Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 286
Filter
1.
Fish Shellfish Immunol ; 154: 109949, 2024 Oct 09.
Article in English | MEDLINE | ID: mdl-39389172

ABSTRACT

The present study addresses the challenges of uncontrolled temperature and pollution in aquatic environments, with a focus on fish ability to tolerate high temperature. The investigation aimed to determine the role of iron nanoparticles (Fe-NPs) in enhancing the thermal tolerance of Pangasianodon hypophthalmus exposed to high-temperature stress, arsenic (As), and ammonia (NH3) toxicity. Fe-NPs were synthesized using green approaches, specifically from fish gill. The dietary Fe-NPs were formulated and supplemented at 10, 15, and 20 mg kg⁻1 of feed. Notably, Fe-NPs at 15 mg kg⁻1 diet significantly reduced the critical thermal minimum (CTmin) (14.44 ± 0.21 °C) and the lethal thermal minimum (LTmin) (13.46 ± 0.15 °C), compared to the control and other treatment groups. Conversely, when Fe-NPs at 15 mg kg⁻1 were supplemented with or without exposure to stressors (As + NH3+T), the critical thermal maximum (CTmax) increased to 47.59 ± 0.16 °C, and the lethal thermal maximum (LTmax) increased to 48.60 ± 0.37 °C, both significantly higher than the control and other groups. A strong correlation was observed between LTmin and CTmin (R2 = 0.90) and between CTmax and LTmax (R2 = 0.98). Furthermore, dietary Fe-NPs at 15 mg kg⁻1 significantly upregulated the expression of stress-related genes, including HSP70, iNOS, Caspase-3a, CYP450, MT, cat, sod, gpx, TNFα, IL, TLR, and Ig. The enhanced thermal tolerance (LTmin and LTmax) can be attributed to these gene regulations, suggesting the mechanistic involvement of Fe-NPs in improving thermal resilience. Overall, the findings demonstrate that dietary supplementation with Fe-NPs, particularly at 15 mg kg⁻1, improves thermal tolerance and stress response in P. hypophthalmus by enhancing gene expression and overall thermal efficiency under stressor conditions.

2.
Int J Mol Sci ; 25(17)2024 Sep 07.
Article in English | MEDLINE | ID: mdl-39273647

ABSTRACT

Adipose tissue-derived adult stem (ADAS) cells and extracellular vesicle (EV) therapy offer promising avenues for treating neurodegenerative diseases due to their accessibility and potential for autologous cell transplantation. However, the clinical application of ADAS cells or EVs is limited by the challenge of precisely identifying them in specific regions of interest. This study compares two superparamagnetic iron oxide nanoparticles, differing mainly in size, to determine their efficacy for allowing non-invasive ADAS tracking via MRI/MPI and indirect labeling of EVs. We compared a USPIO (about 5 nm) with an SPIO (Resovist®, about 70 nm). A physicochemical characterization of nanoparticles was conducted using DLS, TEM, MRI, and MPI. ADAS cells were labeled with the two nanoparticles, and their viability was assessed via MTT assay. MRI detected labeled cells, while TEM and Prussian Blue staining were employed to confirm cell uptake. The results revealed that Resovist® exhibited higher transversal relaxivity value than USPIO and, consequently, allows for detection with higher sensitivity by MRI. A 200 µgFe/mL concentration was identified as optimal for ADAS labeling. MPI detected only Resovist®. The findings suggest that Resovist® may offer enhanced detection of ADAS cells and EVs, making it suitable for multimodal imaging. Preliminary results obtained by extracting EVs from ADAS cells labeled with Resovist® indicate that EVs retain the nanoparticles, paving the way to an efficient and multimodal detection of EVs.


Subject(s)
Adipose Tissue , Adult Stem Cells , Extracellular Vesicles , Magnetic Iron Oxide Nanoparticles , Magnetic Resonance Imaging , Magnetite Nanoparticles , Extracellular Vesicles/chemistry , Extracellular Vesicles/metabolism , Adipose Tissue/cytology , Humans , Adult Stem Cells/cytology , Adult Stem Cells/metabolism , Magnetic Iron Oxide Nanoparticles/chemistry , Magnetic Resonance Imaging/methods , Magnetite Nanoparticles/chemistry , Multimodal Imaging/methods , Dextrans/chemistry , Contrast Media/chemistry , Cells, Cultured
3.
Environ Sci Pollut Res Int ; 31(44): 55958-55973, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39251534

ABSTRACT

Advanced oxidation processes (AOP) stood out as an efficient alternative for the treatment of organic contaminants. In this work, there were proposed syntheses of mixed catalysts of pyrite and graphene oxide and pyrite and zinc oxide to treat a mixture of the drugs atenolol and propranolol in aqueous solution through the photo-Fenton process with ultraviolet radiation. The efficiency of the methodologies used in the syntheses was confirmed through different characterization analyses. It was verified that the pyrite and zinc oxide catalyst led to the best contaminant degradation percentages with values equal to 88 and 84% for the groups monitored at the wavelengths (λ) of 217 and 281 nm. The degradation kinetics presented a good fit to the kinetic model proposed by Chan and Chu (2003) with R2 equal to 0.99, indicating a pseudo-first-order degradation profile. Finally, toxicity tests were carried out with two types of seeds, watercress and cabbage, for the solution before and after treatment. The cabbage seeds showed a reduction in germination percentages for the samples after treatments, while no toxicity was observed for watercress ones. This highlights the importance of evaluating the implications caused by products in relation to different organisms representing the biota.


