue of patients with IBD. WNT2B high­expressed fibroblasts secreted wnt2b, which bound to FZD4 on NK cells and activated the NF-κB and STAT3 pathways to enhance IL-33 expression. TCF4, a downstream component of the WNT/ß-catenin pathway, bound to p65 and promoted binding to IL-33 promoter. Furthermore, Salinomycin, an inhibitor of the WNT/ß-catenin pathway, inhibited IL-33 secretion in colitis, thereby reducing intestinal inflammation.Knocking down WNT2B reduces NK cell infiltration and IL-33 secretion in colitis, and reduce intestinal inflammation and fibrosis. In conclusion, WNT2B high­expressed fibroblasts activate NK cells by secreting wnt2b, which activates the WNT/ß-catenin and NF-κB pathways to promote IL-33 expression and secretion, potentially culminating in the induction of colonic fibrosis in IBD. KEY MESSAGES: WNT2B high-expressed fibroblasts and NK cells are enriched in colitis tissue, promoting NK cells secreting IL-33. Wnt2b activates NF-κB and STAT3 pathways promotes IL-33 expression by activating p65 and not STAT3. syndrome TCF4 binds to p65 and upregulates the NF- κB pathway. Salinomycin reduces NK cell infiltration and IL-33 secretion in colitis. Knocking down WNT2B mitigates inflammation and fibrosis in chronic colitis.

7.
J Clin Transl Hepatol ; 12(6): 539-550, 2024 Jun 28.
Article in English | MEDLINE | ID: mdl-38974954

ABSTRACT

Background and Aims: Hepatic fibrosis (HF) is a critical step in the progression of hepatocellular carcinoma (HCC). Gene associated with retinoid-IFN-induced mortality 19 (GRIM19), an essential component of mitochondrial respiratory chain complex I, is frequently attenuated in various human cancers, including HCC. Here, we aimed to investigate the potential relationship and underlying mechanism between GRIM19 loss and HF pathogenesis. Methods: GRIM19 expression was evaluated in normal liver tissues, hepatitis, hepatic cirrhosis, and HCC using human liver disease spectrum tissue microarrays. We studied hepatocyte-specific GRIM19 knockout mice and clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein-9 (Cas9) lentivirus-mediated GRIM19 gene-editing in murine hepatocyte AML12 cells in vitro and in vivo. We performed flow cytometry, immunofluorescence, immunohistochemistry, western blotting, and pharmacological intervention to uncover the potential mechanisms underlying GRIM19 loss-induced HF. Results: Mitochondrial GRIM19 was progressively downregulated in chronic liver disease tissues, including hepatitis, cirrhosis, and HCC tissues. Hepatocyte-specific GRIM19 heterozygous deletion induced spontaneous hepatitis and subsequent liver fibrogenesis in mice. In addition, GRIM19 loss caused chronic liver injury through reactive oxygen species (ROS)-mediated oxidative stress, resulting in aberrant NF-кB activation via an IKK/IкB partner in hepatocytes. Furthermore, GRIM19 loss activated NLRP3-mediated IL33 signaling via the ROS/NF-кB pathway in hepatocytes. Intraperitoneal administration of the NLRP3 inhibitor MCC950 dramatically alleviated GRIM19 loss-driven HF in vivo. Conclusions: The mitochondrial GRIM19 loss facilitates liver fibrosis through NLRP3/IL33 activation via ROS/NF-кB signaling, providing potential therapeutic approaches for earlier HF prevention.

