Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 39
Filter
Add more filters








Publication year range
1.
Sensors (Basel) ; 24(8)2024 Apr 16.
Article in English | MEDLINE | ID: mdl-38676176

ABSTRACT

In the field of robotic automation, achieving high position accuracy in robotic vision systems (RVSs) is a pivotal challenge that directly impacts the efficiency and effectiveness of industrial applications. This study introduces a comprehensive modeling approach that integrates kinematic and joint compliance factors to significantly enhance the position accuracy of a system. In the first place, we develop a unified kinematic model that effectively reduces the complexity and error accumulation associated with the calibration of robotic systems. At the heart of our approach is the formulation of a joint compliance model that meticulously accounts for the intricacies of the joint connector, the external load, and the self-weight of robotic links. By employing a novel 3D rotary laser sensor for precise error measurement and model calibration, our method offers a streamlined and efficient solution for the accurate integration of vision systems into robotic operations. The efficacy of our proposed models is validated through experiments conducted on a FANUC LR Mate 200iD robot, showcasing notable improvements in the position accuracy of robotic vision system. Our findings contribute a framework for the calibration and error compensation of RVS, holding significant potential for advancements in automated tasks requiring high precision.

2.
Biomimetics (Basel) ; 9(3)2024 Mar 06.
Article in English | MEDLINE | ID: mdl-38534848

ABSTRACT

Chronic total occlusion (CTO) is one of the most severe and sophisticated vascular stenosis because of complete blockage, greater operation difficulty, and lower procedural success rate. This study proposes a hydraulic-driven soft robot imitating the earthworm's locomotion to assist doctors or operators in actively opening thrombi in coronary or peripheral artery vessels. Firstly, a three-actuator bionic soft robot is developed based on earthworms' physiological structure. The soft robot's locomotion gait inspired by the earthworm's mechanism is designed. Secondly, the influence of structure parameters on actuator deformation, stress, and strain is explored, which can help us determine the soft actuators' optimal structure parameters. Thirdly, the relationship between hydraulic pressure and actuator deformation is investigated by performing finite element analysis using the bidirectional fluid-structure interaction (FSI) method. The kinematic models of the soft actuators are established to provide a valuable reference for the soft actuators' motion control.

3.
J Biomech ; 158: 111685, 2023 09.
Article in English | MEDLINE | ID: mdl-37573806

ABSTRACT

The ligamentous structures of the wrist stabilise and constrain the interactions of the carpal bones during active wrist motion; however, the three-dimensional translations and rotations of the scaphoid, lunate and capitate in the normal and ligament deficient wrist during planar and oblique wrist motions remain poorly understood. This study employed a computer-controlled simulator to replicate physiological wrist motion by dynamic muscle force application, while carpal kinematics were simultaneously measured using bi-plane x-ray fluoroscopy. The aim was to quantify carpal kinematics in the native wrist and after sequential sectioning of the scapholunate interosseous ligament (SLIL) and secondary scapholunate ligament structures. Seven fresh-frozen cadaveric wrist specimens were harvested, and cycles of flexion-extension, radial-ulnar deviation and dart-thrower's motion were simulated. The results showed significant rotational and translational changes to these carpal bones in all stages of disruptions to the supporting ligaments (p < 0.05). Specifically, following the disruption of the dorsal SLIL (Stage II), the scaphoid became significantly more flexed, ulnarly deviated, and pronated relative to the radius, whereas the lunate became more extended, supinated and volarly translated (p < 0.05). Sectioning of the dorsal intercarpal (DIC), dorsal radiocarpal (DRC), and scaphotrapeziotrapezoid (STT) ligaments (Stage IV) caused the scaphoid to collapse further into flexion, ulnar deviation, and pronation. These findings highlight the importance of all the ligamentous attachments that relate to the stability of the scapholunate joint, but more importantly, the dorsal SLIL in maintaining scapholunate stability, and the preservation of the attachments of the DIC and DRC ligaments during dorsal surgical approaches. The findings will be useful in diagnosing wrist pathology and in surgical planning.


