Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 60
Filter
Add more filters








Publication year range
1.
J Leukoc Biol ; 2024 Sep 25.
Article in English | MEDLINE | ID: mdl-39319406

ABSTRACT

A majority of genetically modified mice have been produced using 129 strain-derived embryonic stem cells (ESCs). Despite ample backcrosses with other strains, these may retain characteristic for 129 passenger mutations leading to confounding phenotypes unrelated to targeted genes. Here we show that widely used Ackr1-/-129ES mice have approximately 6Mb of the 129-derived genome retained adjacently to the Ackr1 locus on chromosome 1, including several characteristic polymorphisms. These most notably affect the expression of PYHIN and Fc-gamma receptor genes in myeloid cells resulting in the overproduction of IL-1ß by activated macrophages and the loss of Fc-gamma receptors on myeloid progenitor cells. Therefore, caution is warranted when interpreting Ackr1-/-129ES mouse phenotypes as being solely due to the ACKR1 deficiency. Our findings call for a careful reevaluation of data from previous studies using Ackr1-/-129ES mice and underscore the limitations and pitfalls inherent to mouse models produced using traditional genetic engineering techniques involving 129 ESCs.

2.
J Neurosci ; 44(27)2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38830762

ABSTRACT

Neurons are highly polarized cells that are composed of a single axon and multiple dendrites. Axon-dendrite polarity is essential for proper tissue formation and brain functions. Intracellular protein transport plays an important role in the establishment of neuronal polarity. However, the regulatory mechanism of polarized transport remains unclear. Here, we show that Rab6, a small GTPase that acts on the regulation of intracellular vesicular trafficking, plays key roles in neuronal polarization and brain development. Central nervous system-specific Rab6a/b double knock-out (Rab6 DKO) mice of both sexes exhibit severe dysplasia of the neocortex and the cerebellum. In the Rab6 DKO neocortex, impaired axonal extension of neurons results in hypoplasia of the intermediate zone. In vitro, deletion of Rab6a and Rab6b in cultured neurons from both sexes causes the abnormal accumulation of synaptic vesicle precursors (SVPs) adjacent to the Golgi apparatus, which leads to defects in axonal extension and the loss of axon-dendrite polarity. Moreover, Rab6 DKO causes significant expansion of lysosomes in the soma in neurons. Overall, our results reveal that Rab6-mediated polarized transport of SVPs is crucial for neuronal polarization and subsequent brain formation.


Subject(s)
Brain , Cell Polarity , Mice, Knockout , Neurons , Synaptic Vesicles , rab GTP-Binding Proteins , Animals , Cell Polarity/physiology , Mice , rab GTP-Binding Proteins/metabolism , rab GTP-Binding Proteins/genetics , Neurons/metabolism , Female , Male , Synaptic Vesicles/metabolism , Brain/metabolism , Brain/embryology , Brain/cytology , Cells, Cultured
3.
Neuroscience ; 540: 117-127, 2024 Mar 05.
Article in English | MEDLINE | ID: mdl-38278472

ABSTRACT

Ethanol is one of the most commonly used and abused substances in the world. While the behavioral effects of ethanol are well characterized, mechanisms of its action on neurons and synapses remain elusive. Prior research suggested that ethanol could affect neurons by interfering with metabolism of biologically active molecules, such as adenosine. Here, we explored the involvement of adenosine A1 receptors (A1R) in mediating ethanol's effects on synaptic transmission to layer 2/3 pyramidal neurons of visual cortex using wild type (WT) and A1R knock-out (KO) mice. Ethanol differentially affected excitatory and inhibitory transmission in WT and KO mice. In slices from WT mice ethanol had heterogeneous effects on excitatory transmission (facilitation, suppression or no change), with no net change. Ethanol's effects remained heterogeneous during acute blockade of A1Rs with a selective antagonist DPCPX. However, in A1RKO mice ethanol consistently suppressed excitatory transmission, with no cases of enhancement observed. Inhibitory transmission was suppressed by ethanol in both WT and A1RKO mice. At both excitatory and inhibitory synapses, changes of response amplitude correlated with changes of paired-pulse ratio, suggesting involvement of presynaptic mechanisms. We conclude that A1Rs are not involved in mediating effects of ethanol on synaptic transmission in mouse visual cortex. However, A1Rs are necessary for development of mechanisms mediating facilitation at some excitatory synapses. Our results add evidence for the diversity of ethanol's effects and mechanisms of action on synaptic transmission in different brain structures, and even in the same brain area (visual cortex) in different species, rats vs mice.


