Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 332
Filter
2.
Food Chem ; 460(Pt 2): 140622, 2024 Jul 24.
Article in English | MEDLINE | ID: mdl-39089014

ABSTRACT

Tryptamine is a neuromodulator of the central nervous system. It is also a biogenic amine, formed by the microbial decarboxylation of L-tryptophan. Tryptamine accumulation in cheese has been scarcely examined. No studies are available regarding the factors that could influence its accumulation. Determining the tryptamine content and identifying the factors that influence its accumulation could help in the design of functional tryptamine-enriched cheeses without potentially toxic concentrations being reached. We report the tryptamine concentration of 300 cheese samples representing 201 varieties. 16% of the samples accumulated tryptamine, at between 3.20 mg kg-1 and 3012.14 mg kg-1 (mean of 29.21 mg kg-1). 4.7% of cheeses accumulated tryptamine at higher levels than those described as potentially toxic. Moreover, three technological/metabolic/environmental profiles associated with tryptamine-containing cheese were identified, as well as the hallmark varieties reflecting each. Such knowledge could be useful for the dairy industry to control the tryptamine content of their products.

3.
Food Chem ; 458: 140309, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38968709

ABSTRACT

L-tryptophan (L-Trp) is crucial for human metabolism, and its imbalance or deficiency can lead to certain diseases, such as insomnia, depression, and heart disease. Since the body cannot synthesize L-Trp and must obtain it from external sources, accurately monitoring L-Trp levels in food is essential. Herein, a nanocomposite film based on polyoxometalate (P2Mo17V), Ti3C2Tx MXene, and chitosan (Cs) was developed through a green electrostatically mediated layer-by-layer self-assembly strategy for electrochemical detection of L-Trp. The composite film exhibits fast electron transfer and remarkable electrocatalytic performance for L-Trp with a wide linear range (0.1-103 µM), low limit of detection (0.08 µM, S/N = 3), good selectivity, reproducibility, and repeatability. In milk sample, the recoveries of L-Trp were from 95.78% and 104.31%. The P2Mo17V/Cs-Ti3C2Tx electrochemical sensor not only provides exceptional recognition and detection capabilities for L-Trp but also shows significant potential for practical applications, particularly in food safety and quality control.

4.
Sensors (Basel) ; 24(11)2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38894416

ABSTRACT

L-tryptophan is an amino acid that is essential to the metabolism of humans. Therefore, there is a high interest for its detection in biological fluids including blood, urine, and saliva for medical studies, but also in food products. Towards this goal, we report on a new electrochemiluminescence (ECL) method for L-tryptophan detection involving the in situ production of hydrogen peroxide at the surface of boron-doped diamond (BDD) electrodes. We demonstrate that the ECL response efficiency is directly related to H2O2 production at the electrode surface and propose a mechanism for the ECL emission of L-tryptophan. After optimizing the analytical conditions, we show that the ECL response to L-tryptophan is directly linear with concentration in the range of 0.005 to 1 µM. We achieved a limit of detection of 0.4 nM and limit of quantification of 1.4 nM in phosphate buffer saline (PBS, pH 7.4). Good selectivity against other indolic compounds (serotonin, 3-methylindole, tryptamine, indole) potentially found in biological fluids was observed, thus making this approach highly promising for quantifying L-tryptophan in a broad range of aqueous matrices of interest.


Subject(s)
Boron , Diamond , Electrochemical Techniques , Electrodes , Luminescent Measurements , Tryptophan , Tryptophan/chemistry , Tryptophan/analysis , Boron/chemistry , Diamond/chemistry , Electrochemical Techniques/methods , Luminescent Measurements/methods , Humans , Limit of Detection , Biosensing Techniques/methods , Hydrogen Peroxide/analysis , Hydrogen Peroxide/chemistry
5.
Animals (Basel) ; 14(12)2024 Jun 19.
Article in English | MEDLINE | ID: mdl-38929439

ABSTRACT

This study investigated the effects of rumen-protected L-tryptophan or L-ascorbic acid supplementation on the productivity of lactating Holstein cows during a high-temperature period. Thirty cows were assigned to three dietary groups: control (CON), treatment 1 (TRT 1; rumen-protected L-tryptophan, 20 g/cow/d), and treatment 2 (TRT 2; rumen-protected L-ascorbic acid, 20 g/cow/d). As the high-temperature period progressed, the decrease in milk yield and dry matter intake (DMI) in the TRT 1 and TRT 2 groups was lower than that in the CON group. The total protein level in the plasma of the TRT 1 group was higher than that in the CON group (p < 0.05). Milk melatonin concentration was higher in the TRT 1 group than in the CON and TRT 2 groups (p < 0.05). Thus, the present results indicate that rumen-protected L-tryptophan or L-ascorbic acid has positive effects in preventing declines in DMI and milk yield by reducing heat stress in Holstein cows. In particular, rumen-protected L-tryptophan is considered effective in increasing the melatonin concentration in milk.

