Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 21
Filter
Add more filters








Publication year range
1.
Nanomaterials (Basel) ; 14(11)2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38869604

ABSTRACT

In this paper, the oxidation-exfoliation process of graphite is studied experimentally by the mixed-solvent method, the oxidation-exfoliation process of graphite is simulated theoretically, and it is found that Graphene Oxide (GO) is a Janus structure with inconsistent oxidation on both surfaces; hydrophilic on one side and hydrophobic on the other side. This layer structure and layer spacing are due to the inconsistent oxidation on both sides which changes with the polarity of different solvent mixtures. We used a two-phase system of benzyl alcohol and water, as well as controlling the polarity of the surface of the substrate, to achieve (using a mixed solution of GO which has a selectivity more inclined to the oil phase when the aqueous phase is present) the preparation of reduced graphene oxide patterns. We also used a complex solution of hydrogen iodide and a sodium-iodide complex solution for secondary reduction to enhance its conductivity to 8653 S/m.

2.
Int J Biol Macromol ; 257(Pt 1): 128493, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38043661

ABSTRACT

A novel, dual-faced, and hierarchical type of Janus hybrid structures (JHSs) was assembled through an in situ growing of lipase@cobalt phosphate sheets on the laccase@copper phosphate sponge-like structures. The chemical and structural information of prepared JHSs was investigated by Scanning electron microscopy-energy dispersive X-ray analysis (SEM-EDX), Fourier Transform Infrared Spectroscopy (FTIR), and X-ray diffraction analysis (XRD). The catalytic activity, storage stability, and reusability of JHSs were then investigated. The SEM-EDX analysis clearly confirmed the asymmetric morphology of the fabricated JHSs with two distinct metal distributions. Under optimized synthesis conditions, the prepared JHSs showed 97.8 % and 100 % of laccase and lipase activity, respectively. Compared to the free biocatalysts, the immobilization resulted in ~ a 2-fold increase in laccase and lipase stability at temperatures of >40 °C. The fabricated JHSs maintained 61 % and 90 % of their original laccase and lipase activity upon 12 successive repetition cycles. Up to 80 % of Reactive Blue-19 (RB-19), an anthraquinone-based vinyl sulphone dye, was removed after 5 h treatment with the prepared JHSs (50 % higher than the free forms of laccase and lipase). The dye removal data fitted very well on the pseudo-second-order kinetic model with a rate constant of 0.8 g mg-1 h-1. Following the bioremoval process, bacterial toxicity also decreased by about 70 %. Therefore, the prepared JHSs provide a facile and sustainable approach for the decolorization, biotransformation, and detoxification of RB-19 by integrating enzymatic oxidation and hydrolysis.


Subject(s)
Enzymes, Immobilized , Laccase , Enzymes, Immobilized/chemistry , Laccase/chemistry , Lipase , Anthraquinones , Phosphates
3.
J Phys Condens Matter ; 35(33)2023 May 22.
Article in English | MEDLINE | ID: mdl-37167999

ABSTRACT

Due to the asymmetric structures, two-dimensional Janus materials have gained significant attention in research for their intriguing piezoelectric and spintronic properties. In the present work, quintuple Bi2X3(X = S, Se) monolayers (MLs) have been modified to create stable Janus Bi2X2Y (X ≠ Y = S, Se) MLs that display piezoelectricity in both the planes along with Rashba effect. The out-of-plane piezoelectric constant (d33) is 41.18 (-173.14) pm V-1, while the in-plane piezoelectric constant (d22) is 5.23 (6.21) pm V-1for Janus Bi2S2Se (Bi2Se2S) ML. Including spin-orbit coupling in the Janus MLs results in anisotropic giant Rashba spin splitting (RSS) at the Γ point in the valence band, with RSS proportional tod33. The Rashba constant along the Γ-K path,αRΓ- K, is 3.30 (2.27) eV Å, whereas along Γ-M,αRΓ- Mis 3.58 (3.60) eV Å for Janus Bi2S2Se (Bi2Se2S) ML. The MLs exhibit ultrahigh electron mobility (∼5442 cm2V-1s-1) and have electron to hole mobility ratio of more than 2 due to their tiny electron-effective masses. The flexibility of the MLs allows for a signification alteration in its properties, like band gap, piezoelectric coefficient, and Rashba constant, via mechanical (biaxial) strain. For the MLs, band gap andd33value are enhanced with compressive strain. The d33value of Janus Bi2Se2S reaches 4886.51 pm V-1under compressive strain. The coexistence of anisotropic colossal out-of-plane piezoelectricity, giant RSS, and ultrahigh carrier mobilities in Janus Bi2S2Se and Bi2Se2S MLs showcase their tremendous prospects in nanoelectronic, piezotronics, and spintronics devices.