Subject(s)
Lunate Bone , Scaphoid Bone , Humans , Wrist , Biomechanical Phenomena , X-Rays , Lunate Bone/diagnostic imaging , Lunate Bone/physiology , Scaphoid Bone/diagnostic imaging , Scaphoid Bone/physiology , Wrist Joint/diagnostic imaging , Wrist Joint/physiology , Ligaments, Articular/diagnostic imaging , Ligaments, Articular/physiology , Fluoroscopy
4.
Sensors (Basel) ; 23(15)2023 Aug 03.
Article in English | MEDLINE | ID: mdl-37571669

ABSTRACT

The recent advancements in Intelligent Transportation Systems (ITS) have revealed significant potential for enhancing traffic management through Advanced Driver Assist Systems (ADASs), with benefits for both safety and environment. This research paper proposes a vehicle localization technique based on Kalman filtering, as accurate positioning of the ego-vehicle is essential for the proper functioning of the Traffic Light Advisor (TLA) system. The aim of the TLA is to calculate the most suitable speed to safely reach and pass the first traffic light in front of the vehicle and subsequently keep that velocity constant to overcome the following traffic light, thus allowing safer and more efficient driving practices, thereby reducing safety risks, and minimizing energy consumption. To overcome Global Positioning Systems (GPS) limitations encountered in urban scenarios, a multi-rate sensor fusion approach based on the Kalman filter with map matching and a simple kinematic one-dimensional model is proposed. The experimental results demonstrate an estimation error below 0.5 m on urban roads with GPS signal loss areas, making it suitable for TLA application. The experimental validation of the Traffic Light Advisor system confirmed the expected benefits with a 40% decrease in energy consumption compared to unassisted driving.

5.
Ultrasonics ; 135: 107131, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37556915

ABSTRACT

Compared with conventional drilling (CD), ultrasonic vibration-assisted drilling(UVAD) is experimentally proven a promising method to reduce the cutting temperature. But sometimes cutting temperature also becomes higher in UVAD than in CD. To further make clear the cutting temperature mechanisms in UVAD, this study aims to study the effect of tool's ultrasonic vibration on the cutting heat generation and heat dissipation at a relatively micro level. Firstly, drilling experiments are designed to explore the variations of cutting heat under different ultrasonic vibrations. Then, to analyze the influence of ultrasonic vibration on the cutting heat theoretically, a kinematic model is developed to describe the dynamic contact between the cutting edge and workpiece in UVAD. Besides, a cutting heat analysis model based on the contact characteristics in UVAD is proposed to study and compare the variations of cutting heat generation. The effect of ultrasonic vibration on the cutting heat generation, heat dispassion, and the resultant cutting temperature under different machining in UVAD conditions are discussed. It is indicated from the theoretical analysis that more cutting heat tends to be produced due to the significantly increased sliding velocity on the cutting edge-workpiece interface when the ultrasonic vibration is applied. The analysis agrees with the experimental results that the cutting temperature in dry UVAD is higher than in dry CD. But on the other hand, ultrasonic vibration can also improve the lubrication and cooling effect under appropriate machining conditions, which is beneficial to the reduction in cutting temperature. The investigation shows the multifaceted influences of ultrasonic vibration on the cutting temperature in the drilling process in detail, which provides a reference for UVAD parameter optimization.