Subject(s)
Ethanol , Visual Cortex , Rats , Mice , Animals , Ethanol/pharmacology , Adenosine/metabolism , Mice, Knockout , Synaptic Transmission/physiology , Synapses/metabolism , Receptors, Purinergic P1/metabolism , Visual Cortex/physiology
4.
Microsc Res Tech ; 87(4): 854-866, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38115643

ABSTRACT

Genetically engineered mouse models have the potential to unravel fundamental biological processes and provide mechanistic insights into the pathogenesis of human diseases. We have previously observed that germline genetic variation at the TULP4 locus influences clinical characteristics in patients with myeloproliferative neoplasms. To elucidate the role of TULP4 in pathological and physiological processes in vivo, we generated a Tulp4 knockout mouse model. Systemic Tulp4 deficiency exerted a strong impact on embryonic development in both Tulp4 homozygous null (Tulp4-/-) and heterozygous (Tulp4+/-) knockout mice, the former exhibiting perinatal lethality. High-resolution episcopic microscopy (HREM) of day 14.5 embryos allowed for the identification of multiple developmental defects in Tulp4-/- mice, including severe heart defects. Moreover, in Tulp4+/- embryos HREM revealed abnormalities of several organ systems, which per se do not affect prenatal or postnatal survival. In adult Tulp4+/- mice, extensive examinations of hematopoietic and cardiovascular features, involving histopathological surveys of multiple tissues as well as blood counts and immunophenotyping, did not provide evidence for anomalies as observed in corresponding embryos. Finally, evaluating a potential obesity-related phenotype as reported for other TULP family members revealed a trend for increased body weight of Tulp4+/- mice. RESEARCH HIGHLIGHTS: To study the role of the TULP4 gene in vivo, we generated a Tulp4 knockout mouse model. Correlative analyses involving HREM revealed a strong impact of Tulp4 deficiency on murine embryonic development.


Subject(s)
Embryonic Development , Intracellular Signaling Peptides and Proteins , Adult , Female , Pregnancy , Humans , Animals , Mice , Disease Models, Animal , Immunophenotyping , Mice, Knockout , Phenotype
5.
Brain ; 2023 Dec 11.
Article in English | MEDLINE | ID: mdl-38079473

ABSTRACT

Myelination enables electrical impulses to propagate on axons at the highest speed, encoding essential life functions. The Rho family GTPases, RAC1 and CDC42, have been shown to critically regulate Schwann cell myelination. P21-activated kinase 2 (PAK2) is an effector of RAC1/CDC42, but its specific role in myelination remains undetermined. We produced a Schwann cell-specific knockout mouse of Pak2 (scPak2-/-) to evaluate PAK2's role in myelination. Deletion of Pak2 specifically in mouse Schwann cells resulted in severe hypomyelination, slowed nerve conduction velocity, and behavior dysfunctions in the scPak2-/- peripheral nerve. Many Schwann cells in scPak2-/-sciatic nerves were arrested at the stage of axonal sorting. These abnormalities were rescued by reintroducing Pak2, but not the kinase-dead mutation of Pak2, via lentivirus delivery to scPak2-/- Schwann cells in vivo. Moreover, ablation of Pak2 in Schwann cells blocked the promyelinating effect driven by neuregulin-1, prion protein, and inactivated RAC1/CDC42. Conversely, the ablation of Pak2 in neurons exhibited no phenotype. Such PAK2 activity can also be either enhanced or inhibited by different myelin lipids. We have identified a novel promyelinating factor, PAK2, that acts as a critical convergence point for multiple promyelinating signaling pathways. The promyelination by PAK2 is Schwann cell-autonomous. Myelin lipids, identified as inhibitors or activators of PAK2, may be utilized to develop therapies for repairing abnormal myelin in peripheral neuropathies.

6.
Front Neurosci ; 17: 1275959, 2023.
Article in English | MEDLINE | ID: mdl-37901434

ABSTRACT

The lysosomal protein TMEM106B was identified as a risk modifier of multiple dementias including frontotemporal dementia and Alzheimer's disease. The gene comes in two major haplotypes, one associated with disease risk, and by comparison, the other with resilience. Only one coding polymorphism distinguishes the two alleles, a threonine-to-serine substitution at residue 185 (186 in mouse), that is inherited in disequilibrium with multiple non-coding variants. Transcriptional studies suggest synaptic, neuronal, and cognitive preservation in human subjects with the protective haplotype, while murine in vitro studies reveal dramatic effects of TMEM106B deletion on neuronal development. Despite this foundation, the field has not yet resolved whether coding variant is biologically meaningful, and if so, whether it has any specific effect on neuronal phenotypes. Here we studied how loss of TMEM106B or expression of the lone coding variant in isolation affected transcriptional signatures in the mature brain and neuronal structure during development in primary neurons. Homozygous expression of the TMEM106B T186S variant in knock-in mice increased cortical expression of genes associated with excitatory synaptic function and axon outgrowth, and promoted neurite branching, dendritic spine density, and synaptic density in primary hippocampal neurons. In contrast, constitutive TMEM106B deletion affected transcriptional signatures of myelination without altering neuronal development in vitro. Our findings show that the T186S variant is functionally relevant and may contribute to disease resilience during neurodevelopment.