6.
Food Chem ; 457: 140131, 2024 Nov 01.
Article in English | MEDLINE | ID: mdl-38917565

ABSTRACT

N-Succinyl amino acids (N-Suc-AAs) are garnering attention for their potential as taste-active compounds. The intricate variety of N-Suc-AAs presented considerable challenges in identifying those with taste-active properties. Consequently, we employed structure-based virtual screening to pinpoint taste-active N-Suc-AAs, revealing N-succinyl-L-tryptophan (ST) as a compound with high affinity for different taste receptors. Following this discovery, ST was synthesized through an enzymatic process, achieving a yield of 40.2%, with its structure verified via NMR spectroscopy. Sensory evaluation alongside electronic tongue assessments indicated that ST at a concentration of 1 mg/L significantly enhances umami, kokumi, and saltiness intensities, while concurrently mitigating bitterness from various bitter compounds, whilst itself remaining tasteless. Additionally, time-intensity (TI) results elucidated a marked augmentation in umami duration and a notable diminution in bitterness duration for solutions imbued with 1 mg/L ST. Molecular docking study suggested ST interacted with diverse taste receptors as an agonist or antagonist, primarily through hydrogen bonds and hydrophobic interactions. This study marked the inaugural report on the enzymatic synthesis of ST and its efficacy in improving taste characteristics, underscoring the importance of ST in improving sensory qualities of food products and fostering innovation within the seasoning industry.


Subject(s)
Molecular Docking Simulation , Taste , Tryptophan , Humans , Tryptophan/chemistry , Flavoring Agents/chemistry , Receptors, G-Protein-Coupled/chemistry , Receptors, G-Protein-Coupled/metabolism , Adult , Male , Taste Buds/chemistry , Female
7.
Microb Cell Fact ; 23(1): 147, 2024 May 23.
Article in English | MEDLINE | ID: mdl-38783320

ABSTRACT

Aminopyrrolnitrin (APRN), a natural halogenated phenylpyrrole derivative (HPD), has strong antifungal and antiparasitic activities. Additionally, it showed 2.8-fold increased photostability compared to pyrrolnitrin, a commercially available HPD with antimicrobial activity. For microbial production of APRN, we first engineered anthranilate phosphoribosyltransferase encoded by trpD from Corynebacterium glutamicum, resulting in a TrpDA162D mutation that exhibits feedback-resistant against L-tryptophan and higher substrate affinity compared to wild-type TrpD. Plasmid-borne expression of trpDA162D in C. glutamicum TP851 strain with two copies of trpDA162D in the genome led to the production of 3.1 g/L L-tryptophan in flask culture. Subsequent step for L-tryptophan chlorination into 7-chloro-L-tryptophan was achieved by introducing diverse sources of genes encoding tryptophan 7-halogenase (PrnA or RebH) and flavin reductase (Fre, PrnF, or RebF). The combined expression of prnA from Serratia grimesii or Serratia plymuthica with flavin reductase gene from Escherichia coli, Pseudomonas fluorescens, or Lechevalieria aerocolonigenes yielded higher production of 7-chloro-L-tryptophan in comparison to other sets of two-component systems. In the next step, production of putative monodechloroaminopyrrolnitrin (MDAP) from 7-chloro-L-tryptophan was achieved through the expression of prnB encoding MDAP synthase from S. plymuthica or P. fluorescens. Finally, an artificial APRN biosynthetic pathway was constructed by simultaneously expressing genes coding for tryptophan 7-halogenase, flavin reductase, MDAP synthase, and MDAP halogenase (PrnC) from different microbial sources within the L-tryptophan-producing TP851 strain. As prnC from S. grimesii or S. plymuthica was introduced into the host strain, which carried plasmids expressing prnA from S. plymuthica, fre from E. coli, and prnB from S. plymuthica, APN3639 and APN3638 accumulated 29.5 mg/L and 28.1 mg/L of APRN in the culture broth. This study represents the first report on the fermentative APRN production by metabolically engineered C. glutamicum.