4.
Small ; 19(30): e2302509, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37026662

ABSTRACT

Aerogels have provided a significant platform for passive radiation-enabled thermal regulation, arousing extensive interest due to their capabilities of radiative cooling or heating. However, there still remains challenge of developing functionally integrated aerogels for sustainable thermal regulation in both hot and cold environment. Here, Janus structured MXene-nanofibrils aerogel (JMNA) is rationally designed via a facile and efficient way. The achieved aerogel presents the characteristic of high porosity (≈98.2%), good mechanical strength (tensile stress of ≈2 MPa, compressive stress of ≈115 kPa), and macroscopic shaping property. Based on the asymmetric structure, the JMNA with switchable functional layers can alternatively enable passive radiative heating and cooling in winter and summer, respectively. As a proof of concept, JMNA can function as a switchable thermal-regulated roof to effectively enable the inner house model to maintain >25 °C in winter and <30 °C in hot summer. This design of Janus structured aerogels with compatible and expandable capabilities is promising to widely benefit the low-energy thermal regulation in changeable climate.

5.
Small ; 19(25): e2300289, 2023 Jun.
Article in English | MEDLINE | ID: mdl-36929092

ABSTRACT

Dual single atoms catalysts have promising application in bifunctional electrocatalysis due to their synergistic effect. However, how to balance the competition between rate-limiting steps (RDSs) of reversible oxygen reduction and oxygen evolution reaction (OER) and fully expose the active centers by reasonable structure design remain enormous challenges. Herein, Fe/N4 and Ni/N4 sites separated on different sides of the carbon nanosheets with Janus structure (FeNijns /NC) is synthesized by layer-by-layer assembly method. Experiments and calculations reveal that the side of Fe/N4 is beneficial to oxygen reduction reaction (ORR) and the Ni/N4 side is preferred to OER. Such Janus structure can take full advantage of two separate-sides of carbon nanosheets and balance the competition of RDSs during ORR and OER. FeNijns /NC possesses superior ORR and OER activity with ORR half-wave potential of 0.92 V and OER overpotential of 440 mV at J = 10 mA cm-2 . Benefiting from the excellent bifunctional activities, FeNijns /NC assembled aqueous Zn-air battery (ZAB) demonstrates better maximum power density, and long-term stability (140 h) than Pt/C+RuO2 catalyst. It also reveals superior flexibility and stability in solid-state ZAB. This work brings a novel perspective for rational design and understanding of the catalytic mechanisms of dual single atom catalysts.

6.
ACS Nano ; 16(5): 7144-7167, 2022 May 24.
Article in English | MEDLINE | ID: mdl-35522162

ABSTRACT

Layered van der Waals (vdW) materials have attracted significant attention due to their materials properties that can enhance diverse applications including next-generation computing, biomedical devices, and energy conversion and storage technologies. This class of materials is typically studied in the two-dimensional (2D) limit by growing them directly on bulk substrates or exfoliating them from parent layered crystals to obtain single or few layers that preserve the original bonding. However, these vdW materials can also function as a platform for obtaining additional phases of matter at the nanoscale. Here, we introduce and review a synthesis paradigm, morphotaxy, where low-dimensional materials are realized by using the shape of an initial nanoscale precursor to template growth or chemical conversion. Using morphotaxy, diverse non-vdW materials such as HfO2 or InF3 can be synthesized in ultrathin form by changing the composition but preserving the shape of the original 2D layered material. Morphotaxy can also enable diverse atomically precise heterojunctions and other exotic structures such as Janus materials. Using this morphotaxial approach, the family of low-dimensional materials can be substantially expanded, thus creating vast possibilities for future fundamental studies and applied technologies.