7.
Adv Exp Med Biol ; 1415: 335-340, 2023.
Article in English | MEDLINE | ID: mdl-37440053

ABSTRACT

Late-onset retinal degeneration (L-ORD) is an autosomal dominant macular dystrophy resulting from mutations in the gene CTRP5/C1QTNF5. A mouse model (Ctrp5+/-) for the most common S163R developed many features of human clinical disease. We generated a novel homozygous Ctrp5 gene knock-out (Ctrp5-/-) mouse model to further study the mechanism of L-ORD. The retinal morphology of these mice was evaluated by retinal imaging, light microscopy, and transmission electron microscopy (TEM) at 6, 11, and 18.5 mo. Expression of Ctrp5 was analyzed using immunostaining and qRT-PCR. The Ctrp5-/- mice showed lack of both Ctrp5 transcript and protein. Presence of a significantly larger number of autofluorescent spots was observed in Ctrp5-/- mice compared to the WT (P < 0.0001) at 19 mo. Increased RPE stress with vacuolization and thinning was observed as early as 6 mo in Ctrp5-/- mice. Further, ultrastructural analyses revealed a progressive accumulation of basal laminar sub-RPE deposits in Ctrp5-/- mice from 11 mo. The Ctrp5-/- mice shared retinal and RPE pathology that matches with that previously described for Ctrp5+/- mice suggesting that pathology in these mice results from the loss of functional CTRP5 and that the presence of CTRP5 is critical for normal RPE and retinal function.


Subject(s)
Macular Degeneration , Retinal Degeneration , Mice , Humans , Animals , Retinal Degeneration/pathology , Retina/pathology , Macular Degeneration/pathology , Mutation , Retinal Pigment Epithelium/pathology
8.
Biochem Biophys Res Commun ; 674: 83-89, 2023 09 24.
Article in English | MEDLINE | ID: mdl-37413709

ABSTRACT

The transcriptional regulators that drive regulatory T (Treg) cell development and function remain partially understood. Helios (Ikzf2) and Eos (Ikzf4) are closely-related members of the Ikaros family of transcription factors. They are highly expressed in CD4+ Treg cells and functionally important for Treg cell biology, as mice deficient for either Helios or Eos are susceptible to autoimmune diseases. However, it remains unknown if these factors exhibit specific or partially redundant functions in Treg cells. Here we show that mice with germline deletions of both Ikzf2 and Ikzf4 are not very different from animals with single Ikzf2 or Ikzf4 deletions. Double knockout Treg cells differentiate normally, and efficiently suppress effector T cell proliferation in vitro. Both Helios and Eos are required for optimal Foxp3 protein expression. Surprisingly, Helios and Eos regulate different, largely non-overlapping, sets of genes. Only Helios is required for proper Treg cell aging, as Helios deficiency results in reduced Treg cell frequencies in the spleen of older animals. These results indicate that Helios and Eos are required for distinct aspects of Treg cell function.


Subject(s)
Ikaros Transcription Factor , T-Lymphocytes, Regulatory , Animals , Mice , Autoimmune Diseases/genetics , Disease Susceptibility/metabolism , Forkhead Transcription Factors/metabolism , Ikaros Transcription Factor/genetics , Ikaros Transcription Factor/metabolism , Transcription Factors/metabolism
9.
Bone Rep ; 18: 101672, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37064000

ABSTRACT

Lead (Pb) toxicity is a major health problem and bone is the major reservoir. Lead is detrimental to bone, affects bone remodeling and is associated with elderly fractures. Osteocalcin (OC) affects bone remodeling, improves fracture resistance and decreases with age and in some diseases. The effect of lead in osteocalcin depleted bone is unknown and of interest. We compared bone mineral properties of control and Pb exposed (from 2 to 6 months) femora from female adult C57BL6 OC+/+ and OC-/- mice using Fourier Transform Infrared Imaging (FTIRI), Micro-computed tomography (uCT), bone biomechanical measurements and serum turnover markers (P1NP, CTX). Lead significantly increased turnover in OC+/+ and in OC-/- bones producing increased total volume, area and marrow area/total area with decreased BV/TV compared to controls. The increased turnover decreased mineral/matrix vs. Oc+/+ and increased mineral/matrix and crystallinity vs. OC-/-. PbOC-/- had increased bone formation, cross-sectional area (Imin) and decreased collagen maturity compared OC-/- and PbOC+/+. Imbalanced turnover in PbOC-/- confirmed the role of osteocalcin as a coupler of formation and resorption. Bone strength and stiffness were reduced in OC-/- and PbOC-/- due to reduced material properties vs. OC+/+ and PbOC+/+ respectively. The PbOC-/- bones had increased area to compensate for weaker material properties but were not proportionally stronger for increased size. However, at low lead levels osteocalcin plays the major role in bone strength suggesting increased fracture risk in low Pb2+ exposed elderly could be due to reduced osteocalcin as well. Years of low lead exposure or higher blood lead levels may have an additional effect on bone strength.