Subject(s)
Graphite , Oxidation-Reduction , Zinc Oxide , Graphite/chemistry , Catalysis , Zinc Oxide/chemistry , Sulfides/chemistry , Water Pollutants, Chemical/chemistry , Iron/chemistry , Kinetics
4.
Biometals ; 37(5): 1289-1303, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39235582

ABSTRACT

Green synthesis of iron oxide nanoparticles using plant extracts is of tremendous interest owing to its cost effectiveness, ecofriendly and high efficiency compared to physical and chemical approaches. In the current study, we describe a green approach for producing iron oxide nanoparticles utilizing Polyalthia korintii aqueous leaf extract (PINPs). The prepared PINPs were assessed of their biological and dye degradation potentials. The physico-chemical characterization of PINPs using UV-Visible spectrophotometer, Fourier Transform Infrared Spectroscopy, X-Ray Diffraction studies, Field emission Scanning Electron Microscopy and Energy Dispersive X-ray spectroscopy analysis confirmed the synthesized sample comprised of iron oxide entity, predominantly spherical with the size range of 40-60 nm. Total Phenolic Content of PINPs is 59.36 ± 1.64 µg GAE/mg. The PINPs exhibited 89.78 ± 0.07% DPPH free radical scavenging and 28.7 ± 0.21% ABTS cation scavenging activities. The antibacterial activities were tested against different gram-positive and gram-negative bacteria and PINPs were more effective against Enterococcus faecalis and Klebsiella pneumoniae. Cytotoxicity of PINPs against K562 and HCT116 were measured and IC50 values were found to be 84.99 ± 4.3 µg/ml and 79.70 ± 6.2 µg/ml for 48 h respectively. The selective toxicity of PINPs was demonstrated by their lowest activity on lymphocytes, HEK293 cells, and erythrocytes. The toxicity (LC 50 values) against first, second, third and fourth instar larvae of Culex quinquefasciatus was 40 ± 1.5 mg/mL, 45 ± 0.8 mg/mL, 99 ± 2.1 mg/mL and 120 ± 3.5 mg/mL respectively. Finally, PINPs were utilized to as a catalyst for removal of textile dyes like Methylene blue and methyl orange in a fenton-like reaction. The results showed 100% dye degradation efficiency in a fenton like reaction within 35 min. Thus, the green synthesized PINPs exhibit antioxidant, antibacterial, antiproliferative, larvicidal and dye degradation potentials, indicating their suitability for biological and environmental applications.


Subject(s)
Anti-Bacterial Agents , Ferric Compounds , Plant Extracts , Plant Leaves , Polyalthia , Plant Leaves/chemistry , Plant Extracts/chemistry , Plant Extracts/pharmacology , Humans , Polyalthia/chemistry , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/chemical synthesis , Anti-Bacterial Agents/isolation & purification , Animals , Ferric Compounds/chemistry , Ferric Compounds/pharmacology , Microbial Sensitivity Tests , Coloring Agents/chemistry , Coloring Agents/isolation & purification , Antioxidants/chemistry , Antioxidants/pharmacology , Nanoparticles/chemistry
5.
Sci Rep ; 14(1): 20141, 2024 08 29.
Article in English | MEDLINE | ID: mdl-39209944

