Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 18 de 18
Filter
1.
Sensors (Basel) ; 24(17)2024 Aug 31.
Article in English | MEDLINE | ID: mdl-39275594

ABSTRACT

Monolithic zirconia (MZ) crowns are widely utilized in dental restorations, particularly for substantial tooth structure loss. Inspection, tactile, and radiographic examinations can be time-consuming and error-prone, which may delay diagnosis. Consequently, an objective, automatic, and reliable process is required for identifying dental crown defects. This study aimed to explore the potential of transforming acoustic emission (AE) signals to continuous wavelet transform (CWT), combined with Conventional Neural Network (CNN) to assist in crack detection. A new CNN image segmentation model, based on multi-class semantic segmentation using Inception-ResNet-v2, was developed. Real-time detection of AE signals under loads, which induce cracking, provided significant insights into crack formation in MZ crowns. Pencil lead breaking (PLB) was used to simulate crack propagation. The CWT and CNN models were used to automate the crack classification process. The Inception-ResNet-v2 architecture with transfer learning categorized the cracks in MZ crowns into five groups: labial, palatal, incisal, left, and right. After 2000 epochs, with a learning rate of 0.0001, the model achieved an accuracy of 99.4667%, demonstrating that deep learning significantly improved the localization of cracks in MZ crowns. This development can potentially aid dentists in clinical decision-making by facilitating the early detection and prevention of crack failures.


Subject(s)
Crowns , Deep Learning , Zirconium , Zirconium/chemistry , Humans , Neural Networks, Computer , Acoustics , Wavelet Analysis
2.
J Prosthodont ; 33(7): 645-654, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38566564

ABSTRACT

PURPOSE: The study aimed to compare the performance of four pre-trained convolutional neural networks in recognizing seven distinct prosthodontic scenarios involving the maxilla, as a preliminary step in developing an artificial intelligence (AI)-powered prosthesis design system. MATERIALS AND METHODS: Seven distinct classes, including cleft palate, dentulous maxillectomy, edentulous maxillectomy, reconstructed maxillectomy, completely dentulous, partially edentulous, and completely edentulous, were considered for recognition. Utilizing transfer learning and fine-tuned hyperparameters, four AI models (VGG16, Inception-ResNet-V2, DenseNet-201, and Xception) were employed. The dataset, consisting of 3541 preprocessed intraoral occlusal images, was divided into training, validation, and test sets. Model performance metrics encompassed accuracy, precision, recall, F1 score, area under the receiver operating characteristic curve (AUC), and confusion matrix. RESULTS: VGG16, Inception-ResNet-V2, DenseNet-201, and Xception demonstrated comparable performance, with maximum test accuracies of 0.92, 0.90, 0.94, and 0.95, respectively. Xception and DenseNet-201 slightly outperformed the other models, particularly compared with InceptionResNet-V2. Precision, recall, and F1 scores exceeded 90% for most classes in Xception and DenseNet-201 and the average AUC values for all models ranged between 0.98 and 1.00. CONCLUSIONS: While DenseNet-201 and Xception demonstrated superior performance, all models consistently achieved diagnostic accuracy exceeding 90%, highlighting their potential in dental image analysis. This AI application could help work assignments based on difficulty levels and enable the development of an automated diagnosis system at patient admission. It also facilitates prosthesis designing by integrating necessary prosthesis morphology, oral function, and treatment difficulty. Furthermore, it tackles dataset size challenges in model optimization, providing valuable insights for future research.


Subject(s)
Maxilla , Neural Networks, Computer , Prosthodontics , Humans , Maxilla/diagnostic imaging , Prosthodontics/methods , Artificial Intelligence
3.
J Bone Oncol ; 42: 100498, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37670740