6.
Soft Robot ; 10(4): 825-837, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37001175

ABSTRACT

Compared with rigid robots, soft robots are inherently compliant and have advantages in the tasks requiring flexibility and safety. But sensing the high dimensional body deformation of soft robots is a challenge. Encasing soft strain sensors into the internal body of soft robots is the most popular solution to address this challenge. But most of them usually suffer from problems like nonlinearity, hysteresis, and fabrication complexity. To endow the soft robots with body movement awareness, this work presents a bioinspired architecture by taking cues from human proprioception system. Differing from the popular usage of smart material-based sensors embedded in soft actuators, we created a synthetic analog to the human muscle system, using paralleled soft pneumatic chambers to serve as receptors for sensing body deformation. We proposed to build the system with redundant receptors and explored deep learning tools for generating the kinematic model. Based on the proposed methodology, we demonstrated the design of three degrees of freedom continuum joint and how its kinematic model was learned from the unified pressure information of the actuators and receptors. In addition, we investigated the response of the soft system to receptor failures and presented both hardware and software level solutions for achieving graceful degradation. This approach offers an alternative to enable soft robots with proprioception capability, which will be useful for closed-loop control and interaction with environment.

7.
Sports Biomech ; 22(10): 1243-1255, 2023 Oct.
Article in English | MEDLINE | ID: mdl-32757723

ABSTRACT

The work investigates the relationship between the leg spread and hip joint flexibility during kicking action of highly skilled martial artists. Vector-based spreading angles (VSAs), as a simplified way to assess kick execution patterns and movement ranges, are proposed. The first VSA measures the angle between the two femur vectors (i.e., upper leg spread), whereas the second describes the full-leg spread. The proposed measures were applied to 3D motion analysis performed on 33 participants at various skill levels who executed double side kicks and performed two static flexibility tests (hip joint flexion and abduction). Statistical analysis showed that the proposed parameters differentiate between skill levels. Both VSAs and VSA rate of change showed high Pearson correlation to the quality of execution (the average of 10 subjective kickboxing experts' evaluation scores) at critical instants of the kick execution , i.e., during the first leg elevation and kick (angles: ρ > 0.8; p < 0.001). In addition, they significantly correlated to maximum static hip abduction at any instant (ρ = 0.37-0.69; p < 0.05). The work established that both static and dynamic joint flexibility contribute to high-performance levels and could be used for initial selection and assessment of training effectiveness.


Subject(s)
Hip Joint , Sports , Humans , Biomechanical Phenomena , Lower Extremity , Range of Motion, Articular
8.
Sensors (Basel) ; 22(13)2022 Jun 27.
Article in English | MEDLINE | ID: mdl-35808347

ABSTRACT

Soft pneumatic actuators are extensively used in soft robots, and their bending angles and kinematic rules at different pressures play a crucial role in practical applications. This investigation aims to model the bending angle and motion of a new type of soft pneumatic actuator that adopts a composite structure consisting of two kinds of pneumatic networks. Based on the structural and deformation characteristics of the proposed soft actuator, the constitutive model is established, and then the moment equilibrium and virtual work principle are combined to model the bending angle of two pneumatic modules. The kinematic model of the proposed soft actuator is co-opted from the kinematic modeling of rigid robots. By employing the piecewise constant curvature method and coordinate transformation, the location of any chamber of the soft actuator can be calculated. The effectiveness of the developed analytical models is then tested, and the calculated results show good agreement with the experimental results. Finally, three soft actuators are used to constitute a soft gripper, and the pinching and enveloping grasping performance are examined. All experimental test results demonstrate that the developed bending angle and kinematic models can explain the bending principle of the proposed soft actuators well.

9.
Front Robot AI ; 9: 809114, 2022.
Article in English | MEDLINE | ID: mdl-35187095

ABSTRACT

Model predictive control is a widely used optimal control method for robot path planning and obstacle avoidance. This control method, however, requires a system model to optimize control over a finite time horizon and possible trajectories. Certain types of robots, such as soft robots, continuum robots, and transforming robots, can be challenging to model, especially in unstructured or unknown environments. Kinematic-model-free control can overcome these challenges by learning local linear models online. This paper presents a novel perception-based robot motion controller, the kinematic-model-free predictive controller, that is capable of controlling robot manipulators without any prior knowledge of the robot's kinematic structure and dynamic parameters and is able to perform end-effector obstacle avoidance. Simulations and physical experiments were conducted to demonstrate the ability and adaptability of the controller to perform simultaneous target reaching and obstacle avoidance.