Subject(s)
Corynebacterium glutamicum , Metabolic Engineering , Corynebacterium glutamicum/metabolism , Corynebacterium glutamicum/genetics , Metabolic Engineering/methods , Pyrrolnitrin/biosynthesis , Pyrrolnitrin/metabolism , Fermentation , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Tryptophan/biosynthesis , Tryptophan/metabolism , Escherichia coli/genetics , Escherichia coli/metabolism , Oxidoreductases
8.
Animals (Basel) ; 14(9)2024 Apr 24.
Article in English | MEDLINE | ID: mdl-38731282

ABSTRACT

The negative energy balance occurring in the periparturient period of cows will impede their health and postpartum performance. To target this issue, L-tryptophan was supplied to the prepartum cows. The results showed that L-tryptophan supplementation significantly increased the serum melatonin level and was accompanied with increases in SOD activity, IL-10 and colostrum IgA levels as well as decreases in MDA and IL-6 levels compared to the control cows. The incidence of postpartum diseases was significantly lower and the pregnancy rate was significantly higher in cows fed L-tryptophan than in the control group. A striking observation was that prepartum L-tryptophan supplementation not only improved the milk production but also the quality compared to the control cows. In general, supplementation with L-tryptophan in the prepartum period can improve the postpartum reproduction and lactation performance of cows to some extent.

9.
Plant Physiol Biochem ; 212: 108737, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38763003

ABSTRACT

Over evolutionary time, plants have developed sophisticated regulatory mechanisms to adapt to fluctuating nitrogen (N) environments, ensuring that their growth is balanced with their responses to N stress. This study explored the potential of L-tryptophan (Trp) in regulating sorghum root growth under conditions of N limitation. Here, two distinct sorghum genotypes (low-N tolerance 398B and low-N sensitive CS3541) were utilized for investigating effect of low-N stress on root morphology and conducting a comparative transcriptomics analysis. Our foundings indicated that 398B exhibited longer roots, greater root dry weights, and a higher Trp content compared to CS3541 under low-N conditions. Furthermore, transcriptome analysis revealed substantial differences in gene expression profiles related to Trp pathway and carbon (C) and N metabolism pathways between the two genotypes. Additional experiments were conducted to assess the effects of exogenous Trp treatment on the interplay between sorghum root growth and low-N tolerance. Our observations showed that Trp-treated plants developed longer root and had elevated levels of Trp and IAA under low-N conditons. Concurrently, these plants demonstrated stronger physiological activities in C and N metabolism when subjected to low-N stress. These results underscored the pivotal role of Trp on root growth and low-N stress responses by balancing IAA levels and C and N metabolism. This study not only deepens our understanding of how plants maintain growth plasticity during environmental stress but also provides valuable insights into the availability of amino acid in crops, which could be instrumental in developing strategies for promoting crop resilience to N deficiency.


Subject(s)
Nitrogen , Plant Roots , Sorghum , Tryptophan , Sorghum/growth & development , Sorghum/metabolism , Sorghum/genetics , Sorghum/drug effects , Nitrogen/metabolism , Plant Roots/growth & development , Plant Roots/metabolism , Plant Roots/drug effects , Tryptophan/metabolism , Gene Expression Regulation, Plant/drug effects , Indoleacetic Acids/metabolism , Carbon/metabolism , Stress, Physiological
10.
EFSA J ; 22(4): e8707, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38601872

ABSTRACT

Following a request from the European Commission, EFSA was asked to deliver a scientific opinion on the safety and efficacy of the feed additive consisting of l-tryptophan produced by fermentation with Escherichia coli CGMCC 7.460 when used as a nutritional additive in feed and water for drinking for all animal species and categories. The production strain is not genetically modified. Viable cells of the production strain were not detected in the final additive. The additive does not give rise to any safety concern regarding the production strain. The use of l-tryptophan (≥ 98%) produced with E. coli CGMCC 7.460 to supplement feed is safe for non-ruminant species. There may be a risk for an increased production of toxic metabolites when unprotected tryptophan is used in ruminants. The EFSA Panel on Additives and Products or Substances used in Animal Feed (FEEDAP) has concerns on the safety of the simultaneous oral administration of l-tryptophan via water for drinking and feed due to possible amino acid imbalances and hygienic reasons. The use of l-tryptophan produced with E. coli CGMCC 7.460 in animal nutrition raises no safety concerns to consumers of animal products and to the environment. In the absence of data, the FEEDAP Panel cannot conclude on the potential of the additive to be irritant to skin or eyes, or on its potential to be a dermal sensitiser. The endotoxin activity of the additive in combination with the high dusting potential may represent a risk of exposure by inhalation to endotoxins for users. The additive l-tryptophan is regarded as an effective source of the amino acid l-tryptophan for all non-ruminant species. To be as efficacious in ruminants as in non-ruminants, it should be protected from ruminal degradation.