ABSTRACT

Objective: The objective of this study was to investigate the use of contrast-enhanced magnetic resonance imaging (CE-MRI) combined with radiomics and deep learning technology for the identification of spinal metastases and primary malignant spinal bone tumor. Methods: The region growing algorithm was utilized to segment the lesions, and two parameters were defined based on the region of interest (ROI). Deep learning algorithms were employed: improved U-Net, which utilized CE-MRI parameter maps as input, and used 10 layers of CE images as input. Inception-ResNet model was used to extract relevant features for disease identification and construct a diagnosis classifier. Results: The diagnostic accuracy of radiomics was 0.74, while the average diagnostic accuracy of improved U-Net was 0.98, respectively. the PA of our model is as high as 98.001%. The findings indicate that CE-MRI based radiomics and deep learning have the potential to assist in the differential diagnosis of spinal metastases and primary malignant spinal bone tumor. Conclusion: CE-MRI combined with radiomics and deep learning technology can potentially assist in the differential diagnosis of spinal metastases and primary malignant spinal bone tumor, providing a promising approach for clinical diagnosis.

4.
Sensors (Basel) ; 23(11)2023 Jun 02.
Article in English | MEDLINE | ID: mdl-37300004

ABSTRACT

Human action recognition is a constantly evolving field that is driven by numerous applications. In recent years, significant progress has been made in this area due to the development of advanced representation learning techniques. Despite this progress, human action recognition still poses significant challenges, particularly due to the unpredictable variations in the visual appearance of an image sequence. To address these challenges, we propose the fine-tuned temporal dense sampling with 1D convolutional neural network (FTDS-1DConvNet). Our method involves the use of temporal segmentation and temporal dense sampling, which help to capture the most important features of a human action video. First, the human action video is partitioned into segments through temporal segmentation. Each segment is then processed through a fine-tuned Inception-ResNet-V2 model, where max pooling is performed along the temporal axis to encode the most significant features as a fixed-length representation. This representation is then fed into a 1DConvNet for further representation learning and classification. The experiments on UCF101 and HMDB51 demonstrate that the proposed FTDS-1DConvNet outperforms the state-of-the-art methods, with a classification accuracy of 88.43% on the UCF101 dataset and 56.23% on the HMDB51 dataset.


Subject(s)
Image Processing, Computer-Assisted , Pattern Recognition, Automated , Humans , Pattern Recognition, Automated/methods , Image Processing, Computer-Assisted/methods , Neural Networks, Computer , Human Activities
5.
Sheng Wu Yi Xue Gong Cheng Xue Za Zhi ; 40(3): 465-473, 2023 Jun 25.
Article in Chinese | MEDLINE | ID: mdl-37380385

ABSTRACT

Arrhythmia is a significant cardiovascular disease that poses a threat to human health, and its primary diagnosis relies on electrocardiogram (ECG). Implementing computer technology to achieve automatic classification of arrhythmia can effectively avoid human error, improve diagnostic efficiency, and reduce costs. However, most automatic arrhythmia classification algorithms focus on one-dimensional temporal signals, which lack robustness. Therefore, this study proposed an arrhythmia image classification method based on Gramian angular summation field (GASF) and an improved Inception-ResNet-v2 network. Firstly, the data was preprocessed using variational mode decomposition, and data augmentation was performed using a deep convolutional generative adversarial network. Then, GASF was used to transform one-dimensional ECG signals into two-dimensional images, and an improved Inception-ResNet-v2 network was utilized to implement the five arrhythmia classifications recommended by the AAMI (N, V, S, F, and Q). The experimental results on the MIT-BIH Arrhythmia Database showed that the proposed method achieved an overall classification accuracy of 99.52% and 95.48% under the intra-patient and inter-patient paradigms, respectively. The arrhythmia classification performance of the improved Inception-ResNet-v2 network in this study outperforms other methods, providing a new approach for deep learning-based automatic arrhythmia classification.