10.
Life (Basel) ; 12(11)2022 Oct 28.
Article in English | MEDLINE | ID: mdl-36362885

ABSTRACT

Angiogenesis is a process to generate new blood vessels from pre-existing vessels and to maintain vessels, and plays critical roles in normal development and disease. However, the molecular mechanisms underlying angiogenesis are not fully understood. This study examined the roles of exocyst complex component (Exoc) 3-like 2 (Exoc3l2) during development in mice. We found that Exoc3l1, Exoc3l2, Exoc3l3 and Exoc3l4 are expressed abundantly in endothelial cells at embryonic day 8.5. The generation of Exoc3l2 knock-out (KO) mice showed that disruption of Exoc3l2 resulted in lethal in utero. Substantial numbers of Exoc3l2 KO embryos exhibited hemorrhaging. Deletion of Exoc3l2 using Tie2-Cre transgenic mice demonstrated that Exoc3l2 in hematopoietic and endothelial lineages was responsible for the phenotype. Taken together, these findings reveal that Exoc3l2 is essential for cardiovascular and brain development in mice.

11.
J Biomed Sci ; 29(1): 64, 2022 Sep 04.
Article in English | MEDLINE | ID: mdl-36058931

ABSTRACT

O-GlcNAcylation corresponds to the addition of N-Acetylglucosamine (GlcNAc) on serine or threonine residues of cytosolic, nuclear and mitochondrial proteins. This reversible modification is catalysed by a unique couple of enzymes, O-GlcNAc transferase (OGT) and O-GlcNAcase (OGA). OGT uses UDP-GlcNAc produced in the hexosamine biosynthesis pathway, to modify proteins. UDP-GlcNAc is at the cross-roads of several cellular metabolisms, including glucose, amino acids and fatty acids. Therefore, OGT is considered as a metabolic sensor that post-translationally modifies proteins according to nutrient availability. O-GlcNAcylation can modulate protein-protein interactions and regulate protein enzymatic activities, stability or subcellular localization. In addition, it can compete with phosphorylation on the same serine or threonine residues, or regulate positively or negatively the phosphorylation of adjacent residues. As such, O-GlcNAcylation is a major actor in the regulation of cell signaling and has been implicated in numerous physiological and pathological processes. A large body of evidence have indicated that increased O-GlcNAcylation participates in the deleterious effects of glucose (glucotoxicity) in metabolic diseases. However, recent studies using mice models with OGT or OGA knock-out in different tissues have shown that O-GlcNAcylation protects against various cellular stresses, and indicate that both increase and decrease in O-GlcNAcylation have deleterious effects on the regulation of energy homeostasis.


Subject(s)
Acetylglucosamine , N-Acetylglucosaminyltransferases , Acetylglucosamine/metabolism , Animals , Glucose , Homeostasis , Mice , Mice, Knockout , N-Acetylglucosaminyltransferases/genetics , N-Acetylglucosaminyltransferases/metabolism , Proteins , Serine , Threonine , Uridine Diphosphate
12.
Turk J Biol ; 45(5): 588-598, 2021.
Article in English | MEDLINE | ID: mdl-34803456

ABSTRACT

Bex2 is well known for its role in the nervous system, and is associated with neurological disorders, but its role in the lung's physiology is still not reported. To elucidate the functional role of Bex2 in the lung, we generated a Bex2 knock-out (KO) mouse model using the CRISPR-Cas9 technology and performed transcriptomic analysis. A total of 652 genes were identified as differentially expressed between Bex2 -/- and Bex2 +/+ mice, out of which 500 were downregulated, while 152 were upregulated genes. Among these DEGs, Ucp1, Myh6, Coxa7a1, Myl3, Ryr2, RNaset2b, Npy, Enob1, Krt5, Myl2, Hba-a2, and Nrob2 are the most prominent genes. Myl2, was the most downregulated gene, followed by Npy, Hba-a2, Rnaset2b, nr0b2, Klra8, and Ucp1. Tcte3, Eno1b, Zfp990, and Pcdha9 were the most upregulated DEGs. According to gene enrichment analysis, PPAR pathway, cardiac muscle contraction, and cytokine-cytokine receptor interaction were the most enriched pathways. Besides, the nuclear factor-κB signaling pathway and hematopoietic cell linage pathways were also enriched. Chronic obstructive pulmonary disease (COPD) is enriched among KEGG disease pathways. RT-qPCR assays confirmed the RNA-Seq results. This study opens a new window toward the biological functions of Bex2 in different systems.