10.
Sensors (Basel) ; 21(21)2021 Oct 29.
Article in English | MEDLINE | ID: mdl-34770522

ABSTRACT

This paper presents the empirical evaluation of the path-tracking accuracy of a three-wheeled omnidirectional mobile robot that is able to move in any direction while simultaneously changing its orientation. The mobile robot assessed in this paper includes a precise onboard LIDAR for obstacle avoidance, self-location and map creation, path-planning and path-tracking. This mobile robot has been used to develop several assistive services, but the accuracy of its path-tracking system has not been specifically evaluated until now. To this end, this paper describes the kinematics and path-planning procedure implemented in the mobile robot and empirically evaluates the accuracy of its path-tracking system that corrects the trajectory. In this paper, the information gathered by the LIDAR is registered to obtain the ground truth trajectory of the mobile robot in order to estimate the path-tracking accuracy of each experiment conducted. Circular and eight-shaped trajectories were assessed with different translational velocities. In general, the accuracy obtained in circular trajectories is within a short range, but the accuracy obtained in eight-shaped trajectories worsens as the velocity increases. In the case of the mobile robot moving at its nominal translational velocity, 0.3 m/s, the root mean square (RMS) displacement error was 0.032 m for the circular trajectory and 0.039 m for the eight-shaped trajectory; the absolute maximum displacement errors were 0.077 m and 0.088 m, with RMS errors in the angular orientation of 6.27° and 7.76°, respectively. Moreover, the external visual perception generated by these error levels is that the trajectory of the mobile robot is smooth, with a constant velocity and without perceiving trajectory corrections.


Subject(s)
Robotics , Biomechanical Phenomena
11.
Sensors (Basel) ; 21(15)2021 Jul 27.
Article in English | MEDLINE | ID: mdl-34372320

ABSTRACT

The implementation of control algorithms oriented to robotic assistance and rehabilitation tasks for people with motor disabilities has been of increasing interest in recent years. However, practical implementation cannot be carried out unless one has the real robotic system availability. To overcome this drawback, this article presents the development of an interactive virtual reality (VR)-based framework that allows one to simulate the execution of rehabilitation tasks and robotic assistance through a robotic standing wheelchair. The virtual environment developed considers the kinematic and dynamic model of the standing human-wheelchair system with a displaced center of mass, since it can be displaced for different reasons, e.g.,: bad posture, limb amputations, obesity, etc. The standing wheelchair autonomous control scheme has been implemented through the Full Simulation (FS) and Hardware in the Loop (HIL) techniques. Finally, the performance of the virtual control schemes has been shown by means of several experiments based on robotic assistance and rehabilitation for people with motor disabilities.


Subject(s)
Robotic Surgical Procedures , Robotics , Virtual Reality , Wheelchairs , Algorithms , Humans
12.
Front Robot AI ; 8: 621820, 2021.
Article in English | MEDLINE | ID: mdl-33996922

ABSTRACT

Ocean ecosystems have spatiotemporal variability and dynamic complexity that require a long-term deployment of an autonomous underwater vehicle for data collection. A new generation of long-range autonomous underwater vehicles (LRAUVs), such as the Slocum glider and Tethys-class AUV, has emerged with high endurance, long-range, and energy-aware capabilities. These new vehicles provide an effective solution to study different oceanic phenomena across multiple spatial and temporal scales. For these vehicles, the ocean environment has forces and moments from changing water currents which are generally on the order of magnitude of the operational vehicle velocity. Therefore, it is not practical to generate a simple trajectory from an initial location to a goal location in an uncertain ocean, as the vehicle can deviate significantly from the prescribed trajectory due to disturbances resulted from water currents. Since state estimation remains challenging in underwater conditions, feedback planning must incorporate state uncertainty that can be framed into a stochastic energy-aware path planning problem. This article presents an energy-aware feedback planning method for an LRAUV utilizing its kinematic model in an underwater environment under motion and sensor uncertainties. Our method uses ocean dynamics from a predictive ocean model to understand the water flow pattern and introduces a goal-constrained belief space to make the feedback plan synthesis computationally tractable. Energy-aware feedback plans for different water current layers are synthesized through sampling and ocean dynamics. The synthesized feedback plans provide strategies for the vehicle that drive it from an environment's initial location toward the goal location. We validate our method through extensive simulations involving the Tethys vehicle's kinematic model and incorporating actual ocean model prediction data.