Subject(s)
Arrhythmias, Cardiac , Cardiovascular Diseases , Humans , Arrhythmias, Cardiac/diagnostic imaging , Algorithms , Databases, Factual , Electrocardiography
6.
Brain Behav ; 13(6): e3028, 2023 06.
Article in English | MEDLINE | ID: mdl-37199053

ABSTRACT

INTRODUCTION: Detecting arousal events during sleep is a challenging, time-consuming, and costly process that requires neurology knowledge. Even though similar automated systems detect sleep stages exclusively, early detection of sleep events can assist in identifying neuropathology progression. METHODS: An efficient hybrid deep learning method to identify and evaluate arousal events is presented in this paper using only single-lead electroencephalography (EEG) signals for the first time. Using the proposed architecture, which incorporates Inception-ResNet-v2 learning transfer models and optimized support vector machine (SVM) with the radial basis function (RBF) kernel, it is possible to classify with a minimum error level of less than 8%. In addition to maintaining accuracy, the Inception module and ResNet have led to significant reductions in computational complexity for the detection of arousal events in EEG signals. Moreover, in order to improve the classification performance of the SVM, the grey wolf algorithm (GWO) has optimized its kernel parameters. RESULTS: This method has been validated using pre-processed samples from the 2018 Challenge Physiobank sleep dataset. In addition to reducing computational complexity, the results of this method show that different parts of feature extraction and classification are effective at identifying sleep disorders. The proposed model detects sleep arousal events with an average accuracy of 93.82%. With the lead present in the identification, the method becomes less aggressive in recording people's EEG signals. CONCLUSION: According to this study, the suggested strategy is effective in detecting arousals in sleep disorder clinical trials and may be used in sleep disorder detection clinics.


Subject(s)
Signal Processing, Computer-Assisted , Sleep Wake Disorders , Humans , Sleep , Electroencephalography/methods , Arousal , Neural Networks, Computer
7.
Cancer Inform ; 22: 11769351231161477, 2023.
Article in English | MEDLINE | ID: mdl-37008072

ABSTRACT

The second most frequent malignancy in women worldwide is cervical cancer. In the transformation(transitional) zone, which is a region of the cervix, columnar cells are continuously converting into squamous cells. The most typical location on the cervix for the development of aberrant cells is the transformation zone, a region of transforming cells. This article suggests a 2-phase method that includes segmenting and classifying the transformation zone to identify the type of cervical cancer. In the initial stage, the transformation zone is segmented from the colposcopy images. The segmented images are then subjected to the augmentation process and identified with the improved inception-resnet-v2. Here, multi-scale feature fusion framework that utilizes 3 × 3 convolution kernels from Reduction-A and Reduction-B of inception-resnet-v2 is introduced. The feature extracted from Reduction-A and Reduction -B is concatenated and fed to SVM for classification. This way, the model combines the benefits of residual networks and Inception convolution, increasing network width and resolving the deep network's training issue. The network can extract several scales of contextual information due to the multi-scale feature fusion, which increases accuracy. The experimental results reveal 81.24% accuracy, 81.24% sensitivity, 90.62% specificity, 87.52% precision, 9.38% FPR, and 81.68% F1 score, 75.27% MCC, and 57.79% Kappa coefficient.

8.
Sensors (Basel) ; 22(23)2022 Nov 24.
Article in English | MEDLINE | ID: mdl-36501822

ABSTRACT

The emergence of advanced machine learning or deep learning techniques such as autoencoders and generative adversarial networks, can generate images known as deepfakes, which astonishingly resemble the realistic images. These deepfake images are hard to distinguish from the real images and are being used unethically against famous personalities such as politicians, celebrities, and social workers. Hence, we propose a method to detect these deepfake images using a light weighted convolutional neural network (CNN). Our research is conducted with Deep Fake Detection Challenge (DFDC) full and sample datasets, where we compare the performance of our proposed model with various state-of-the-art pretrained models such as VGG-19, Xception and Inception-ResNet-v2. Furthermore, we perform the experiments with various resolutions maintaining 1:1 and 9:16 aspect ratios, which have not been explored for DFDC datasets by any other groups to date. Thus, the proposed model can flexibly accommodate various resolutions and aspect ratios, without being constrained to a specific resolution or aspect ratio for any type of image classification problem. While most of the reported research is limited to sample or preview DFDC datasets only, we have also attempted the testing on full DFDC datasets and presented the results. Contemplating the fact that the detailed results and resource analysis for various scenarios are provided in this research, the proposed deepfake detection method is anticipated to pave new avenues for deepfake detection research, that engages with DFDC datasets.