7.
Small ; 18(19): e2201695, 2022 May.
Article in English | MEDLINE | ID: mdl-35398985

ABSTRACT

Gold-copper (Au-Cu) Janus nanostructures (Au-Cu Janus NSs) are successfully prepared using N-oleyl-1,3-propanediamine as capping agent and Cu(acac)2 as the precursor in a typical seeded growth strategy. By preferably depositing Cu atoms on one side of concave cubic Au seeds, the Cu part gradually grows larger as more Cu precursors are added, making the size tuning feasible in the range of 74-156 nm. When employed as an electrocatalyst for electrochemical CO2 reduction (CO2 RR), the Au-Cu Janus NSs display superior performance to Au@Cu core-shell NSs and Cu NPs in terms of C2+ products selectivity (67%) and C2+ partial current density (-0.29 A cm-2 ). Combined experimental verification and theoretical simulations reveal that CO spillover from Au sites to the nearby Cu counterparts would enhance CO coverage and thus promote C-C coupling, highlighting the unique structural advantages of the Au-Cu Janus NSs toward deep reduction of CO2 . The current work provides a facile strategy to fabricate tandem catalyst with a Janus structure and validates its structural advantages toward CO2 RR, which are of critical importance for the rational design of efficient CO2 RR catalyst.

8.
Small ; 18(16): e2200578, 2022 Apr.
Article in English | MEDLINE | ID: mdl-35304814

ABSTRACT

Zn-air battery technologies have received increasing attention, while the application is hindered by the sluggish kinetics of the oxygen evolution reaction (OER) and oxygen reduction reaction (ORR). In order to explore an efficient method to fabricate a high-performance electrocatalyst via modification of advanced nanostructure, a coaxial electrospinning method with in-situ synthesis and subsequent carbonization to construct 3D flexible Janus-like electrocatalysts is developed. The resulting Janus nanofibers have a unique core-shell hollow fiber structure, where NiFe alloy electrocatalysts supported by N-doped carbon nanobelt are located on the inner wall of the carbon layer, and leaf-like Co-N nanosheets are anchored on the outer wall of the carbon layer. As a result, the electrocatalyst exhibits excellent bifunctional catalytic performance for ORR and OER, demonstrating the small potential gap value of 0.73 V between the ORR half-wave potential and the OER potential at 10 mA cm-2 , which is even comparable to the mixed commercial noble catalyst with 20% Pt/C and RuO2 . The rechargeable Zn-air battery is constructed and displays a large open-circuit voltage of 1.44 V, high power density (130 mW cm-2 ) and energy density (874 Wh kg-1 ). This study provides a concept to synthesize and construct high performance bifunctional electrocatalysts.

9.
Nanotechnology ; 33(26)2022 Apr 07.
Article in English | MEDLINE | ID: mdl-35316792

ABSTRACT

By utilizing the tight-binding method, the electronic spectrum and states distribution of square Janus monolayer black arsenic phosphorus (b-AsP) quantum dots (QDs) in the presence of a perpendicular magnetic field are explored. Strong in-gap states of b-AsP QDs, whose probability densities are distributed on the armchair boundary (armchair edge states) appear in the energy gap of host perfect two-dimensional b-AsP. The corresponding energy levels of the armchair edge states can degenerate to the Landu energy levels upon applying a perpendicular magnetic field. When an in-plane polarized light is introduced, due to the presence of armchair edge states, the edge-to-edge transitions are mainly induced from the armchair edge (hole) states to zigzag edge (electron) states. The optical absorption undergoes blue shift as a function of the magnetic field. Our work suggests tunable optical properties via modulating the armchair edge states of a b-AsP QD and provides a theoretical basis for the design of b-AsP-based optoelectronic devices.