13.
Cells ; 10(9)2021 09 08.
Article in English | MEDLINE | ID: mdl-34571997

ABSTRACT

Acetylation is a post-translational modification that regulates the activity of enzymes fundamentally involved in cellular and mitochondrial bioenergetic metabolism. NAD+ dependent deacetylase sirtuin 3 (SIRT3) is localized to mitochondria where it plays a key role in regulating acetylation of TCA cycle enzymes and the mitochondrial respiratory complexes. Although the SIRT3 target proteins in mitochondria have been identified, the effect of SIRT3 activity on mitochondrial glucose metabolism in the brain remains elusive. The impact of abolished SIRT3 activity on glucose metabolism was determined in SIRT3 knockout (KO) and wild type (WT) mice injected with [1,6-13C]glucose using ex vivo 13C-NMR spectroscopy. The 1H-NMR spectra and amino acid analysis showed no differences in the concentration of lactate, glutamate, alanine, succinate, or aspartate between SIRT3 KO and WT mice. However, glutamine, total creatine (Cr), and GABA were lower in SIRT3 KO brain. Incorporation of label from [1,6-13C]glucose metabolism into lactate or alanine was not affected in SIRT3 KO brain. However, the incorporation of the label into all isotopomers of glutamate, glutamine, GABA and aspartate was lower in SIRT3 KO brain, reflecting decreased activity of mitochondrial and TCA cycle metabolism in both neurons and astrocytes. This is most likely due to hyperacetylation of mitochondrial enzymes due to suppressed SIRT3 activity in the brain of SIRT3 KO mice. Thus, the absence of Sirt3 results in impaired mitochondrial oxidative energy metabolism and neurotransmitter synthesis in the brain. Since the SIRT3 activity is NAD+ dependent, these results might parallel changes in glucose metabolism under pathologic reduction in mitochondrial NAD+ pools.


Subject(s)
Brain/metabolism , Carbohydrate Metabolism/physiology , Glucose/metabolism , Sirtuin 3/metabolism , Acetylation , Animals , Astrocytes/metabolism , Energy Metabolism/physiology , Female , Glutamic Acid/metabolism , Glutamine/metabolism , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Mitochondria/metabolism , Neurons/metabolism , Neurotransmitter Agents/metabolism , Protein Processing, Post-Translational/physiology
14.
Int J Mol Sci ; 22(15)2021 Jul 23.
Article in English | MEDLINE | ID: mdl-34360670

ABSTRACT

BACKGROUND AND AIMS: Fibroblast growth factor (FGF) 21 has recently been shown to play a potential role in bile acid metabolism. We aimed to investigate the FGF21 response in an ethanol-induced acute-on-chronic liver injury (ACLI) model in Abcb4-/- mice with deficiency of the hepatobiliary phospholipid transporter. METHODS: Total RNA was extracted from wild-type (WT, C57BL/6J) and Abcb4-/- (KO) mice, which were either fed a control diet (WT-Cont and KO-Cont groups; n = 28/group) or ethanol diet, followed by an acute ethanol binge (WT-EtOH and KO-EtOH groups; n = 28/group). A total of 58 human subjects were recruited into the study, including patients with alcohol-associated liver disease (AALD; n = 31) and healthy controls (n = 27). The hepatic and ileal expressions of genes involved in bile acid metabolism, plasma FGF levels, and bile acid and its precursors 7α- and 27-hydroxycholesterol (7α- and 27-OHC) concentrations were determined. Primary mouse hepatocytes were isolated for cell culture experiments. RESULTS: Alcohol feeding significantly induced plasma FGF21 and decreased hepatic Cyp7a1 levels. Hepatic expression levels of Fibroblast growth factor receptor 1 (Fgfr1), Fgfr4, Farnesoid X-activated receptor (Fxr), and Small heterodimer partner (Shp) and plasma FGF15/FGF19 levels did not differ with alcohol challenge. Exogenous FGF21 treatment suppressed Cyp7a1 in a dose-dependent manner in vitro. AALD patients showed markedly higher FGF21 and lower 7α-OHC plasma levels while FGF19 did not differ. CONCLUSIONS: The simultaneous upregulation of FGF21 and downregulation of Cyp7a1 expressions upon chronic plus binge alcohol feeding together with the invariant plasma FGF15 and hepatic Shp and Fxr levels suggest the presence of a direct regulatory mechanism of FGF21 on bile acid homeostasis through inhibition of CYP7A1 by an FGF15-independent pathway in this ACLI model. Lay Summary: Alcohol challenge results in the upregulation of FGF21 and repression of Cyp7a1 expressions while circulating FGF15 and hepatic Shp and Fxr levels remain constant both in healthy and pre-injured livers, suggesting the presence of an alternative FGF15-independent regulatory mechanism of FGF21 on bile acid homeostasis through the inhibition of Cyp7a1.


Subject(s)
ATP Binding Cassette Transporter, Subfamily B/physiology , Acute-On-Chronic Liver Failure/pathology , Bile Acids and Salts/metabolism , Cholesterol 7-alpha-Hydroxylase/metabolism , Fibroblast Growth Factors/metabolism , Hepatocytes/pathology , Receptors, Cytoplasmic and Nuclear/metabolism , Acute-On-Chronic Liver Failure/metabolism , Animals , Case-Control Studies , Cholesterol 7-alpha-Hydroxylase/genetics , Female , Fibroblast Growth Factors/genetics , Hepatocytes/metabolism , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Receptors, Cytoplasmic and Nuclear/genetics , ATP-Binding Cassette Sub-Family B Member 4
15.
BMC Genom Data ; 22(1): 23, 2021 06 30.
Article in English | MEDLINE | ID: mdl-34193044

