Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters








Database
Main subject
Language
Publication year range
2.
Zootaxa ; 4881(2): zootaxa.4881.2.9, 2020 Nov 19.
Article in English | MEDLINE | ID: mdl-33311320

ABSTRACT

The subfamily Muricellisidinae was erected by Kükenthal in 1915 and placed in the family Isididae in order to accommodate an unusual species collected in Sagami Bay, Japan. In 1931, Thomson and Dean added a second species collected in Indonesia during the Siboga Expedition. The holotypes of both species have been re-examined. Muricellisis echinata was found to be an anthothelid living on the axis of a keratoisid bamboo coral and M. cervicornis is a melithaeid. Both species are redescribed.


Subject(s)
Anthozoa , Animals , Expeditions
3.
PeerJ ; 3: e1128, 2015.
Article in English | MEDLINE | ID: mdl-26312170

ABSTRACT

As conspicuous modular components of benthic marine habitats, gorgonian (sea fan) octocorals have perplexed taxonomists for centuries through their shear diversity, particularly throughout the Indo-Pacific. Phenotypic incongruence within and between seemingly unitary lineages across contrasting environments can provide the raw material to investigate processes of disruptive selection. Two distinct phenotypes of the Isidid Isis hippurisLinnaeus, 1758 partition between differing reef environments: long-branched bushy colonies on degraded reefs, and short-branched multi/planar colonies on healthy reefs within the Wakatobi Marine National Park (WMNP), Indonesia. Multivariate analyses reveal phenotypic traits between morphotypes were likely integrated primarily at the colony level with increased polyp density and consistently smaller sclerite dimensions at the degraded site. Sediment load and turbidity, hence light availability, primarily influenced phenotypic differences between the two sites. This distinct morphological dissimilarity between the two sites is a reliable indicator of reef health; selection primarily acting on colony morphology, porosity through branching structure, as well as sclerite diversity and size. ITS2 sequence and predicted RNA secondary structure further revealed intraspecific variation between I. hippuris morphotypes relative to such environments (ΦST = 0.7683, P < 0.001). This evidence suggests-but does not confirm-that I. hippuris morphotypes within the WMNP are two separate species; however, to what extent and taxonomic assignment requires further investigation across its full geographic distribution. Incongruence between colonies present in the WMNP with tenuously described Isis alternatives (Isis reticulataNutting, 1910, Isis minorbrachyblastaZou, Huang & Wang, 1991), questions the validity of such assignments. Furthermore, phylogenetic analyses confirm early taxonomic suggestion that the characteristic jointed axis of the Isididae is in fact a convergent trait. Thus the polyphyletic nature of the Isididae lies in its type species I. hippuris, being unrelated to the rest of its family members.

SELECTION OF CITATIONS
SEARCH DETAIL