10.
Small ; 18(36): e2200799, 2022 09.
Article in English | MEDLINE | ID: mdl-35266631

ABSTRACT

Exudate management is critical to improve chronic wound healing. Herein, inspired by a Janus-structured lotus leaf with asymmetric wettability, a Janus electrospun short fiber scaffold is fabricated via electrospinning technologies and short fiber modeling. This scaffold is composed of hydrophilic 2D curcumin-loaded electrospun fiber and hydrophobic 3D short fiber via layer-by-layer assembly and electrostatic interactions which can aggregate the wound exudate by pumping from the hydrophobic layer to the hydrophilic via multiple contact points between hydrophilic and hydrophobic fibers, and simultaneously trigger the cascade release of curcumin in the upper 2D electrospun fiber. The 3D short fiber with high porosity and hydrophobicity can quickly aggregate exudate within 30 s after compounding with hydrophilic 2D electrospun fiber via a spontaneous pump. In vitro experiments show that Janus electrospun short fiber has good biocompatibility, and the cascade release of curcumin can significantly promote the proliferation and migration of fibroblasts. In vivo experiments show that it can trigger cascade release of curcumin by aggregating wound exudate, so as to accelerate wound healing process and promote collagen deposition and vascularization. Hence, this unique biometric Janus scaffold provides an alternative for chronic wound healing.


Subject(s)
Curcumin , Nanofibers , Collagen , Curcumin/pharmacology , Fibroblasts , Nanofibers/chemistry , Porosity , Wound Healing
11.
ACS Appl Mater Interfaces ; 14(1): 1643-1651, 2022 Jan 12.
Article in English | MEDLINE | ID: mdl-34939780

ABSTRACT

Recently, two-dimensional (2D) Janus semiconductors have attracted great attention in photocatalytic applications owing to their extraordinary properties, especially the intrinsic polarization-induced spontaneous carrier separation, strong optical absorption, and ultrahigh solar-to-hydrogen (STH) efficiency. However, experimental achievable candidates for 2D intrinsic Janus semiconductors are rarely reported. Herein, based on density functional theory (DFT) calculations, we uncovered two new 2D photocatalysts, namely, Janus Nb3SBr7 and Ta3SBr7 bilayers. We revealed that both structures are highly feasible to be obtained from their bulk counterparts. Excitingly, intrinsic charge separations emerge in both structures, which are beneficial to the repression of recombinations of their photoexcited carriers. Optical absorptions of both structures can be activated in the visible and even infrared regions. Most interestingly, Nb3SBr7 and Ta3SBr7 bilayers can exhibit ultrahigh STH efficiencies of 35% and 31%, respectively, which are larger than those of most 2D Janus structures. In addition, we further found that these distinguished photocatalytic properties are rather robust and are independent of their stacking modes. Experimental feasibilities and robust coexistences of intrinsic charge separations, ultrahigh STH efficiencies, and strong absorptions endow Nb3SBr7 and Ta3SBr7 bilayers as hopeful photocatalysts for water splitting.

12.
J Phys Condens Matter ; 34(11)2021 Dec 31.
Article in English | MEDLINE | ID: mdl-34915459

ABSTRACT

Motivated by the recent successful synthesis of 2D quintuple-layer atomic materials, for the first time, we design and investigate the electronic and transport properties of Janus Al2XY2(X/Y = S, Se, Te; X ≠ Y) monolayers by using the density functional theory. Our calculations demonstrate that most of the models of Al2XY2(except for Al2STe2monolayer) are dynamically and mechanically stable. By using the hybrid functional, all models of Al2XY2are semiconductors with an indirect bandgap. Meanwhile, Al2TeS2monolayer is found to be metal at the Perdew-Burke-Ernzerhof level. Due to the vertical asymmetry structure, an intrinsic built-in electric field exists in the Al2XY2and leads to a difference in the vacuum levels between the two sides of the monolayers. Carrier mobilities of Al2XY2monolayers are high directional anisotropic due to the anisotropy of their deformation potential constant. Al2XY2monolayers exhibit high electron mobility, particularly, the electron mobility of Al2SeS2exceeds 1 × 104cm2V-1 s-1, suggesting that they are suitable for applications in nanometer-sized electronic devices.