8.
Microorganisms ; 12(7)2024 Jul 12.
Article in English | MEDLINE | ID: mdl-39065188

ABSTRACT

Toxoplasma gondii (T. gondii) is the causal agent of toxoplasmosis. It may produce severe damage in immunocompromised individuals, as well as congenital infection and intrauterine growth restriction (IUGR). Previous reports have associated interleukin IL-33 with miscarriage, fetal damage, and premature delivery due to infections with various microorganisms. However, IL-33 has not been associated with congenital toxoplasmosis. The sST2 receptor has been reported in patients who have had recurrent miscarriages. On the other hand, IL-1ß was not found in acute Toxoplasma infection. Our aim was to analyze the associations between the serum levels of IL-33 and IL-1ß in IUGR and toxoplasmosis during pregnancy. Eighty-four serum samples from pregnant women who had undergone 26 weeks of gestation were grouped as follows: with anti-Toxoplasma antibodies, without anti-Toxoplasma antibodies, IUGR, and the control group. IgG and IgM anti-T. gondii antibodies, as well as IL-33, ST2, and IL-1ß, were determined using an ELISA assay. Statistical analyses were performed using the Pearson and Chi-square correlation coefficients, as well as the risk factors and Odds Ratios (ORs), with a confidence interval of 95% (CI 95). The results showed that 15/84 (17.8%) of cases were positive for IgG anti-Toxoplasma antibodies and 2/84 (2.38%) of cases were positive for IgM. A statistically significant difference was found between IUGR and IL-33 (p < 0.001), as well as between ST2 and IUGR (p < 0.001). In conclusion, IUGR was significantly associated with IL-33 and ST2 positivity based on the overall IUGR grade. No significant association was found between IUGR and the presence of anti-Toxoplasma antibodies. There was no association between IL-1ß and IUGR. More research is needed to strengthen the utility of IL-33 and ST2 as biomarkers of IUGR.

9.
J Exp Clin Cancer Res ; 43(1): 209, 2024 Jul 27.
Article in English | MEDLINE | ID: mdl-39061080

ABSTRACT

Immune cell-derived extracellular vesicles (EV) affect tumor progression and hold promise for therapeutic applications. Eosinophils are major effectors in Th2-related pathologies recently implied in cancer. Here, we evaluated the anti-tumor activities of eosinophil-derived EV following activation with the alarmin IL-33. We demonstrate that IL-33-activated mouse and human eosinophils produce higher quantities of EV with respect to eosinophils stimulated with IL-5. Following incorporation of EV from IL-33-activated eosinophils (Eo33-EV), but not EV from IL-5-treated eosinophils (Eo5-EV), mouse and human tumor cells increased the expression of cyclin-dependent kinase inhibitor (CDKI)-related genes resulting in cell cycle arrest in G0/G1, reduced proliferation and inhibited tumor spheroid formation. Moreover, tumor cells incorporating Eo33-EV acquired an epithelial-like phenotype characterized by E-Cadherin up-regulation, N-Cadherin downregulation, reduced cell elongation and migratory extent in vitro, and impaired capacity to metastasize to lungs when injected in syngeneic mice. RNA sequencing revealed distinct mRNA signatures in Eo33-EV and Eo5-EV with increased presence of tumor suppressor genes and enrichment in pathways related to epithelial phenotypes and negative regulation of cellular processes in Eo33-EV compared to Eo5-EV. Our studies underscore novel IL-33-stimulated anticancer activities of eosinophils through EV-mediated reprogramming of tumor cells opening perspectives on the use of eosinophil-derived EV in cancer therapy.


Subject(s)
Eosinophils , Extracellular Vesicles , Interleukin-33 , Animals , Interleukin-33/metabolism , Mice , Eosinophils/metabolism , Humans , Extracellular Vesicles/metabolism , Cell Line, Tumor , Cell Proliferation , Cellular Reprogramming
10.
Am J Reprod Immunol ; 92(1): e13895, 2024 Jul.
Article in English | MEDLINE | ID: mdl-39001587

ABSTRACT

PROBLEM: Preeclampsia (PE) is a hypertensive pregnancy disorder that is a leading cause of maternal and fetal morbidity and mortality characterized by maternal vascular dysfunction, oxidative stress, chronic immune activation, and excessive inflammation. No cure exists beyond delivery of the fetal-placental unit and the mechanisms driving pathophysiology are not fully understood. However, aberrant immune responses have been extensively characterized in clinical studies and shown to mediate PE pathophysiology in animal studies. One pathway that may mediate aberrant immune responses in PE is deficiencies in the IL-33 signaling pathway. In this study, we aim to investigate the impact of IL-33 signaling inhibition on cNK, TH17, and TReg populations, vascular function, and maternal blood pressure during pregnancy. METHOD OF STUDY: In this study, IL-33 signaling was inhibited using two different methods: intraperitoneal administration of recombinant ST2 (which acts as a decoy receptor for IL-33) and administration of a specific IL-33 neutralizing antibody. Maternal blood pressure, uterine artery resistance index, renal and placental oxidative stress, cNK, TH17, and TReg populations, various cytokines, and pre-proendothelin-1 levels were measured. RESULTS: IL-33 signaling inhibition increased maternal blood pressure, uterine artery resistance, placental and renal oxidative stress. IL-33 signaling inhibition also increased placental cNK and TH17 and renal TH17 cells while decreasing placental TReg populations. IL-33 neutralization increased circulating cNK and TH17s and decreased circulating TRegs in addition to increasing pre-proendothelin-1 levels. CONCLUSIONS: Data presented in this study demonstrate a role for IL-33 signaling in controlling vascular function and maternal blood pressure during pregnancy possibly by mediating innate and adaptive immune inflammatory responses, identifying the IL-33 signaling pathway as a potential therapeutic target for managing preeclampsia.