Subject(s)
Machine Learning , Neural Networks, Computer , Humans
9.
Comput Methods Programs Biomed ; 225: 107053, 2022 Oct.
Article in English | MEDLINE | ID: mdl-35964421

ABSTRACT

OBJECTIVE: Nowadays, COVID-19 is spreading rapidly worldwide, and seriously threatening lives . From the perspective of security and economy, the effective control of COVID-19 has a profound impact on the entire society. An effective strategy is to diagnose earlier to prevent the spread of the disease and prompt treatment of severe cases to improve the chance of survival. METHODS: The method of this paper is as follows: Firstly, the collected data set is processed by chest film image processing, and the bone removal process is carried out in the rib subtraction module. Then, the set preprocessing method performed histogram equalization, sharpening, and other preprocessing operations on the chest film. Finally, shallow and high-level feature mapping through the backbone network extracts the processed chest radiographs. We implement the self-attention mechanism in Inception-Resnet, perform the standard classification, and identify chest radiograph diseases through the classifier to realize the auxiliary COVID-19 diagnosis process at the medical level, all in an effort to further enhance the classification performance of the convolutional neural network. Numerous computer simulations demonstrate that the Inception-Resnet convolutional neural network performs CT image categorization and enhancement with greater efficiency and flexibility than conventional segmentation techniques. RESULTS: The experimental COVID-19 CT dataset obtained in this paper is the new data for CT scans and medical imaging of normal, early COVID-19 patients and severe COVID-19 patients from Jinyintan hospital. The experiment plots the relationship between model accuracy, model loss and epoch, using ACC, TPR, SPE, F1 score and G-mean to measure the image maps of patients with and without the disease. Statistical measurement values are obtained by Inception-Resnet are 88.23%, 83.45%, 89.72%, 95.53% and 88.74%. The experimental results show that Inception-Resnet plays a more effective role than other image classification methods in evaluation indicators, and the method has higher robustness, accuracy and intuitiveness. CONCLUSION: With CT images in the clinical diagnosis of COVID-19 images being widely used and the number of applied samples continuously increasing, the method in this paper is expected to become an additional diagnostic tool that can effectively improve the diagnostic accuracy of clinical COVID-19 images.


Subject(s)
COVID-19 , COVID-19/diagnostic imaging , COVID-19 Testing , Humans , Image Processing, Computer-Assisted/methods , Lung/diagnostic imaging , Neural Networks, Computer
10.
Front Med (Lausanne) ; 9: 834281, 2022.
Article in English | MEDLINE | ID: mdl-35433763

ABSTRACT

Summary: Ultrawide field fundus images could be applied in deep learning models to predict the refractive error of myopic patients. The predicted error was related to the older age and greater spherical power. Purpose: To explore the possibility of predicting the refractive error of myopic patients by applying deep learning models trained with ultrawide field (UWF) images. Methods: UWF fundus images were collected from left eyes of 987 myopia patients of Eye and ENT Hospital, Fudan University between November 2015 and January 2019. The fundus images were all captured with Optomap Daytona, a 200° UWF imaging device. Three deep learning models (ResNet-50, Inception-v3, Inception-ResNet-v2) were trained with the UWF images for predicting refractive error. 133 UWF fundus images were also collected after January 2021 as an the external validation data set. The predicted refractive error was compared with the "true value" measured by subjective refraction. Mean absolute error (MAE), mean absolute percentage error (MAPE) and coefficient (R 2) value were calculated in the test set. The Spearman rank correlation test was applied for univariate analysis and multivariate linear regression analysis on variables affecting MAE. The weighted heat map was generated by averaging the predicted weight of each pixel. Results: ResNet-50, Inception-v3 and Inception-ResNet-v2 models were trained with the UWF images for refractive error prediction with R 2 of 0.9562, 0.9555, 0.9563 and MAE of 1.72(95%CI: 1.62-1.82), 1.75(95%CI: 1.65-1.86) and 1.76(95%CI: 1.66-1.86), respectively. 29.95%, 31.47% and 29.44% of the test set were within the predictive error of 0.75D in the three models. 64.97%, 64.97%, and 64.47% was within 2.00D predictive error. The predicted MAE was related to older age (P < 0.01) and greater spherical power(P < 0.01). The optic papilla and macular region had significant predictive power in the weighted heat map. Conclusions: It was feasible to predict refractive error in myopic patients with deep learning models trained by UWF images with the accuracy to be improved.