13.
ACS Appl Mater Interfaces ; 13(24): 28090-28097, 2021 Jun 23.
Article in English | MEDLINE | ID: mdl-34115478

ABSTRACT

Searching for highly efficient and eco-friendly photocatalysts for water splitting is essential for renewable conversion and storage of inexhaustible solar energy but remains a great challenge. Herein, based on the new emerging two-dimensional (2D) material of MoSi2N4, we report novel Janus MoSiGeN4 and WSiGeN4 structures with excellent stabilities and great potentials in photocatalytic applications through first-principles calculations. Comprehensive studies show that MoSi2N4, MoSiGeN4, and WSiGeN4 exhibit semiconductor characteristics with an indirect gap, appropriate band gaps, and strong optical absorbance in the visible spectrum. Excitingly, by constructing Janus structures, an intrinsic electric field is realized that enhances the spatial separation and anisotropic migration of photoexcited electrons and holes. Further, this strategy can also alter the band alignment to provide an adequate photoexcited carrier driving force for water redox reactions. Moreover, the surface N vacancy can effectively lower the energy demand of both hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) so that the catalytic process can be self-sustained under the potential provided by the photocatalyst alone. Particularly, the overall water splitting can proceed simultaneously and spontaneously on the surface of MoSiGeN4 and WSiGeN4 when pH is 3 or ≥8, respectively. These explorations offer new prospects for the design of highly efficient photocatalysts.

14.
Angew Chem Int Ed Engl ; 59(49): 22246-22251, 2020 Dec 01.
Article in English | MEDLINE | ID: mdl-32815276

ABSTRACT

In photocatalysis, the Schottky barrier in metal-semiconductor hybrids is known to promote charge separation, but a core-shell structure always leads to a charge build-up and eventually shuts off the photocurrent. Here, we show that Au-Cu2 O hybrid nanostructures can be continuously tuned, particularly when the Cu2 O domains are single-crystalline. This is in contrast to the conventional systems, where the hybrid configuration is mainly determined by the choice of materials. The distal separation of the Au-Cu2 O domains in Janus nanostructures leads to enhanced charge separation and a large improvement of the photocurrent. The activity of the Au-Cu2 O Janus structures is 5 times higher than that of the core-shell structure, and 10 times higher than that of the neat Cu2 O nanocubes. The continuous structural tuning allows to study the structure-property relationship and an optimization of the photocatalytic performance.

15.
Angew Chem Int Ed Engl ; 59(22): 8497-8501, 2020 May 25.
Article in English | MEDLINE | ID: mdl-31573137

ABSTRACT

A single-step solution-based strategy is used to obtain 2D Janus-like free-standing ultrathin nanosheets build from two structurally unrelated species, that is, polyoxomolybdate (POM) and CoO. A controlled 2D-to-1D morphological transition was achieved by judiciously adjusting the solvent choice. These POM-CoO heterostructures can behave as an ideal catalyst for the epoxidation of styrene. Benefiting from their amphiphilic nature, these 2D POM-CoO nanosheets have also been used as surfactant to emulsify immiscible solvents. It is anticipated that structurally diverse polyoxometalates will offer promise as design elements for variety of structurally and compositionally tunable van der Waals integrated heteromaterials having a broad range applications.

16.
Chemistry ; 25(37): 8663-8680, 2019 Jul 02.
Article in English | MEDLINE | ID: mdl-30946492

ABSTRACT

Delicate molecular and biological motors are tiny machines capable of achieving numerous vital tasks in biological processes. To gain a deeper understanding of their mechanism of motion, researchers from multiple backgrounds have designed and fabricated artificial micro- and nanomotors. These nano-/microscale motors can self-propel in solution by exploiting different sources of energy; thus showing tremendous potential in widespread applications. As one of the most common motor systems, Janus motors possess unique asymmetric structures and integrate different functional materials onto two sides. This review mainly focuses on the fabrication of different types of micro- and nanomotors based on Janus structures. Furthermore, some challenges still exist in the implementation of Janus motors in the biomedical field. With such common goals in mind, it is expected that the elaborate and multifunctional design of Janus motors will overcome their challenges in the near future.

17.
Chemistry ; 23(68): 17204-17208, 2017 Dec 06.
Article in English | MEDLINE | ID: mdl-29072345

ABSTRACT

We report a facile and simple hydrogen reduction method to fabricate PEGylated branched gold (Au)-iron oxide (Fe3 O4 ) Janus nanoparticles (JNPs). Note that the hydrogen induces the formation of Fe3 O4 during the synthesis process. Due to the strong absorption in the near-infrared range, branched Au-Fe3 O4 JNPs showed a significant photothermal effect with a 40 % calculated photothermal transduction efficiency under a laser irradiation of 808 nm in vitro. Owing to their excellent optical and magnetic properties, branched Au-Fe3 O4 JNPs were demonstrated to be advantageous agents for triple-modal magnetic resonance imaging (MRI)/photoacoustic imaging (PAI)/computed tomography (CT) in vitro. Therefore, the synthetic approach could be extended to prepare Au-metallic oxide JNPs for specific applications.