Subject(s)
Interleukin-33 , Pre-Eclampsia , Signal Transduction , Female , Pregnancy , Interleukin-33/metabolism , Pre-Eclampsia/immunology , Animals , Rats , Rats, Sprague-Dawley , Th17 Cells/immunology , Disease Models, Animal , T-Lymphocytes, Regulatory/immunology , Humans , Oxidative Stress , Placenta/immunology , Placenta/metabolism , Blood Pressure , Interleukin-1 Receptor-Like 1 Protein/metabolism
11.
J Clin Med ; 13(13)2024 Jun 26.
Article in English | MEDLINE | ID: mdl-38999286

ABSTRACT

Background: The secretion of alarmin cytokines by epithelial cells, including thymic stromal lymphopoietin (TSLP), interleukin (IL)-25, and IL-33, initiates inflammatory cascades in asthma. However, alarmin cytokine expression in the upper airways in asthma remains largely unknown. Methods: We recruited 40 participants with asthma into four groups as per the Global Initiative for Asthma (GINA) steps (10 in each group of GINA 1/2, 3, 4, and 5). Cells were derived from nasal, buccal, and throat brushings. Intracellular cytokine expression (TSLP, IL-25, and IL-33) was assessed by flow cytometry in cytokeratin 8+ (Ck8+) epithelial cells immediately following collection. Results: TSLP was significantly increased (p < 0.001) in GINA 5 patients across nasal, buccal, and throat Ck8+ epithelial cells, while IL-25 was elevated in nasal and throat samples (p < 0.003), and IL-33 levels were variable, compared with GINA 1-4 patients. Individual GINA subgroup comparison showed that TSLP levels in nasal samples from GINA 5 patients were significantly (p = 0.03) elevated but did not differ between patients with and without nasal comorbidities. IL-25 and IL-33 (obtained from nasal, buccal, and throat samples) were not significantly different in individual groups. Conclusions: Our study demonstrates for the first time that Ck8+ nasal epithelial cells from GINA 5 asthma patients express elevated levels of TSLP.

12.
Microbiol Spectr ; 12(8): e0061224, 2024 Aug 06.
Article in English | MEDLINE | ID: mdl-38980021

ABSTRACT

Streptococcus suis type 2 (SS2) is a zoonotic pathogen capable of eliciting meningitis, presenting significant challenges to both the swine industry and public health. Suilysin (Sly), one of SS2 most potent virulence determinants, releases a surfeit of inflammatory agents following red blood cell lysis. Notably, while current research on Sly role in SS2-induced meningitis predominantly centers on its interaction with the blood-brain barrier (BBB), the repercussions of Sly hemolytic products on BBB function have largely been sidestepped. In this vein, our study delves into the ramifications of Sly-induced hemolysis on BBB integrity. We discern that Sly hemolytic derivatives exacerbate the permeability of Sly-induced in vitro BBB models. Within these Sly hemolytic products, Interleukin-33 (IL-33) disrupts the expression and distribution of Claudin-5 in brain microvascular endothelial cells, facilitating the release of Interleukin-6 (IL-6) and Interleukin-8 (IL-8), thereby amplifying BBB permeability. Preliminary mechanistic insights suggest that IL-33-driven expression of IL-6 and IL-8 is orchestrated by the p38-mitogen-activated protein kinase signaling, whereas matrix metalloproteinase 9 mediates IL-33-induced suppression of Claudin-5. To validate these in vitro findings, an SS2-infected mouse model was established, and upon intravenous administration of growth stimulation expressed gene 2 (ST2) antibodies, in vivo results further underscored the pivotal role of the IL-33/ST2 axis during SS2 cerebral invasion. In summation, this study pioneerly illuminates the involvement of Sly hemolytic products in SS2-mediated BBB compromise and spotlights the instrumental role and primary mechanism of IL-33 therein. These insights enrich our comprehension of SS2 meningitis pathogenesis, laying pivotal groundwork for therapeutic advancements against SS2-induced meningitis.IMPORTANCEThe treatment of meningitis caused by Streptococcus suis type 2 (SS2) has always been a clinical challenge. Elucidating the molecular mechanisms by which SS2 breaches the blood-brain barrier (BBB) is crucial for the development of meningitis therapeutics. Suilysin (Sly) is one of the most important virulence factors of SS2, which can quickly lyse red blood cells and release large amounts of damage-associated molecular patterns, such as hemoglobin, IL-33, cyclophilin A, and so on. However, the impact of these hemolytic products on the function of BBB is unknown and ignored. This study is the first to investigate the effect of Sly hemolytic products on BBB function. The data are crucial for the study of the pathogenesis of SS2 meningitis and can provide an important reference for the development of meningitis therapeutics.