ABSTRACT

Many notable applications have been described for magnetic nanoparticles in delivery of diverse drugs and bioactive compounds into cells, magnetofection for the treatment of cancer, photodynamic therapy, photothermal therapy, and magnetic particle imaging (MPI). In response to the growing demand for magnetic nanoparticles for drug delivery or biomedical imaging applications, more effective and eco-friendly methodologies are required for large-scale biosynthesis of this nanoparticles. The major challenge in the large-scale biomedical application of magnetic nanoparticles lies in its low efficiency and optimization of nanoparticle production can address this issue. In the current study, a prediction model is suggested by the fractional factorial designs. The present study aims to optimize culture media components for improved growth and iron uptake of this strain. The result of optimization for iron uptake by the strain ASFS1 is to increase the production of magnetic nanoparticles by this strain for biomedical applications in the future. In the present study, design of experiment method was used to probe the effects of some key medium components (yeast extract, tryptone, FeSO4, Na2-EDTA, and FeCl3) on Fe content in biomass and dried biomass of strain ASFS1. A 25-1 fractional factorial design showed that Na2-EDTA, FeCl3, yeast extract-tryptone interaction, and FeSO4-Na2-EDTA interaction were the most parameters on Fe content in biomass within the experimented levels (p < 0.05), while yeast extract, FeCl3, and yeast extract-tryptone interaction were the most significant factors within the experimented levels (p < 0.05) to effect on dried biomass of strain ASFS1. The optimum culture media components for the magnetic nanoparticles production by strain ASFS1 was reported to be 7.95 g L-1 of yeast extract, 5 g L-1 of tryptone, 75 µg mL-1 of FeSO4, 192.3 µg mL-1 of Na2-EDTA and 150 µg mL-1 of FeCl3 which was theoretically able to produce Fe content in biomass (158 µg mL-1) and dried biomass (2.59 mg mL-1) based on the obtained for medium optimization. Using these culture media components an experimental maximum Fe content in biomass (139 ± 13 µg mL-1) and dried biomass (2.2 ± 0.2 mg mL-1) was obtained, confirming the efficiency of the used method.


Subject(s)
Culture Media , Iron , Iron/metabolism , Culture Media/chemistry , Bacillus/metabolism , Bacillus/growth & development , Magnetite Nanoparticles/chemistry , Biomass
6.
Sci Total Environ ; 947: 174571, 2024 Oct 15.
Article in English | MEDLINE | ID: mdl-38977102

ABSTRACT

Extracting rare earth elements (REEs) from wastewater is crucial for saving the environment, sustainable use of natural resources and economic growth. Reported here is a simple, low cost and one-step synthesis of Fe nanoparticles (FeNPs) based on two plant extracts having the ability to recover REEs. The synthesis of FeNPs using Excoecaria cochinchinensis leaves extract (Ec-FeNPs) exhibited high selectivity for heavy rare earth due to unique biomolecules, achieving separation coefficients (Kd) of 3.16 × 103-4.04 × 106 mL/g and recovery efficiencies ranging from 71.7 to 100 %. Conversely, the synthesis of FeNPs using Pinus massoniana lamb extract (PML-FeNPs) revealed poorer REE recovery efficiencies of 7.2-86.7 %. To understand the differences between Ec-FeNPs and PML-FeNPs in terms of selectivity and efficiency, LC-QTOF-MS served to analyze the biomolecules differences of two plant extracts. In addition, various types of characterization were carried out to identify the different functional groups encapsulated on the surface of FeNPs. These results reveal the source of the difference in the selectivity of Ec-FeNPs and PML-FeNPs for REEs. Furthermore, during DFT calculations, it was found that biomolecules with varying affinities for the surface of FeNPs interact with each other, leading to the formation of structures that exhibit high reactivity towards REEs. Finally, incorporating Spearman correlation analysis demonstrates that the selective removal efficiency of REEs was closely linked to surface complexation, ion exchange, and electrostatic adsorption. Consequently, this work strongly highlights the potential for the practical application of novel adsorbents in this field.


Subject(s)
Mining , Plant Extracts , Wastewater , Water Pollutants, Chemical , Wastewater/chemistry , Plant Extracts/chemistry , Water Pollutants, Chemical/analysis , Waste Disposal, Fluid/methods , Metal Nanoparticles/chemistry , Pinus/chemistry
7.
Front Immunol ; 15: 1410150, 2024.
Article in English | MEDLINE | ID: mdl-38947331

ABSTRACT

The recent trend of global warming poses a significant threat to ecosystems worldwide. This global climate change has also impacted the pollution levels in aquatic ecosystems, subsequently affecting human health. To address these issues, an experiment was conducted to investigate the mitigating effects of iron nanoparticles (Fe-NPs) on arsenic and ammonia toxicity as well as high temperature stress (As+NH3+T). Fe-NPs were biologically synthesized using fish waste and incorporated into feed formulations at 10, 15, and 20 mg kg-1 diet. A total of 12 treatments were designed in triplicate following a completely randomized design involving 540 fish. Fe-NPs at 15 mg kg-1 diet notably reduced the cortisol levels in fish exposed to multiple stressors. The gene expressions of HSP 70, DNA damage-inducible protein (DDIP), and DNA damage were upregulated by stressors (As+NH3+T) and downregulated by Fe-NPs. Apoptotic genes (Cas 3a and 3b) and detoxifying genes (CYP 450), metallothionein (MT), and inducible nitric oxide synthase (iNOS) were downregulated by Fe-NPs at 15 mg kg-1 diet in fish subjected to As+NH3+T stress. Immune-related genes such as tumor necrosis factor (TNFα), immunoglobulin (Ig), and interleukin (IL) were upregulated by Fe-NPs, indicating enhanced immunity in fish under As+NH3+T stress. Conversely, Toll-like receptor (TLR) expression was notably downregulated by Fe-NPs at 15 mg kg-1 diet in fish under As+NH3+T stress. Immunological attributes such as nitro blue tetrazolium chloride, total protein, albumin, globulin, A:G ratio, and myeloperoxidase (MPO) were improved by dietary Fe-NPs at 15 mg kg-1 diet in fish, regardless of stressors. The antioxidant genes (CAT, SOD, and GPx) were also strengthened by Fe-NPs in fish. Genes associated with growth performance, such as growth hormone regulator (GHR1 and GHRß), growth hormone (GH), and insulin-like growth factor (IGF 1X and IGF 2X), were upregulated, enhancing fish growth under stress, while SMT and MYST were downregulated by Fe-NPs in the diet. Various growth performance indicators were improved by dietary Fe-NPs at 15 mg kg-1 diet. Notably, Fe-NPs also enhanced arsenic detoxification and reduced the cumulative mortality after a bacterial infection. In conclusion, this study highlights that dietary Fe-NPs can effectively mitigate arsenic and ammonia toxicity as well as high temperature stress by modulating gene expression in fish.