Subject(s)
Ferrosoferric Oxide/chemistry , Gold/chemistry , Metal Nanoparticles/chemistry , Cell Survival/drug effects , HeLa Cells , Humans , Infrared Rays , Magnetic Resonance Imaging , Microscopy, Electron, Transmission , Photoacoustic Techniques , Photosensitizing Agents/chemistry , Photosensitizing Agents/toxicity , Phototherapy , Polyethylene Glycols/chemistry , Temperature , Tomography, X-Ray Computed
18.
Angew Chem Int Ed Engl ; 56(15): 4206-4210, 2017 04 03.
Article in English | MEDLINE | ID: mdl-28296159

ABSTRACT

Z-scheme water splitting is a promising approach based on high-performance photocatalysis by harvesting broadband solar energy. Its efficiency depends on the well-defined interfaces between two semiconductors for the charge kinetics and their exposed surfaces for chemical reactions. Herein, we report a facile cation-exchange approach to obtain compounds with both properties without the need for noble metals by forming Janus-like structures consisting of γ-MnS and Cu7 S4 with high-quality interfaces. The Janus-like γ-MnS/Cu7 S4 structures displayed dramatically enhanced photocatalytic hydrogen production rates of up to 718 µmol g-1 h-1 under full-spectrum irradiation. Upon further integration with an MnOx oxygen-evolution cocatalyst, overall water splitting was accomplished with the Janus structures. This work provides insight into the surface and interface design of hybrid photocatalysts, and offers a noble-metal-free approach to broadband photocatalytic hydrogen production.

19.
Chemistry ; 23(8): 1920-1929, 2017 Feb 03.
Article in English | MEDLINE | ID: mdl-27879022

ABSTRACT

Catalytic Janus nanosheets were synthesized by using an anion-exchange reaction between heteropolyacids (HPAs) and the modified ionic-liquid (IL) moieties of Janus nanosheets. Their morphology and surface properties were characterized by using SEM, energy-dispersive spectroscopy (EDS), FTIR spectroscopy, and X-ray photoelectron spectroscopy (XPS) studies. Because of their inherent Janus structure, the nanosheets exhibited good amphipathic character with ILs and oil to form a stable ILs-in-oil emulsion. Therefore, these Janus nanosheets can be used as both emulsifiers and catalysts to perform emulsive desulfurization. During this process, sulfur-containing compounds at the interface could be easily oxidized and efficiently removed from a model oil. Application of this Janus emulsion brings an efficient, useful, and green procedure to the desulfurization process. Compared with the desulfurization catalyzed by using HPAs in a conventional two-phase system, the sulfur removal of dibenzothiophene (DBT) achieved in a Janus emulsion system was improved from 68 to 97 % within 1.5 h. Moreover, this emulsion system could be demulsified easily by simple centrifugation to recover both the nanosheets and the ILs. Owing to the good structural stability of the Janus nanosheets, the sulfur removal efficiency of DBT could still reach 99.9 % after the catalytic nanosheets had been recycled at least six times.

20.
Chem Asian J ; 11(12): 1785-8, 2016 Jun 21.
Article in English | MEDLINE | ID: mdl-27124877

ABSTRACT

We propose a facile method to achieve paramagnetic Janus nanotubes with two compositions compartmentalized onto the interior and exterior surfaces, respectively. A sulfonated polydivinylbenzene (PDVB) nanotube is prepared by simple sulfonation of the exterior surface of a PDVB nanotube. Silica@FeOOH dual layers are sequentially grown onto the sulfonated PDVB nanotube surface. The composite nanotubes become paramagnetic after calcination and can be broken into shorter pieces under vigorous ultrasonication. After selective modification of the interior and exterior surfaces of the paramagnetic nanotubes, the nanotube shell becomes Janus in wettability. Desired hydrophobic species can be selectively captured inside the cavity. The paramagnetic Janus composite nanotubes can align into parallel chains under a magnetic field, which is self-disassembled upon removal of the magnetic field.

SELECTION OF CITATIONS
SEARCH DETAIL