13.
Sports Biomech ; : 1-18, 2021 Mar 05.
Article in English | MEDLINE | ID: mdl-33666149

ABSTRACT

Motion capture systems are used in the analysis and interpretation of athlete movement patterns for a variety of reasons, but data integrity remains critical regardless. The extent to which marker location or constraining degrees of freedom (DOF) in the biomechanical model impacts on this integrity lacks consensus. Ten elite academy footballers performed bilateral overhead squats using a marker-based motion capture system. Kinematic data were calculated using four different marker sets with 3DOF and 6DOF configurations for the three joint rotations of the right knee. Root mean squared error differences between marker sets ranged in the sagittal plane between 1.02 and 4.19 degrees to larger values in the frontal (1.30-6.39 degrees) and transverse planes (1.33 and 7.97 degrees). The cross-correlation function of the knee kinematic time series for all eight marker-sets ranged from excellent for sagittal plane motion (>0.99) but reduced for both coronal and transverse planes (<0.9). Two-way ANOVA repeated measures calculated at peak knee flexion revealed significant differences between marker sets for frontal and transverse planes (p < 0.05). Pairwise comparisons showed significant differences between some marker sets. Marker location and constraining DOF while measuring relatively large ranges of motion in this population are important considerations for data integrity.

14.
Zoology (Jena) ; 145: 125892, 2021 04.
Article in English | MEDLINE | ID: mdl-33550221

ABSTRACT

Geckos demonstrate flexible and agile locomotion on diverse terrains and surfaces. The lateral undulation pattern referring to the trunk-limbs coordination gives animals advantages in terms of motion speed, dynamical stability, and highly efficient movement. Quantitative analysis of the angular variables of the trunk and limbs was proposed to compare the kinematics of Gekko gecko on the vertical plane in the standing wave and traveling wave of lateral undulation patterns. Thirteen angular variables were measured to illustrate the kinematic characteristics of trunk flexion, girdles rotation, scapula rotation, trunk deflection, femoral/humeral protraction-retraction, abduction-adduction, and rotation around their axes, and knee/elbow flexion-extension. One-way analysis of variance (ANOVA) tested for mean differences between patterns for maximum value, minimum value, and range value of each angular variable. The geckos adapted to the changes in locomotion velocity by dynamically adjusting the joints angular variables. Twenty of the thirty-nine angular values showed a significant pattern effect that presented the variation of angular values or the timing of the peak of the angle curve in two different lateral undulation patterns. The climbing stability of a gecko is tightly associated with the coordination between the body and the limbs.


Subject(s)
Lizards/physiology , Motor Activity/physiology , Adaptation, Physiological , Animals , Biomechanical Phenomena , Computer Simulation , Joints , Models, Biological , Range of Motion, Articular
15.
J Biomech Eng ; 143(6)2021 06 01.
Article in English | MEDLINE | ID: mdl-33537720