Subject(s)
Fishes , Gene Expression Regulation , Iron , Stress, Physiological , Animals , Gene Expression Regulation/drug effects , Iron/metabolism , Fishes/immunology , Stress, Physiological/immunology , Stress, Physiological/drug effects , Metal Nanoparticles , Arsenic/toxicity
8.
Ecotoxicol Environ Saf ; 281: 116620, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38905935

ABSTRACT

Iron-nanoparticles (Fe-NPs) are increasingly been utilized in environmental applications due to their efficacy and strong catalytic activities. The novelty of nanoparticle science had attracted many researchers and especially for their green synthesis, which can effectively reuse biological resources during the polymerization reactions. Thus, the synthesis of Fe-NPs utilizing plant extracts could be considered as the eco-friendly, simple, rapid, energy-efficient, sustainable, and cost-effective. The green synthesis route can be recognized as a practical, valuable, and economically effective alternative for large-scale production. During the production process, some biomolecules present in the extracts undergo metal salts reduction, which can serve as both a capping and reducing mechanism, enhancing the reactivity and stability of green-synthesized Fe-NPs. The diversity of species provided a wide range of potential sources for green synthesis of Fe-NPs. With improved understanding of the specific biomolecules involved in the bioreduction and stabilization processes, it will become easier to identify and utilize new, potential plant materials for Fe-NPs synthesis. Newly synthesized Fe-NPs require different characterization techniques such as transmission electron microscope, ultraviolet-visible spectrophotometry, and X-ray absorption fine structure, etc, for the determination of size, composition, and structure. This review described and assessed the recent advancements in understanding green-synthesized Fe-NPs derived from plant-based material. Detailed information on various plant materials suitable of yielding valuable biomolecules with potential diverse applications in environmental safety. Additionally, this review examined the characterization techniques employed to analyze Fe-NPs, their stability, accumulation, mobility, and fate in the environment. Holistically, the review assessed the applications of Fe-NPs in remediating wastewaters, organic residues, and inorganic contaminants. The toxicity of Fe-NPs was also addressed; emphasizing the need to refine the synthesis of green Fe-NPs to ensure safety and environmental friendliness. Moving forward, the future challenges and opportunities associated with the green synthesis of Fe-NPs would motivate novel research about nanoparticles in new directions.


Subject(s)
Environmental Pollutants , Green Chemistry Technology , Iron , Metal Nanoparticles , Plant Extracts , Green Chemistry Technology/methods , Metal Nanoparticles/chemistry , Iron/chemistry , Environmental Pollutants/chemistry , Plant Extracts/chemistry , Environmental Restoration and Remediation/methods
9.
Materials (Basel) ; 17(11)2024 May 23.
Article in English | MEDLINE | ID: mdl-38893778

ABSTRACT

In this study, we analysed the potential use of dried strawberry leaves and calyces for the production of nanoparticles using inorganic iron compounds. We used the following iron precursors FeCl3 × 6H2O, FeCl2 × 4H2O, Fe(NO3)3 × 9H2O, Fe2(SO4)3 × H2O, FeSO4 × 7H2O, FeCl3 anhydrous. It was discovered that the content of polyphenols and flavonoids in dried strawberries and their antioxidant activity in DPPH and FRAP were 346.81 µM TE/1 g and 331.71 µM TE/1 g, respectively, and were similar to these of green tea extracts. Microimages made using TEM techniques allowed for the isolation of a few nanoparticles with dimensions ranging from tens of nanometres to several micrometres. The value of the electrokinetic potential in all samples was negative and ranged from -21,300 mV to -11,183 mV. XRF analyses confirmed the presence of iron ranging from 0.13% to 0.92% in the samples with a concentration of 0.01 mol/dm3. FT-IR spectra analyses showed bands characteristic of nanoparticles. In calorimetric measurements, no increase in temperature was observed in any of the tests during exposure to the electromagnetic field. In summary, using the extract from dried strawberry leaves and calyxes as a reagent, we can obtain iron nanoparticles with sizes dependent on the concentration of the precursor.