ABSTRACT

BACKGROUND: MicroRNAs (miRNAs) are short (20-24 nt) non-coding RNAs that are involved in post-transcriptional regulation of gene expression in multicellular organisms by affecting both the stability and translation of mRNAs. One of the miRNAs that has been shown to play a role in various pathologies like cancer, neurological disorders and cardiovascular diseases is miRNA-26b. However, these studies only demonstrated rather ambiguous associations without revealing a causal relationship. Therefore, the aim of this study is to establish and validate a mouse model which enables the elucidation of the exact role of miRNA-26b in various pathologies. RESULTS: A miRNA-26b-deficient mouse model was established using homologous recombination and validated using PCR. miRNA-26b-deficient mice did not show any physiological abnormalities and no effects on systemic lipid levels, blood parameters or tissue leukocytes. Using next generation sequencing, the gene expression patterns in miRNA-26b-deficient mice were analyzed and compared to wild type controls. This supported the already suggested role of miRNA-26b in cancer and neurological processes, but also revealed novel associations of miRNA-26b with thermogenesis and allergic reactions. In addition, detailed analysis identified several genes that seem to be highly regulated by miRNA-26b, which are linked to the same pathological conditions, further confirming the role of miRNA-26b in these pathologies and providing a strong validation of our mouse model. CONCLUSIONS: miRNA-26b plays an important role in various pathologies, although causal relationships still have to be established. The described mouse model of miRNA-26b deficiency is a crucial first step towards the identification of the exact role of miRNA-26b in various diseases that could identify miRNA-26b as a promising novel diagnostic or even therapeutic target in a broad range of pathologies.


Subject(s)
MicroRNAs , Neoplasms , Transcriptome , Animals , Disease Models, Animal , High-Throughput Nucleotide Sequencing , Mice , MicroRNAs/genetics , RNA, Messenger
16.
Free Radic Biol Med ; 162: 149-159, 2021 01.
Article in English | MEDLINE | ID: mdl-32092412

ABSTRACT

During red blood cell (RBC) lysis hemoglobin and heme leak out of the cells and cause damage to the endothelium and nearby tissue. Protective mechanisms exist; however, these systems are not sufficient in diseases with increased extravascular hemolysis e.g. hemolytic anemia. α1-microglobulin (A1M) is a ubiquitous reductase and radical- and heme-binding protein with antioxidation properties. Although present in the circulation in micromolar concentrations, its function in blood is unclear. Here, we show that A1M provides RBC stability. A1M-/- mice display abnormal RBC morphology, reminiscent of macrocytic anemia conditions, i.e. fewer, larger and more heterogeneous cells. Recombinant human A1M (rA1M) reduced in vitro hemolysis of murine RBC against spontaneous, osmotic and heme-induced stress. Moreover, A1M is taken up by human RBCs both in vitro and in vivo. Similarly, rA1M also protected human RBCs against in vitro spontaneous, osmotic, heme- and radical-induced hemolysis as shown by significantly reduced leakage of hemoglobin and LDH. Addition of rA1M resulted in decreased hemolysis compared to addition of the heme-binding protein hemopexin and the radical-scavenging and reducing agents ascorbic acid and Trolox (vitamin E). Furthermore, rA1M significantly reduced spontaneous and heme-induced fetal RBC cell death. Addition of A1M to human whole blood resulted in a significant reduction of hemolysis, whereas removal of A1M from whole blood resulted in increased hemolysis. We conclude that A1M has a protective function in reducing hemolysis which is neither specific to the origin of hemolytic insult, nor species specific.


Subject(s)
Anemia, Macrocytic , Hemolysis , Alpha-Globulins , Animals , Cell Death , Erythrocytes , Humans , Mice , Mice, Knockout , Phenotype
17.
Elife ; 92020 09 15.
Article in English | MEDLINE | ID: mdl-32930093

ABSTRACT

Maintenance of skeletal muscle is beneficial in obesity and Type 2 diabetes. Mechanical stimulation can regulate skeletal muscle differentiation, growth and metabolism; however, the molecular mechanosensor remains unknown. Here, we show that SWELL1 (Lrrc8a) functionally encodes a swell-activated anion channel that regulates PI3K-AKT, ERK1/2, mTOR signaling, muscle differentiation, myoblast fusion, cellular oxygen consumption, and glycolysis in skeletal muscle cells. LRRC8A over-expression in Lrrc8a KO myotubes boosts PI3K-AKT-mTOR signaling to supra-normal levels and fully rescues myotube formation. Skeletal muscle-targeted Lrrc8a KO mice have smaller myofibers, generate less force ex vivo, and exhibit reduced exercise endurance, associated with increased adiposity under basal conditions, and glucose intolerance and insulin resistance when raised on a high-fat diet, compared to wild-type (WT) mice. These results reveal that the LRRC8 complex regulates insulin-PI3K-AKT-mTOR signaling in skeletal muscle to influence skeletal muscle differentiation in vitro and skeletal myofiber size, muscle function, adiposity and systemic metabolism in vivo.