ABSTRACT

This paper presents a complete kinematic model of the tibiofemoral joint (TFJ) based on a RRPP + 4-SPS parallel mechanism, where R, P, and S stand for revolute, prismatic, and spherical joints, respectively. The model accounts for the contact between tibia and femur, and the four major ligaments: anterior cruciate, posterior cruciate, medial collateral, and lateral collateral, with anatomical significance in their length variations. An experimental flexion passive motion task is performed, and the kinematic model is tested to determine its capability to reproduce the workspace of the motion task. In addition, an optimization process is performed to simulate prescribed ligament length variations during the motion task. The proposed kinematic model is capable to reproduce with high accuracy an experimental three-dimensional workspace, and at the same time, to simulate prescribed ligament length variation during the spatial flexion task. Prescribed ligament length variations are achieved through an optimization process of the ligament insertion points. This model can be used to improve the multibody kinematic optimization (MKO) process during gait analysis, and also in the design of rehabilitation devices as well as trajectories to accelerate the recovery of injured ligaments. The model shows potential to predict ligament length variations during different motion tasks, and can serve as a basis to develop complex models for kinetostatic and dynamic analyses without dealing with computationally expensive models.


Subject(s)
Knee Joint
16.
Sensors (Basel) ; 21(2)2021 Jan 13.
Article in English | MEDLINE | ID: mdl-33450931

ABSTRACT

To provide effective diagnosis and rehabilitation, the evaluation of joint moments during sit-to-stand is essential. The conventional systems for the evaluation, which use motion capture cameras, are quite accurate. However, the systems are not widely used in clinics due to their high cost, inconvenience, and the fact they require lots of space. To solve these problems, some studies have attempted to use inertial sensors only, but they were still inconvenient and inaccurate with asymmetric weight-bearing. We propose a novel joint moment estimation system that can evaluate both symmetric and asymmetric sit-to-stands. To make a simplified system, the proposal is based on a kinematic model that estimates segment angles using a single inertial sensor attached to the shank and a force plate. The system was evaluated with 16 healthy people through symmetric and asymmetric weight-bearing sit-to-stand. The results showed that the proposed system (1) has good accuracy in estimating joint moments (root mean square error < 0.110 Nm/kg) with high correlation (correlation coefficient > 0.99) and (2) is clinically relevant due to its simplicity and applicability of asymmetric sit-to-stand.


Subject(s)
Joints , Lower Extremity , Movement , Adult , Biomechanical Phenomena , Humans , Knee Joint , Weight-Bearing
17.
Front Chem ; 9: 816553, 2021.
Article in English | MEDLINE | ID: mdl-35047484

ABSTRACT

Mechanochemistry utilizes mechanical forces to activate chemical bonds. It offers environmentally benign routes for both (bio) organic and inorganic syntheses. However, direct comparison of mechanochemistry results is often very challenging. In mechanochemical synthetic protocols, ball mill setup (mechanical design and grinding vessel geometry) in addition to experimental parameters (milling frequency, duration, ball count and size) vary broadly. This fact poses a severe issue to further progress in this exciting research area because ball mill setup and experimental parameters govern how much kinetic energy is transferred to a chemical reaction. In this work, we address the challenge of comparing mechanochemical reaction results by taking the energy dose provided by ball mills as a unified metric into account. In this quest, we applied kinematic modeling to two ball mills functioning under distinct working principles to express the energy dose as a mathematical function of the experimental parameters. By examining the effect of energy dose on the extent of the mechanocatalytic depolymerization (MCD) of lignocellulosic biomass (beechwood), we found linear correlations between yield of water-soluble products (WSP) and energy dose for both ball mills. Interestingly, when a substrate layer is formed on the grinding jar wall and/or grinding medium, a weak non-linear correlation between water-soluble products yield and energy dose is identified. We demonstrate that the chemical reaction's best utilization of kinetic energy is achieved in the linear regime, which presents improved WSP yields for given energy doses. In the broader context, the current analysis outlines the usefulness of the energy dose as a unified metric in mechanochemistry to further the understanding of reaction results obtained from different ball mills operating under varied experimental conditions.