11.
Sensors (Basel) ; 21(21)2021 Oct 25.
Article in English | MEDLINE | ID: mdl-34770366

ABSTRACT

One of the most common methods for diagnosing coronary artery disease is the use of the coronary artery calcium score CT. However, the current diagnostic method using the coronary artery calcium score CT requires a considerable time, because the radiologist must manually check the CT images one-by-one, and check the exact range. In this paper, three CNN models are applied for 1200 normal cardiovascular CT images, and 1200 CT images in which calcium is present in the cardiovascular system. We conduct the experimental test by classifying the CT image data into the original coronary artery calcium score CT images containing the entire rib cage, the cardiac segmented images that cut out only the heart region, and cardiac cropped images that are created by using the cardiac images that are segmented into nine sub-parts and enlarged. As a result of the experimental test to determine the presence of calcium in a given CT image using Inception Resnet v2, VGG, and Resnet 50 models, the highest accuracy of 98.52% was obtained when cardiac cropped image data was applied using the Resnet 50 model. Therefore, in this paper, it is expected that through further research, both the simple presence of calcium and the automation of the calcium analysis score for each coronary artery calcium score CT will become possible.


Subject(s)
Deep Learning , Calcium , Coronary Vessels/diagnostic imaging , Neural Networks, Computer , Tomography, X-Ray Computed
12.
Math Biosci Eng ; 18(4): 4679-4695, 2021 05 27.
Article in English | MEDLINE | ID: mdl-34198459

ABSTRACT

In a national power grid system, it is necessary to keep transmission lines secure. Detection and identification must be regularly performed for transmission tower components. In this paper, we propose a defect recognition method for key components of transmission lines based on deep learning. First, based on the characteristics of the transmission line image, the defect images are preprocessed, and the defect dataset is created. Then, based on the TensorFlow platform and the traditional Faster R-CNN based on the R-CNN model, the concept-ResNet-v2 network is used as the basic feature extraction network to improve the network structure adjustment and parameter optimization. Through feature extraction, target location, and target classification of aerial transmission line defect images, a target detection model is obtained. The model improves the feature extraction on transmission line targets and small target component defects. The experimental results show that the proposed method can effectively identify the defects of key components of the transmission lines with a high accuracy of 98.65%.


Subject(s)
Neural Networks, Computer
13.
Front Physiol ; 12: 648950, 2021.
Article in English | MEDLINE | ID: mdl-34079470

ABSTRACT

The present study addresses the cardiac arrhythmia (CA) classification problem using the deep learning (DL)-based method for electrocardiography (ECG) data analysis. Recently, various DL techniques have been utilized to classify arrhythmias, with one typical approach to developing a one-dimensional (1D) convolutional neural network (CNN) model to handle the ECG signals in the time domain. Although the CA classification in the time domain is very prevalent, current methods' performances are still not robust or satisfactory. This study aims to develop a solution for CA classification in two dimensions by introducing the recurrence plot (RP) combined with an Inception-ResNet-v2 network. The proposed method for nine types of CA classification was tested on the 1st China Physiological Signal Challenge 2018 dataset. During implementation, the optimal leads (lead II and lead aVR) were selected, and then 1D ECG segments were transformed into 2D texture images by the RP approach. These RP-based images as input signals were passed into the Inception-ResNet-v2 for CA classification. In the CPSC, Georgia, and the PTB_XL ECG databases of the PhysioNet/Computing in Cardiology Challenge 2020, the RP-based method achieved an average F1-score of 0.8521, 0.8529, and 0.8862, respectively. The results suggested the excellent generalization ability of the proposed method. To further assess the performance of the proposed method, we compared the 2D RP-image-based solution with the published 1D ECG-based works on the same dataset. Also, it was compared with two traditional ECG transform into 2D image methods, including the time waveform of the ECG recordings and time-frequency images based on continuous wavelet transform (CWT). The proposed method achieved the highest average F1-score of 0.844, with only two leads of the 12-lead ECG original data, which outperformed other works. Therefore, the promising results indicate that the 2D RP-based method has a high clinical potential for CA classification using fewer lead ECG signals.