Subject(s)
Blood-Brain Barrier , Endothelial Cells , Hemolysin Proteins , Hemolysis , Interleukin-33 , Streptococcus suis , Blood-Brain Barrier/metabolism , Blood-Brain Barrier/microbiology , Animals , Mice , Interleukin-33/metabolism , Humans , Hemolysin Proteins/metabolism , Streptococcus suis/pathogenicity , Endothelial Cells/microbiology , Endothelial Cells/metabolism , Streptococcal Infections/microbiology , Interleukin-6/metabolism , Interleukin-6/genetics , Interleukin-8/metabolism , Swine , Matrix Metalloproteinase 9/metabolism
13.
J Allergy Clin Immunol Glob ; 3(3): 100287, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39040657

ABSTRACT

Background: Massive eosinophil infiltration into the esophagus is associated with subepithelial fibrosis and esophageal stricture in patients with eosinophilic esophagitis (EoE). However, the pathogenesis of esophageal fibrosis remains unclear. Objective: We sought to elucidate the cellular and molecular mechanisms underlying the induction of esophageal fibrosis. Methods: We established a murine model of EoE accompanied by fibrotic responses following long-term intranasal administration of house dust mite antigen. Using this murine model, we investigated the characteristics of immune cells infiltrating the fibrotic region of the inflamed esophagus using flow cytometry and histological analyses. We also analyzed the local inflammatory sites in the esophagus of patients with EoE using single-cell RNA sequencing, flow cytometry, and immunohistochemistry. Results: Enhanced infiltration of both amphiregulin-producing and IL-5-producing TH2 cells was detected in the fibrotic area of the esophagus in mice subjected to repeated house dust mite exposure. Deletion of amphiregulin in CD4+ T cells ameliorates esophageal fibrosis. An analysis of human esophageal biopsy samples showed that the infiltration of amphiregulin-producing CD4+ T cells was higher in patients with EoE than in control patients. Furthermore, the number of infiltrated amphiregulin-producing CD4+ T cells was associated with the degree of esophageal fibrosis in patients with EoE. Conclusions: Amphiregulin, produced by TH2 cells, contributes to esophageal fibrosis in EoE and may be a therapeutic target.

14.
Adv Sci (Weinh) ; : e2405299, 2024 Jul 22.
Article in English | MEDLINE | ID: mdl-39037903

ABSTRACT

During the process of muscle regeneration post-injury in adults, muscle stem cells (MuSCs) function is facilitated by neighboring cells within the pro-regenerative niche. However, the precise mechanism triggering the initiation of signaling in the pro-regenerative niche remains unknown. Using single-cell RNA sequencing, 14 different muscle cells are comprehensively mapped during the initial stage following injury. Among these, macrophages and fibro-adipogenic progenitor cells (FAPs) exhibit the most pronounced intercellular communication with other cells. In the FAP subclusters, the study identifies an activated FAP phenotype that secretes chemokines, such as CXCL1, CXCL5, CCL2, and CCL7, to recruit macrophages after injury. Il1rl1, encoding the protein of the interleukin-33 (IL-33) receptor, is identified as a highly expressed signature surface marker of the FAP phenotype. Following muscle injury, autocrine IL-33, an alarmin, has been observed to activate quiescent FAPs toward this inflammatory phenotype through the IL1RL1-MAPK/NF-κB signaling pathway. Il1rl1 deficiency results in decreased chemokine expression and recruitment of macrophages, accompanied by impaired muscle regeneration. These findings elucidate a novel mechanism involving the IL-33/IL1RL1 signaling pathway in promoting the activation of FAPs and facilitating muscle regeneration, which can aid the development of therapeutic strategies for muscle-related disorders and injuries.