10.
Aquat Toxicol ; 272: 106961, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38781688

ABSTRACT

In recent years, the intensive production of nanoparticles with a wide application has led to their transfer to the environment, including the water ecosystem. The accumulation of nanoparticles in fish, causing various pathological changes in the host, raises certain concerns. In the current study, we investigated the penetration and bioaccumulation of Fe3O4 nanoparticles, in the liver of common carp (Cyprinus carpio Linnaeus, 1758). Common carp juveniles were exposed to Fe3O4 nanoparticles at concentrations of 10 and 100 mg. After 7 days, their livers were examined by light and transmission electron microscopes. Compared to normal fish's liver, after using a small concentration (10 mg) of nanoparticles, changes were observed in erythrocytes, hepatocytes, intracellular canaliculi, and bile ducts of the liver. At a high concentration (100 mg), the intensity of changes increased significantly. The liver's capsule was damaged, and a considerable number of hepatocytes were completely destroyed. Additionally, the walls of blood vessels and biliary ductule walls was notably disturbed. It was found that the intensity of pathologies occurring in the liver, increases proportionally with higher concentrations of nanoparticles. Confirmation via electron microscopic methods revealed that Fe3O4 nanoparticles, when administered with food to common carp, enter the fish's liver through erythrocytes localized in the lumen of blood vessels. From there, they traverse through the endothelium of vessels, proceed to hepatocytes, including cytoplasmic organelles, intracellular canaliculi, biliary ductules, and eventually reach the bile ducts. Fe3O4 nanoparticles in all structural elements of fish liver was up to 20 nm. Therefore, high concentrations of nanoparticles in the environment harms the bodies of aquatic organisms, including fish. The changes identified in the liver of common carp in the present study are valuable information in assessing possible risks to other components of the aquatic ecosystem and organisms.


Subject(s)
Carps , Liver , Water Pollutants, Chemical , Animals , Carps/metabolism , Liver/metabolism , Liver/drug effects , Liver/ultrastructure , Water Pollutants, Chemical/toxicity , Microscopy, Electron, Transmission , Magnetic Iron Oxide Nanoparticles/toxicity
11.
Sci Rep ; 14(1): 11555, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38773205

ABSTRACT

The development of supporting materials based on carbon nanotubes (CNTs) impregnated with iron nanoparticles via a sustainable and green synthesis employing plant extract of Punica granatum L. leaves was carried out for the iron nanoparticle modification and the following impregnation into the carbon nanotubes composites (CNT-Fe) that were also coated with polypyrrole (CNT-Fe + PPy) for use as electrode for supercapacitor and triboelectric nanogenerators. The electrochemical characterization of the materials by cyclic voltammetry (CV) and galvanostatic charge-discharge (GCD) assays revealed that the CNT-Fe + PPy gave rise to better performance due to the association of double-layer capacitance behavior of carbon derivative in association with the pseudocapacitance contribution of PPy resulting in an areal capacitance value 202 mF/ cm2 for the overall composite. In terms of the application of electrodes in triboelectric nanogenerators, the best performance for the composite of CNT-Fe + PPy was 60 V for output voltage and power density of 6 µW/cm2. The integrated system showed that the supercapacitors can be charged directly by the nanogenerator from 0 to 42 mV in 300 s. The successful green synthesis of iron nanoparticles on CNT and further PPy coating provides a feasible method for the design and synthesis of high-performance SCs and TENGs electrode materials. This work provides a systematic approach that moves the research front forward by generating data that underpins further research in self-powered electronic devices.

12.
Pharmaceutics ; 16(5)2024 May 10.
Article in English | MEDLINE | ID: mdl-38794307

ABSTRACT

In recent years, nanotechnology has achieved a remarkable status in shaping the future of biological applications, especially in combating fungal diseases. Owing to excellence in nanotechnology, iron nanoparticles (Fe NPs) have gained enormous attention in recent years. In this review, we have provided a comprehensive overview of Fe NPs covering key synthesis approaches and underlying working principles, the factors that influence their properties, essential characterization techniques, and the optimization of their antifungal potential. In addition, the diverse kinds of Fe NP delivery platforms that command highly effective release, with fewer toxic effects on patients, are of great significance in the medical field. The issues of biocompatibility, toxicity profiles, and applications of optimized Fe NPs in the field of biomedicine have also been described because these are the most significant factors determining their inclusion in clinical use. Besides this, the difficulties and regulations that exist in the transition from laboratory to experimental clinical studies (toxicity, specific standards, and safety concerns) of Fe NPs-based antifungal agents have been also summarized.