14.
Comput Struct Biotechnol J ; 19: 2833-2850, 2021.
Article in English | MEDLINE | ID: mdl-34025952

ABSTRACT

The worldwide health crisis caused by the SARS-Cov-2 virus has resulted in>3 million deaths so far. Improving early screening, diagnosis and prognosis of the disease are critical steps in assisting healthcare professionals to save lives during this pandemic. Since WHO declared the COVID-19 outbreak as a pandemic, several studies have been conducted using Artificial Intelligence techniques to optimize these steps on clinical settings in terms of quality, accuracy and most importantly time. The objective of this study is to conduct a systematic literature review on published and preprint reports of Artificial Intelligence models developed and validated for screening, diagnosis and prognosis of the coronavirus disease 2019. We included 101 studies, published from January 1st, 2020 to December 30th, 2020, that developed AI prediction models which can be applied in the clinical setting. We identified in total 14 models for screening, 38 diagnostic models for detecting COVID-19 and 50 prognostic models for predicting ICU need, ventilator need, mortality risk, severity assessment or hospital length stay. Moreover, 43 studies were based on medical imaging and 58 studies on the use of clinical parameters, laboratory results or demographic features. Several heterogeneous predictors derived from multimodal data were identified. Analysis of these multimodal data, captured from various sources, in terms of prominence for each category of the included studies, was performed. Finally, Risk of Bias (RoB) analysis was also conducted to examine the applicability of the included studies in the clinical setting and assist healthcare providers, guideline developers, and policymakers.

15.
Foods ; 10(4)2021 Apr 16.
Article in English | MEDLINE | ID: mdl-33923800

ABSTRACT

The application of artificial intelligence (AI) such as deep learning in the quality control of grains has the potential to assist analysts in decision making and improving procedures. Advanced technologies based on X-ray imaging provide markedly easier ways to control insect infestation of stored products, regardless of whether the quality features are visible on the surface of the grains. Here, we applied contrast enhancement algorithms based on peripheral equalization and calcification emphasis on X-ray images to improve the detection of Sitophilus zeamais in maize grains. In addition, we proposed an approach based on convolutional neural networks (CNNs) to identity non-infested and infested classes using three different architectures; (i) Inception-ResNet-v2, (ii) Xception and (iii) MobileNetV2. In general, the prediction models developed based on the MobileNetV2 and Xception architectures achieved higher accuracy (≥0.88) in identifying non-infested grains and grains infested by maize weevil, with a correct classification from 0.78 to 1.00 for validation and test sets. Hence, the proposed approach using enhanced radiographs has the potential to provide precise control of Sitophilus zeamais for safe human consumption of maize grains. The proposed method can automatically recognize food contaminated with hidden storage pests without manual features, which makes it more reliable for grain inspection.

16.
Food Chem ; 337: 127986, 2021 Feb 01.
Article in English | MEDLINE | ID: mdl-32920269

ABSTRACT

We have developed a novel approach that involves inception-resnet network (IRN) modeling based on infrared spectroscopy (IR) for rapid and specific detection of the fish allergen parvalbumin. SDS-PAGE and ELISA were used to validate the new method. Through training and learning with parvalbumin IR spectra from 16 fish species, IRN, support vector machine (SVM), and random forest (RF) models were successfully established and compared. The IRN model extracted highly representative features from the IR spectra, leading to high accuracy in recognizing parvalbumin (up to 97.3%) in a variety of seafood matrices. The proposed infrared spectroscopic IRN (IR-IRN) method was rapid (~20 min, cf. ELISA ~4 h) and required minimal expert knowledge for application. Thus, it could be extended for large-scale field screening and identification of parvalbumin or other potential allergens in complex food matrices.