15.
Int J Mol Sci ; 25(14)2024 Jul 19.
Article in English | MEDLINE | ID: mdl-39063153

ABSTRACT

Difamilast, a phosphodiesterase 4 (PDE4) inhibitor, has been shown to be effective in the treatment of atopic dermatitis (AD), although the mechanism involved remains unclear. Since IL-33 plays an important role in the pathogenesis of AD, we investigated the effect of difamilast on IL-33 activity. Since an in vitro model of cultured normal human epidermal keratinocytes (NHEKs) has been utilized to evaluate the pharmacological potential of adjunctive treatment of AD, we treated NHEKs with difamilast and analyzed the expression of the suppression of tumorigenicity 2 protein (ST2), an IL-33 receptor with transmembrane (ST2L) and soluble (sST2) isoforms. Difamilast treatment increased mRNA and protein levels of sST2, a decoy receptor suppressing IL-33 signal transduction, without affecting ST2L expression. Furthermore, supernatants from difamilast-treated NHEKs inhibited IL-33-induced upregulation of TNF-α, IL-5, and IL-13 in KU812 cells, a basophil cell line sensitive to IL-33. We also found that difamilast activated the aryl hydrocarbon receptor (AHR)-nuclear factor erythroid 2-related factor 2 (NRF2) axis. Additionally, the knockdown of AHR or NRF2 abolished the difamilast-induced sST2 production. These results indicate that difamilast treatment produces sST2 via the AHR-NRF2 axis, contributing to improving AD symptoms by inhibiting IL-33 activity.


Subject(s)
Interleukin-1 Receptor-Like 1 Protein , Interleukin-33 , Keratinocytes , NF-E2-Related Factor 2 , Phosphodiesterase 4 Inhibitors , Receptors, Aryl Hydrocarbon , Signal Transduction , Humans , NF-E2-Related Factor 2/metabolism , Keratinocytes/metabolism , Keratinocytes/drug effects , Interleukin-1 Receptor-Like 1 Protein/metabolism , Interleukin-1 Receptor-Like 1 Protein/genetics , Receptors, Aryl Hydrocarbon/metabolism , Receptors, Aryl Hydrocarbon/antagonists & inhibitors , Phosphodiesterase 4 Inhibitors/pharmacology , Interleukin-33/metabolism , Signal Transduction/drug effects , Basic Helix-Loop-Helix Transcription Factors/metabolism , Basic Helix-Loop-Helix Transcription Factors/genetics , Cell Line
16.
Mucosal Immunol ; 2024 Jul 27.
Article in English | MEDLINE | ID: mdl-39069078

ABSTRACT

Early-life (EL) respiratory infections increase pulmonary disease risk, especially EL-Respiratory Syncytial Virus (EL-RSV) infections linked to asthma. Mechanisms underlying asthma predisposition remain unknown. In this study, we examined the long-term effects on the lung after four weeks post EL-RSV infection. We identified alterations in the lung epithelial cell, with a rise in the percentage of alveolar type 2 epithelial cells (AT2) and a decreased percentage of cells in the AT1 and AT2-AT1 subclusters, as well as upregulation of Bmp2 and Krt8 genes that are associated with AT2-AT1 trans-differentiation, suggesting potential defects in lung repair processes. We identified persistent upregulation of asthma-associated genes, including Il33. EL-RSV-infected mice allergen-challenged exhibited exacerbated allergic response, with significant upregulation of Il33 in the lung and AT2 cells. Similar long-term effects were observed in mice exposed to EL-IL-1ß. Notably, treatment with IL-1ra during acute EL-RSV infection mitigated the long-term alveolar alterations and the allergen-exacerbated response. Finally, epigenetic modifications in the promoter of the Il33 gene were detected in AT2 cells harvested from EL-RSV and EL-IL1ß groups, suggesting that long-term alteration in the epithelium after RSV infection is dependent on the IL-1ß pathway. This study provides insight into the molecular mechanisms of asthma predisposition after RSV infection.