13.
Nanomaterials (Basel) ; 14(9)2024 Apr 28.
Article in English | MEDLINE | ID: mdl-38727367

ABSTRACT

Citrate-coated electrostatically stabilized very small superparamagnetic iron oxide particles (VSOPs) have been successfully tested as magnetic resonance angiography (MRA) contrast agents and are promising tools for molecular imaging of atherosclerosis. Their repeated use in the background of pre-existing hyperlipidemia and atherosclerosis has not yet been studied. This study aimed to investigate the effect of multiple intravenous injections of VSOPs in atherosclerotic mice. Taurine-formulated VSOPs (VSOP-T) were repeatedly intravenously injected at 100 µmol Fe/kg in apolipoprotein E-deficient (ApoE KO) mice with diet-induced atherosclerosis. Angiographic imaging was carried out by in vivo MRI. Magnetic particle spectrometry was used to detect tissue VSOP content, and tissue iron content was quantified photometrically. Pathological changes in organs, atherosclerotic plaque development, and expression of hepatic iron-related proteins were evaluated. VSOP-T enabled the angiographic imaging of heart and blood vessels with a blood half-life of one hour. Repeated intravenous injection led to VSOP deposition and iron accumulation in the liver and spleen without affecting liver and spleen pathology, expression of hepatic iron metabolism proteins, serum lipids, or atherosclerotic lesion formation. Repeated injections of VSOP-T doses sufficient for MRA analyses had no significant effects on plaque burden, steatohepatitis, and iron homeostasis in atherosclerotic mice. These findings underscore the safety of VSOP-T and support its further development as a contrast agent and molecular imaging tool.

14.
Pak J Biol Sci ; 27(4): 210-218, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38812112

ABSTRACT

<b>Background and Objective:</b> The remarkable surface-to-volume ratio and efficient particle interaction capabilities of nanoparticles have garnered significant attention among researchers. Microalgal synthesis presents a sustainable and cost-effective approach to nanoparticle production, particularly noteworthy for its high metal uptake and ion reduction capabilities. This study focuses on the eco-friendly and straightforward synthesis of Silver (AgNPs) and Iron (FeNPs) nanoparticles by utilizing Spirulina (<i>Arthrospira platensis</i>) and <i>Chlorella pyrenoidosa</i> extract, devoid of any chemical reducing or capping agents. <b>Materials and Methods:</b> Following the mixing of 1 mM AgNO<sub>3</sub> and 1 mM iron oxide solution with the algal extract, the resulting filtrated solution underwent comprehensive characterization, including UV-visible absorption spectra analysis, observation of particle morphology, Zetasizer measurements and Scanning Electron Microscope-Energy Dispersive X-Ray (SEM-EDX) analysis. <b>Results:</b> The UV-visible spectroscopy revealed a maximum absorbance peak at 430-440 nm, confirming the successful green synthesis of AgNPs and FeNPs, as indicated by the distinct color change from transparent to dark reddish-yellow and brown to reddish-brown, respectively. The SEM-EDX analysis further elucidated the spherical morphology of the nanoparticles, with an average diameter of 93.71 nm for AgNPs and 6198 nm for FeNPs. The Zeta potential measurements indicated average values of -56.68 mV for AgNPs and 29.73 mV for FeNPs, with conductivities of 0.1764 and 0.6786 mS/cm, respectively. <b>Conclusion:</b> The observed bioaccumulation of silver and iron nanoparticles within the algal extract underscores its potential as an environmentally friendly and cost-effective method for nanoparticle synthesis. These findings suggested a promising avenues for the application of silver and iron nanoparticles in the field of nanobiotechnology. Future research endeavors could focus on optimizing preparation conditions and controlling nanoparticle size to further enhance their utility and effectiveness.


Subject(s)
Iron , Metal Nanoparticles , Microalgae , Silver , Spirulina , Silver/chemistry , Microalgae/metabolism , Metal Nanoparticles/chemistry , Iron/chemistry , Spirulina/metabolism , Spirulina/chemistry , Green Chemistry Technology/methods , Chlorella/metabolism , Nanotechnology/methods
15.
Environ Sci Pollut Res Int ; 31(26): 38310-38322, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38797758