Skeletal muscles ­ the force-generating tissue attached to bones ­ must maintain their mass and health for the body to work properly. It is therefore necessary to understand how an organism can regulate the way skeletal muscles form, grow and heal. A multitude of factors can control how muscles form, including mechanical signals. The molecules that can sense these mechanical stimuli, however, remain unknown. Mechanoresponsive ion channels provide possible candidates for these molecular sensors. These proteins are studded through the cell membranes, where they can respond to mechanical changes by opening and allowing the flow of ions in and out of a cell, or by changing interactions with other proteins. The SWELL1 protein is a component of an ion channel known as VRAC, which potentially responds to mechanical stimuli. This channel is associated with many biological processes such as cells multiplying, migrating, growing and dying, but it is still unclear how. Here, Kumar et al. first tested whether SWELL1 controls how skeletal muscle precursors mature into their differentiated and functional form. These experiments showed that SWELL1 regulates this differentiation process under the influence of the hormone insulin, as well as mechanical signals such as cell stretching. In addition, this work revealed that SWELL1 relies on an adaptor molecule called GRB2 to relay these signals in the cell. Next, Kumar et al. genetically engineered mice lacking SWELL1 only in skeletal muscle. These animals had smaller muscle cells, as well as muscles that were weaker and less enduring. When raised on a high-calorie diet, the mutant mice also got more obese and developed resistance to insulin, which is an important step driving obesity-induced diabetes. Together, these findings show that SWELL1 helps to regulate the formation and function of muscle cells, and highlights how an ion channel participates in these processes. Healthy muscles are key for overall wellbeing, as they also protect against obesity and obesity-related conditions such as type 2 diabetes or nonalcoholic fatty liver disease. This suggests that targeting SWELL1 could prove advantageous in a clinical setting.


Subject(s)
Adiposity/genetics , Glucose/metabolism , Membrane Proteins/genetics , Mice/physiology , Muscle, Skeletal/physiology , Signal Transduction/genetics , Animals , Cell Size , Female , Male , Membrane Proteins/metabolism , Mice/genetics , Muscle Cells
18.
eNeuro ; 7(4)2020.
Article in English | MEDLINE | ID: mdl-32788298

ABSTRACT

NETO2 is an auxiliary subunit for kainate-type glutamate receptors that mediate normal cued fear expression and extinction. Since the amygdala is critical for these functions, we asked whether Neto2-/- mice have compromised amygdala function. We measured the abundance of molecular markers of neuronal maturation and plasticity, parvalbumin-positive (PV+), perineuronal net-positive (PNN+), and double positive (PV+PNN+) cells in the Neto2-/- amygdala. We found that Neto2-/- adult, but not postnatal day (P)23, mice had 7.5% reduction in the fraction of PV+PNN+ cells within the total PNN+ population, and 23.1% reduction in PV staining intensity compared with Neto2+/+ mice, suggesting that PV interneurons in the adult Neto2-/- amygdala remain in an immature state. An immature PV inhibitory network would be predicted to lead to stronger amygdalar excitation. In the amygdala of adult Neto2-/- mice, we identified increased glutamatergic and reduced GABAergic transmission using whole-cell patch-clamp recordings. This was accompanied by increased spine density of thin dendrites in the basal amygdala (BA) compared with Neto2+/+ mice, indicating stronger glutamatergic synapses. Moreover, after fear acquisition Neto2-/- mice had a higher number of c-Fos-positive cells than Neto2+/+ mice in the lateral amygdala (LA), BA, and central amygdala (CE). Altogether, our findings indicate that Neto2 is involved in the maturation of the amygdala PV interneuron network. Our data suggest that this defect, together with other processes influencing amygdala principal neurons, contribute to increased amygdalar excitability, higher fear expression, and delayed extinction in cued fear conditioning, phenotypes that are common in fear-related disorders, including the posttraumatic stress disorder (PTSD).


Subject(s)
Fear , Receptors, Kainic Acid , Amygdala/metabolism , Animals , Interneurons/metabolism , Membrane Proteins , Mice , Parvalbumins/metabolism , Receptors, Kainic Acid/genetics , Receptors, Kainic Acid/metabolism
19.
Neuroimage ; 222: 116975, 2020 11 15.
Article in English | MEDLINE | ID: mdl-32474079