18.
Sensors (Basel) ; 20(13)2020 Jul 02.
Article in English | MEDLINE | ID: mdl-32630828

ABSTRACT

Due to the complex coupling motion of shoulder mechanism, only a small amount of quantitative information is available in the existing literature, although various kinematic models of the shoulder complex have been proposed. This study focused on the specific motion coupling relationship between glenohumeral (GH) joint center displacement variable quantity relative to the thorax coordinate system and humeral elevation angle to describe the shoulder complex. The mechanism model of shoulder complex was proposed with an algorithm designed. Subsequently, twelve healthy subjects performed right arm raising, lowering, as well as raising and lowering (RAL) movements in sixteen elevation planes, and the motion information of the markers attached to the thorax, scapula, and humerus was captured by using Vicon motion capturing system. Then, experimental data was processed and the generalized GH joint with floating center was quantized. Simultaneously, different coupling characteristics were detected during humerus raising as well as lowering movements. The motion coupling relationships in different phases were acquired, and a modified kinematic model was established, with the description of overall motion characteristics of shoulder complex validated by comparing the results with a prior kinematic model from literature, showing enough accuracy for the design of upper limb rehabilitation robots.


Subject(s)
Image Processing, Computer-Assisted , Models, Anatomic , Range of Motion, Articular , Shoulder Joint , Shoulder , Biomechanical Phenomena , Humans , Scapula
19.
Sensors (Basel) ; 20(3)2020 Feb 07.
Article in English | MEDLINE | ID: mdl-32046168

ABSTRACT

An accurate motion model and reliable measurements are required for autonomous underwater vehicle localization and navigation in underwater environments. However, without a propeller, underwater gliders have limited maneuverability and carrying capacity, which brings difficulties for modeling and measuring. In this paper, an extended Kalman filter (EKF)-based method, combining a modified kinematic model of underwater gliders with the travel-time differences between signals received from a single beacon, is proposed for estimating the glider positions in a predict-update cycle. First, to accurately establish a motion model for underwater gliders moving in the ocean, we introduce two modification parameters, the attack and drift angles, into a kinematic model of underwater gliders, along with depth-averaged current velocities. The attack and drift angles are calculated based on the coefficients of hydrodynamic forces and the sensor-measured angle variation over time. Then, instead of satisfying synchronization requirements, the travel-time differences between signals received from a single beacon, multiplied by the sound speed, are taken as the measurements. To further reduce the EKF estimation error, the Rauch-Tung-Striebel (RTS) smoothing method is merged into the EKF system. The proposed method is tested in a virtual spatiotemporal environment from an ocean model. The experimental results show that the performance of the RTS-EKF estimate is improved when compared with the motion model estimate, especially by 46% at the inflection point, at least in the particular study developed in this article.

20.
Front Robot AI ; 7: 119, 2020.
Article in English | MEDLINE | ID: mdl-33501285

ABSTRACT

Fabrication of soft pneumatic bending actuators typically involves multiple steps to accommodate the formation of complex internal geometry and the alignment and bonding between soft and inextensible materials. The complexity of these processes intensifies when applied to multi-chamber and small-scale (~10 mm diameter) designs, resulting in poor repeatability. Designs regularly rely on combining multiple prefabricated single chamber actuators or are limited to simple (fixed cross-section) internal chamber geometry, which can result in excessive ballooning and reduced bending efficiency, compelling the addition of constraining materials. In this work, we address existing limitations by presenting a single material molding technique that uses parallel cores with helical features. We demonstrate that through specific orientation and alignment of these internal structures, small diameter actuators may be fabricated with complex internal geometry in a single material-without- additional design-critical steps. The helix design produces wall profiles that restrict radial expansion while allowing compact designs through chamber interlocking, and simplified demolding. We present and evaluate three-chambered designs with varied helical features, demonstrating appreciable bending angles (>180°), three-dimensional workspace coverage, and three-times bodyweight carrying capability. Through application and validation of the constant curvature assumption, forward kinematic models are presented for the actuator and calibrated to account for chamber-specific bending characteristics, resulting in a mean model tip error of 4.1 mm. This simple and inexpensive fabrication technique has potential to be scaled in size and chamber numbers, allowing for application-specific designs for soft, high-mobility actuators especially for surgical, or locomotion applications.

SELECTION OF CITATIONS
SEARCH DETAIL