Subject(s)
Fish Products/analysis , Fish Proteins/analysis , Neural Networks, Computer , Parvalbumins/analysis , Spectrophotometry, Infrared/statistics & numerical data , Allergens/chemistry , Animals , Electrophoresis, Polyacrylamide Gel , Enzyme-Linked Immunosorbent Assay , Fishes/immunology , Food Analysis/methods , Food Analysis/statistics & numerical data , Food Hypersensitivity , Mice, Inbred BALB C , Parvalbumins/immunology , Reproducibility of Results , Spectrophotometry, Infrared/methods , Support Vector Machine
17.
Ann Transl Med ; 7(18): 468, 2019 Sep.
Article in English | MEDLINE | ID: mdl-31700904

ABSTRACT

BACKGROUND: To explore whether deep convolutional neural networks (DCNNs) have the potential to improve diagnostic efficiency and increase the level of interobserver agreement in the classification of thyroid nodules in histopathological slides. METHODS: A total of 11,715 fragmented images from 806 patients' original histological images were divided into a training dataset and a test dataset. Inception-ResNet-v2 and VGG-19 were trained using the training dataset and tested using the test dataset to determine the diagnostic efficiencies of different histologic types of thyroid nodules, including normal tissue, adenoma, nodular goiter, papillary thyroid carcinoma (PTC), follicular thyroid carcinoma (FTC), medullary thyroid carcinoma (MTC) and anaplastic thyroid carcinoma (ATC). Misdiagnoses were further analyzed. RESULTS: The total 11,715 fragmented images were divided into a training dataset and a test dataset for each pathology type at a ratio of 5:1. Using the test set, VGG-19 yielded a better average diagnostic accuracy than did Inception-ResNet-v2 (97.34% vs. 94.42%, respectively). The VGG-19 model applied to 7 pathology types showed a fragmentation accuracy of 88.33% for normal tissue, 98.57% for ATC, 98.89% for FTC, 100% for MTC, 97.77% for PTC, 100% for nodular goiter and 92.44% for adenoma. It achieved excellent diagnostic efficiencies for all the malignant types. Normal tissue and adenoma were the most challenging histological types to classify. CONCLUSIONS: The DCNN models, especially VGG-19, achieved satisfactory accuracies on the task of differentiating thyroid tumors by histopathology. Analysis of the misdiagnosed cases revealed that normal tissue and adenoma were the most challenging histological types for the DCNN to differentiate, while all the malignant classifications achieved excellent diagnostic efficiencies. The results indicate that DCNN models may have potential for facilitating histopathologic thyroid disease diagnosis.

18.
Sensors (Basel) ; 19(7)2019 Apr 02.
Article in English | MEDLINE | ID: mdl-30987018

ABSTRACT

Human action recognition plays a significant part in the research community due to its emerging applications. A variety of approaches have been proposed to resolve this problem, however, several issues still need to be addressed. In action recognition, effectively extracting and aggregating the spatial-temporal information plays a vital role to describe a video. In this research, we propose a novel approach to recognize human actions by considering both deep spatial features and handcrafted spatiotemporal features. Firstly, we extract the deep spatial features by employing a state-of-the-art deep convolutional network, namely Inception-Resnet-v2. Secondly, we introduce a novel handcrafted feature descriptor, namely Weber's law based Volume Local Gradient Ternary Pattern (WVLGTP), which brings out the spatiotemporal features. It also considers the shape information by using gradient operation. Furthermore, Weber's law based threshold value and the ternary pattern based on an adaptive local threshold is presented to effectively handle the noisy center pixel value. Besides, a multi-resolution approach for WVLGTP based on an averaging scheme is also presented. Afterward, both these extracted features are concatenated and feed to the Support Vector Machine to perform the classification. Lastly, the extensive experimental analysis shows that our proposed method outperforms state-of-the-art approaches in terms of accuracy.


Subject(s)
Biosensing Techniques , Human Activities , Image Processing, Computer-Assisted/methods , Algorithms , Humans , Monitoring, Physiologic , Neural Networks, Computer , Pattern Recognition, Automated/methods , Support Vector Machine
SELECTION OF CITATIONS
SEARCH DETAIL