ABSTRACT

In this study, three acid mine drainage (AMD) sources were investigated as potential sources of iron for the synthesis of iron nanoparticles using green tea extract (an environmentally friendly reductant) or sodium borohydride (a chemical reductant). Electrical conductivity (EC), total dissolved solids (TDS), dissolved oxygen (DO), oxidation-reduction potential (ORP), ion chromatography (IC), and inductively coupled plasma-mass spectroscopy (ICP-MS) techniques were used to characterize the AMD, and the most suitable AMD sample was selected based on availability. Additionally, three tea extracts were characterized using ferric-reducing antioxidant power (FRAP) and 2,2-diphenyl-1-picryl-hydrazine-hydrate (DPPH), and the most suitable environmentally friendly reductant was selected based on the highest FRAP (1152 µmol FeII/g) and DPPH (71%) values. The synthesized iron nanoparticles were characterized and compared using XRD, STEM, Image J, EDS, and FTIR analytical techniques. The study shows that the novel iron nanoparticles produced using the selected green tea (57 nm) and AMD were stable under air due to the surface modification by polyphenols contained in green tea extract, whereas the nanoparticles produced using sodium borohydride (67 nm) were unstable under air and produced a toxic supernatant. Both the AMD-based iron nanoparticles can be used as Fenton-like catalysts for the decoloration of methylene blue solution. While 99% decoloration was achieved by the borohydride-synthesized nanoparticles, 81% decoloration was achieved using green tea-synthesized nanoparticles.


Subject(s)
Metal Nanoparticles , Methylene Blue , Water Pollutants, Chemical , Water Purification , Metal Nanoparticles/chemistry , Methylene Blue/analysis , Methylene Blue/chemistry , South Africa , Water Purification/methods , Plant Extracts/chemistry , Tea , Water Pollutants, Chemical/analysis , Water Pollutants, Chemical/chemistry
16.
Macromol Biosci ; 24(10): e2400084, 2024 Oct.
Article in English | MEDLINE | ID: mdl-38733249

ABSTRACT

The targeted delivery of drugs using wireless navigable magnetic robots allows the delivery of drug molecules to be controlled non only in time but also in space, improving medical outcomes. The main disadvantages behind their use lies in the low amount of drug that can be transported and the single nature of drug that can be loaded (hydrophilic or hydrophobic). These considerations limit their use in co-delivery systems, now recognized to be very promising for many different pathologies. A magnetic bijel-like structure is developed to load and release different types of molecules (hydrophilic and hydrophobic). In this work, the use of ε-caprolactone is explored, which can polymerize, forming hydrophobic domains (oil phase). After mixing with iron oxide nanoparticles (NPs), the water dispersion creates a magnetic biphasic porous structure without phase separation. The resulting device shows good performance both in magnetic actuation and as a drug delivery system.


Subject(s)
Drug Delivery Systems , Hydrophobic and Hydrophilic Interactions , Polymers/chemistry , Magnetic Iron Oxide Nanoparticles/chemistry , Porosity , Delayed-Action Preparations/chemistry , Polyesters/chemistry
17.
Chemosphere ; 357: 141892, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38615952

ABSTRACT

Polylactic acid based spherical particles with three architectural variations (Isotropic (P1), Semi porous (P2), and Janus (P3)) were employed to encapsulate zero valent iron nanoparticles (ZVINPs), and their performance was extensively evaluated in our previous studies. However, little was known about their transportability through saturated porous media of varying grain size kept under varying ionic strength. In this particular study, we aimed to investigate the architectural effect of polymeric particles (P1-P3) on their mobility through the sand column of varying grain size in presence of mono, di, and tri-valent ions of varying concentrations (25-200 mM (millimoles)). As per column breakthrough experiments (BTCs) using various types of sands, amphiphilic Janus type (P3) particles exhibited the maximum transportability among all the tested particles, irrespective of the nature of the sand. Owing to the narrower travel path, sands with lower porosity (31%) delayed the plateau by shifting it to a higher pore volume with a minimum retention of iron (C/Co: 0.94 for P3) in the column. The impact of mono (Na+, K+), di (Ca2+, Mg2+), and trivalent (Al3+) ions on their transportability was progressively increased from P3 to P1, especially at higher ionic concentrations (200 mM), with P3 being the most mobile particles (C/Co:0.54 for Al3+). Among all the ions, Al3+ exhibited maximum hindrance to their mobility through the sand column. This could be due to their strong charge screening effect coupled with cation bridging complex formation with moving particles. Experimental results obtained from BTCs were found to be well-fitted with a theoretical model based on advection-dispersion equation, showing minimum retention for P3 particles. Overall, it can be inferred that encapsulation of ZVINPs inside Janus particles (P3) with a right balance of amphiphilicity and highly negative surface charge would be required to achieve considerable transportability through sand aquifers to target contaminants in polluted groundwater existing under harsh conditions (high ionic concentrations).