ABSTRACT

Life threatening fear after a single exposure evolves in a subset of vulnerable individuals to anxiety, which may persist for their lifetime. Yet neither the whole brain's response to innate acute fear nor how brain activity evolves over time is known. Sustained neuronal activity may be a factor in the development of a persistent fear response. We couple two experimental protocols to provoke acute fear leading to prolonged fear: Predator stress (PS), a naturalistic approach to induce fear in rodents; and Serotonin transporter knockout mouse (SERT-KO) that responds to PS with sustained defensive behavior. Behavior was monitored before, during and at short and long times after PS in wild type (WT) and SERT-KO mice. Both genotypes responded to PS with defensive behavior. SERT-KO retained defensive behavior for 23 days, while WT mice returned to baseline exploratory behavior by 9 days. Thus, differences in neural activity between WT and SERT-KO 9 days after PS identifies neural correlates of persistent defensive behavior, in mice. We used longitudinal manganese-enhanced magnetic resonance imaging (MEMRI) to identify brain-wide neural activity associated with different behaviors. Mn2+ accumulation in active neurons occurs in awake, behaving mice and is retrospectively imaged. Following the same two cohorts of mice, WT and SERT-KO, longitudinally allowed unbiased quantitative comparisons of brain-wide activity by statistical parametric mapping (SPM). During natural behavior in WT, only low levels of activity-induced Mn2+-accumulation were detected, while much more accumulation appeared immediately after PS in both WT and SERT-KO, and evolved at 9 days to a new activity pattern (p < 0.0001, uncorr., T = 5.4). Patterns of accumulation differed between genotypes, with more regions of the brain and larger volumes within regions involved in SERT-KO than WT. A new computational segmentation analysis, using our InVivo Atlas based on a manganese-enhanced MR image of a living mouse, revealed dynamic changes in the volume of significantly enhanced voxels within each segment that differed between genotypes across 45 of 87 segmented regions. At Day 9 after PS, the striatum and ventral pallidum were active in both genotypes but more so in the SERT-KO. SERT-KO also displayed sustained or increased volume of Mn2+ accumulations between Post-Fear and Day 9 in eight segments where activity was decreased or silenced in WT. C-fos staining, an alternative neural activity marker, of brains from the same mice fixed at conclusion of imaging sessions confirmed that MEMRI detected active neurons. Intensity measurements in 12 regions of interest (ROIs) supported the SPM results. Between group comparisons by SPM and of ROI measurements identified specific regions differing between time points and genotypes. We report brain-wide activity in response to a single exposure of acute fear, and, for the first time, its evolution to new activity patterns over time in individuals vulnerable to persistent fear. Our results show multiple regions with dynamic changes in neural activity and that the balance of activity between segments is disordered in the SERT-KO. Thus, longitudinal MEMRI represents a powerful approach to discover how brain-wide activity evolves from the natural state either after an experience or during a disease process.


Subject(s)
Behavior, Animal/physiology , Brain/physiology , Fear/physiology , Magnetic Resonance Imaging , Manganese , Neuroimaging , Stress, Psychological/physiopathology , Animals , Brain/diagnostic imaging , Corpus Striatum/diagnostic imaging , Corpus Striatum/physiology , Humans , Image Enhancement , Magnetic Resonance Imaging/methods , Mice , Mice, Inbred C57BL , Mice, Knockout , Neuroimaging/methods , Serotonin Plasma Membrane Transport Proteins/deficiency , Stress, Psychological/diagnostic imaging
20.
Int J Mol Sci ; 21(8)2020 Apr 22.
Article in English | MEDLINE | ID: mdl-32331416

ABSTRACT

Kv1.1 belongs to the Shaker subfamily of voltage-gated potassium channels and acts as a critical regulator of neuronal excitability in the central and peripheral nervous systems. KCNA1 is the only gene that has been associated with episodic ataxia type 1 (EA1), an autosomal dominant disorder characterized by ataxia and myokymia and for which different and variable phenotypes have now been reported. The iterative characterization of channel defects at the molecular, network, and organismal levels contributed to elucidating the functional consequences of KCNA1 mutations and to demonstrate that ataxic attacks and neuromyotonia result from cerebellum and motor nerve alterations. Dysfunctions of the Kv1.1 channel have been also associated with epilepsy and kcna1 knock-out mouse is considered a model of sudden unexpected death in epilepsy. The tissue-specific association of Kv1.1 with other Kv1 members, auxiliary and interacting subunits amplifies Kv1.1 physiological roles and expands the pathogenesis of Kv1.1-associated diseases. In line with the current knowledge, Kv1.1 has been proposed as a novel and promising target for the treatment of brain disorders characterized by hyperexcitability, in the attempt to overcome limited response and side effects of available therapies. This review recounts past and current studies clarifying the roles of Kv1.1 in and beyond the nervous system and its contribution to EA1 and seizure susceptibility as well as its wide pharmacological potential.


Subject(s)
Channelopathies/etiology , Channelopathies/therapy , Genetic Predisposition to Disease , Kv1.1 Potassium Channel/genetics , Mutation , Alleles , Animals , Channelopathies/diagnosis , Channelopathies/metabolism , Disease Management , Gene Expression Regulation , Genetic Association Studies , Genotype , Humans , Ion Channel Gating , Kv1.1 Potassium Channel/chemistry , Kv1.1 Potassium Channel/metabolism , Molecular Targeted Therapy , Phenotype , Structure-Activity Relationship
SELECTION OF CITATIONS
SEARCH DETAIL