17.
J Infect Dev Ctries ; 18(6): 887-894, 2024 Jun 30.
Article in English | MEDLINE | ID: mdl-38990986

ABSTRACT

INTRODUCTION: We investigated the function of type 2 innate lymphoid cells (ILC2s) and IL-33 in pulmonary tuberculosis (PTB). METHODOLOGY: Peripheral blood samples were collected from PTB patients and healthy controls. The cytometric bead array was used to detect plasma IL-33, TGF-ß, IL-4, IL-5, IL-6, IL-10, IL-13, and soluble ST2 (sST2). ILC2s, Th2, and Treg cells were detected with flow cytometry. Quantitative real-time PCR was used to measure mRNA levels. ILC2s were co-cultured with peripheral blood mononuclear cells and then intervened with IL-33 or anti-ST2 antibody + IL-33 in vitro. IL-4, IL-6, IL-5, IL-10, IL-13, and TGF-ß levels were measured by enzyme-linked immunosorbent assay. RESULTS: Compared with healthy controls, the levels of IL-33, sST2, TGF-ß, IL-10, and IL-6 in the plasma of PTB patients were significantly higher. No significant difference was found in the plasma IL-4, IL-5, and IL-13 levels. Patients with PTB had significantly increased ILC2s proportion and mRNA levels of RAR-related orphan receptor α and GATA binding protein 3. After 48 h of IL-33 stimulation in vitro, Treg cell proportion significantly increased and the IL-10 level was significantly elevated. Treatment with anti-ST2 abolished these effects. No significant difference was found in cytokines of IL-4, IL-6, IL-5, IL-13, and TGF-ß, or Th2 cells before and after IL-33 treatment. ILC2s proportion in peripheral blood was increased and plasma IL-33 was upregulated in PTB patients. CONCLUSIONS: IL-33 may promote the growth of ILC2s and the production of Treg-related cell cytokines, but not Th2-related cell cytokines, to participate in immune response to PTB.


Subject(s)
Interleukin-1 Receptor-Like 1 Protein , Interleukin-33 , T-Lymphocytes, Regulatory , Tuberculosis, Pulmonary , Humans , Interleukin-1 Receptor-Like 1 Protein/blood , T-Lymphocytes, Regulatory/immunology , Interleukin-33/blood , Female , Male , Tuberculosis, Pulmonary/immunology , Adult , Middle Aged , Cytokines/blood , Th2 Cells/immunology , Lymphocytes/immunology , Flow Cytometry , Young Adult , Immunity, Innate , Real-Time Polymerase Chain Reaction
18.
Int J Mol Sci ; 25(13)2024 Jun 28.
Article in English | MEDLINE | ID: mdl-39000244

ABSTRACT

Cutaneous wounds, both acute and chronic, begin with loss of the integrity, and thus barrier function, of the skin. Surgery and trauma produce acute wounds. There are 22 million surgical procedures per year in the United States alone, based on data from the American College of Surgeons, resulting in a prevalence of 6.67%. Acute traumatic wounds requiring repair total 8 million per year, 2.42% or 24.2 per 1000. The cost of wound care is increasing; it approached USD 100 billion for just Medicare in 2018. This burden for wound care will continue to rise with population aging, the increase in metabolic syndrome, and more elective surgeries. To heal a wound, an orchestrated, evolutionarily conserved, and complex series of events involving cellular and molecular agents at the local and systemic levels are necessary. The principal factors of this important function include elements from the neurological, cardiovascular, immune, nutritional, and endocrine systems. The objectives of this review are to provide clinicians engaged in wound care and basic science researchers interested in wound healing with an updated synopsis from recent publications. We also present data from our primary investigations, testing the hypothesis that cannabidiol can alter cutaneous wound healing and documenting their effects in wild type (C57/BL6) and db/db mice (Type 2 Diabetes Mellitus, T2DM). The focus is on the potential roles of the endocannabinoid system, cannabidiol, and the important immune-regulatory wound cytokine IL-33, a member of the IL-1 family, and connective tissue growth factor, CTGF, due to their roles in both normal and abnormal wound healing. We found an initial delay in the rate of wound closure in B6 mice with CBD, but this difference disappeared with time. CBD decreased IL-33 + cells in B6 by 70% while nearly increasing CTGF + cells in db/db mice by two folds from 18.6% to 38.8% (p < 0.05) using a dorsal wound model. We review the current literature on normal and abnormal wound healing, and document effects of CBD in B6 and db/db dorsal cutaneous wounds. CBD may have some beneficial effects in diabetic wounds. We applied 6-mm circular punch to create standard size full-thickness dorsal wounds in B6 and db/db mice. The experimental group received CBD while the control group got only vehicle. The outcome measures were rate of wound closure, wound cells expressing IL-33 and CTGF, and ILC profiles. In B6, the initial rate of wound closure was slower but there was no delay in the time to final closure, and cells expressing IL-33 was significantly reduced. CTGF + cells were higher in db/bd wounds treated with CBD. These data support the potential use of CBD to improve diabetic cutaneous wound healing.