Subject(s)
Environmental Restoration and Remediation , Groundwater , Iron , Water Pollutants, Chemical , Groundwater/chemistry , Iron/chemistry , Environmental Restoration and Remediation/methods , Water Pollutants, Chemical/chemistry , Porosity , Polymers/chemistry , Particle Size , Sand/chemistry , Metal Nanoparticles/chemistry
18.
Heliyon ; 10(7): e28973, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38601603

ABSTRACT

Exogenous application of iron (Fe) may alleviate salinity stress in plants growing in saline soils. This comparative study evaluated the comparative residual effects of iron nanoparticles (FNp) with two other Fe sources including iron-sulphate (FS) and iron-chelate (FC) on maize (Zea mays L.) crop grown under salt stress. All three Fe sources were applied at the rate of 15 and 25 mg/kg of soil before the sowing of wheat (an earlier crop; following the sequence of crop rotation) and no further Fe amendments were added later for the maize crop. Results revealed that FNp application at 25 mg/kg (FNp-2) substantially increased maize height, root length, root dry weight, shoot dry weight, and grain weightby 80.7%, 111.1%, 45.7%, 59.5%, and 77.2% respectively, as compared to the normal controls; and 62.6%, 81.3%, 65.1%, 78%, and 61.2% as compared to salt-stressed controls, respectively. The FNp-2 treatment gave higher activities of antioxidant enzymes, such as superoxide dismutase, peroxidase, catalase, and ascorbate peroxidase compared to salt stressed control (50.6%, 51%, 48.5%, and 49.2%, respectively). The FNp-2 treatment also produced more photosynthetic pigments and better physiological markers: higher chlorophyll a contents by 49.9%, chlorophyll b contents by 67.2%, carotenoids by 62.5%, total chlorophyll contents by 50.3%, membrane stability index by 59.1%, leaf water relative contents by 60.3% as compared to salt stressed control. The highest Fe and Zn concentrations in maize roots, shoots, and grains were observed in FNp treatment as compared to salts stressed control. Higher application rates of Fe from all the sources also delivered better outcomes in alleviating salinity stress in maize compared to their respective low application rates. The study demonstrated that FNp application alleviated salinity stress, increased nutrient uptake and enhanced the yield of maize grown on saline soils.

19.
J Hazard Mater ; 470: 134235, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38608585

ABSTRACT

The misuse of aromatic amines like 4-chloroaniline (4-CA) has led to severe environmental and health issues. However, it's difficult to be utilized by microorganisms for degradation. Nano-zero-valent iron (nZVI) is a promising material for the remediation of chloroaniline pollution, however, the synergistic effect and mechanism of nZVI with microorganisms for the degradation of 4-CA are still unclear. This study investigated the potential of 4-CA removal by the synergistic system involving nZVI and 4-CA degrading microbial flora. The results indicate that the addition of nZVI significantly enhanced the bio-degradation rate of 4-CA from 43.13 % to 62.26 %. Under conditions involving 0.1 % nZVI addition at a 24-hour interval, pH maintained at 7, and glucose as an external carbon source, the microbial biomass, antioxidant enzymes, and dehydrogenase were significantly increased, and the optimal 4-CA degradation rate achieved 68.79 %. Additionally, gas chromatography-mass spectrometry (GC-MS) analysis of intermediates indicated that the addition of nZVI reduced compounds containing benzene rings and enhanced the dechlorination efficiency. The microbial community remained stable during the 4-CA degradation process. This study illustrates the potential of nZVI in co-microbial remediation of 4-CA compounds in the environment.


Subject(s)
Aniline Compounds , Biodegradation, Environmental , Iron , Water Pollutants, Chemical , Aniline Compounds/chemistry , Aniline Compounds/metabolism , Iron/chemistry , Iron/metabolism , Water Pollutants, Chemical/metabolism , Water Pollutants, Chemical/chemistry , Water Purification/methods , Bacteria/metabolism , Metal Nanoparticles/chemistry
20.
Heliyon ; 10(7): e28343, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38560153

ABSTRACT

Current methods of colon cancer treatment, especially chemotherapy, require new treatment methods due to adverse side effects. One important area of interest in recent years is the use of nanoparticles as drug delivery vehicles since several studies have revealed that they can improve the target specificity of the treatment thus lowering the dosage of the drugs while preserving the effectiveness of the treatment thus reducing the side effects. The use of traditional medicine has also been a favorite topic of interest in recent years in medical research, especially cancer research. In this research work, the green synthesis of Fe nanoparticles was carried out using Mentha spicata extract and the synthesized nanoparticles were identified using FT-IR, XRD, FE-SEM and EDS techniques. Then the effect of Mentha spicata, Fe nanoparticles, and Mentha spicata -loaded Fe nanoparticles on LS174t colon cancer cells, and our result concluded that all three, especially Mentha spicata -loaded Fe nanoparticles, have great cytotoxic effects against LS174t cells, and exposure to radiotherapy just further intensified these results. The in vitro condition revealed alterations in the expression of pro-apoptotic BAX and anti-apoptotic Bcl2, suggesting a pro-apoptotic effect from all three components, particularly the Mentha spicata-loaded Fe nanoparticles. After further clinical trials, these nanoparticles can be used to treat colon cancer.

SELECTION OF CITATIONS
SEARCH DETAIL