Subject(s)
Cannabidiol , Skin , Wound Healing , Wound Healing/drug effects , Animals , Cannabidiol/pharmacology , Cannabidiol/therapeutic use , Humans , Skin/metabolism , Skin/drug effects , Mice , Diabetes Mellitus, Type 2/metabolism , Diabetes Mellitus, Type 2/drug therapy
19.
Immunity ; 2024 Jul 25.
Article in English | MEDLINE | ID: mdl-39079535

ABSTRACT

In squamous cell carcinoma (SCC), macrophages responding to interleukin (IL)-33 create a TGF-ß-rich stromal niche that maintains cancer stem cells (CSCs), which evade chemotherapy-induced apoptosis in part via activation of the NRF2 antioxidant program. Here, we examined how IL-33 derived from CSCs facilitates the development of an immunosuppressive microenvironment. CSCs with high NRF2 activity redistributed nuclear IL-33 to the cytoplasm and released IL-33 as cargo of large oncosomes (LOs). Mechanistically, NRF2 increased the expression of the lipid scramblase ATG9B, which exposed an "eat me" signal on the LO surface, leading to annexin A1 (ANXA1) loading. These LOs promoted the differentiation of AXNA1 receptor+ myeloid precursors into immunosuppressive macrophages. Blocking ATG9B's scramblase activity or depleting ANXA1 decreased niche macrophages and hindered tumor progression. Thus, IL-33 is released from live CSCs via LOs to promote the differentiation of alternatively activated macrophage, with potential relevance to other settings of inflammation and tissue repair.

20.
Cytokine ; 182: 156707, 2024 Jul 30.
Article in English | MEDLINE | ID: mdl-39084069

ABSTRACT

BACKGROUND: Pulmonary thromboembolism (PTE) is a cardiovascular emergency that can result in mortality. In the interleukin-33 (IL-33) /soluble suppression of tumorigenicity 2 (sST2) signaling pathway, increased sST2 is a cardiovascular risk factor. This study aimed to investigate the effectiveness of biomarkers in the IL-33/sST2 signaling pathway in determining PTE diagnosis, clinical severity, and mortality. METHOD: This study was conducted as a single-center, prospective, observational study. Patients admitted to the emergency department and diagnosed with PTE constituted the patient group (n = 112), and healthy volunteers with similar sociodemographic characteristics constituted the control group (n = 62). Biomarkers in the IL-33/sST2 signaling pathway were evaluated for diagnosis, clinical severity, and prognosis. RESULTS: IL-33 was lower in the patient group than in the control group (275.89 versus 403.35 pg/mL), while sST2 levels were higher in the patient group than in the control group (53.16 versus 11.78 ng/mL) (p < 0.001 and p = 0.001; respectively). The AUC of IL-33 to diagnose PTE was 0.656 (95 % CI: 0.580-0.726). The optimal IL-33 cut-off point to diagnose PTE was ≤304.11 pg/mL (56.2 % sensitivity, 79 % specificity). The AUC of sST2 to diagnose PTE was 0.818 (95 % CI: 0.752-0.872). The optimal sST2 cut-off point to diagnose PTE was >14.48 ng/mL (83 % sensitivity, 71 % specificity). IL-33 levels were lower in patients with mortality (169.85 versus 332.04 pg/mL) compared to patients without mortality, whereas sST2 levels were higher in patients with mortality (118.32 versus 28.07 ng/mL) compared to patients without mortality (p > 0.001 for both). The AUC of IL-33 to predict the mortality of PTE was 0.801 (95 % CI: 0.715-0.870). The optimal IL-33 cut-off point to predict the mortality of PTE was ≤212.05 pg/mL (75 % sensitivity, 79.5 % specificity). The AUC of sST2 to predict the mortality of PTE was 0.824 (95 % CI: 0.740-0.889). The optimal sST2 cut-off point to predict the mortality of PTE was >81 ng/mL (95.8 % sensitivity, 78.4 % specificity). CONCLUSION: In the IL-33/ST2 signaling pathway, decreased IL-33 and increased sST2 are valuable biomarkers for diagnosis and prediction of mortality in patients with PTE.

SELECTION OF CITATIONS
SEARCH DETAIL