11.
Food Chem ; 449: 139114, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-38581782

ABSTRACT

L-Tryptophan (L-Trp) is essential for the human body and can only be obtained externally. It is important to develop a method to efficiently detect L-Trp in food. In this work, ionic liquid (IL) modified poly(3,4-ethylendioxythiophene)/ Titanium carbide (PEDOT/Ti3C2TX) was used as a substrate material to improve detection sensitivity. Molecular imprinted polymers (MIP) film for specific recognition of L-Trp was fabricated on the surface of modified electrodes using electrochemical polymerization. The monitoring results showed that the molecularly imprinted electrochemical sensors (MIECS) exhibited good linearity ranges (10-6 - 0.1 µM and 0.1-100 µM) with a low detection limit (LOD) of 2.09 × 10-7 µM. In addition, the MIECS exhibited remarkable stability, reproducibility, and immunity to interference. A good recovery (93.54-99.59%) was demonstrated in the detection of milk. The sensor was expected to be developed as a highly selective and sensitive portable assay, and applied to the detection of L-Trp in food.


Subject(s)
Electrochemical Techniques , Ionic Liquids , Limit of Detection , Milk , Molecular Imprinting , Polymers , Titanium , Tryptophan , Milk/chemistry , Ionic Liquids/chemistry , Polymers/chemistry , Animals , Electrochemical Techniques/instrumentation , Electrochemical Techniques/methods , Tryptophan/analysis , Tryptophan/chemistry , Titanium/chemistry , Bridged Bicyclo Compounds, Heterocyclic/chemistry , Molecularly Imprinted Polymers/chemistry , Food Contamination/analysis , Electrodes , Reproducibility of Results
12.
Nutrients ; 16(7)2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38613060

ABSTRACT

(1) Background: The elderly suffer from functional constipation (FC), whose causes are not fully known, but nutritional factors may play a role. The aim of the present study was to assess the effect of a low FODMAP diet supplemented with L-tryptophan (TRP) on its metabolism and symptoms of functional constipation in elderly patients. (2) Methods: This study included 40 people without abdominal complaints (Group I, controls) and 60 patients with FC, diagnosed according to the Rome IV Criteria (Group II). Two groups were randomly selected: Group IIA (n = 30) was qualified for administration of the low FODMAP diet, and the diet of patients of Group IIB (n = 30) was supplemented with 1000 mg TRP per day. The severity of abdominal symptoms was assessed with an abdominal pain index ranging from 1 to 7 points (S-score). The concentration of TRP and its metabolites, 5-hydroxyindoleacetic acid (5-HIAA), kynurenine (KYN), and 3-indoxyl sulfate (3-IS) in urine were determined using the LC-MS/MS method. (3) Results: In Group II, 5-HIAA concentration in urine was lower, and KYN and 3-IS concentrations were higher than in the control group. A negative correlation was found between the S-score and urinary concentration of 5-HIAA (p < 0.001), and 3-IS concentration was positively correlated with the S-score. However, the correlation between the S-score and 3-IS concentration was negative (p < 0.01). After a dietary intervention, 5-HIAA concentration increased in both groups, and the severity of symptoms decreased, but the decrease was more pronounced in Group IIB. (4) Conclusion: A low FODMAP diet supplemented with L-tryptophan has beneficial effects in elderly patients suffering from functional constipation.


Subject(s)
FODMAP Diet , Tryptophan , Aged , Humans , Chromatography, Liquid , Hydroxyindoleacetic Acid , Tandem Mass Spectrometry , Kynurenine , Constipation/drug therapy
13.
J Appl Toxicol ; 44(8): 1153-1165, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38594832

ABSTRACT

L-tryptophan, an essential amino acid for physiological processes, metabolism, development, and growth of organisms, is widely utilized in animal nutrition and human health as a feed additive and nutritional supplement, respectively. Despite its known benefits, safety concerns have arisen due to an eosinophilia-myalgia syndrome (EMS) outbreak linked to L-tryptophan consumed by humans. Extensive research has established that the EMS outbreak was caused by an L-tryptophan product that contained certain impurities. Therefore, safety validations are imperative to endorse the use of L-tryptophan as a supplement or a feed additive. This study was conducted in tertiary hybrid [(Landrace × Yorkshire) × Duroc] pigs to assess general toxicity and potential risks for EMS-related symptoms associated with L-tryptophan used as a feed additive. Our investigation elucidated the relationship between L-tryptophan and EMS in swine. No mortalities or clinical signs were observed in any animals during the administration period, and the test substance did not induce toxic effects. Hematological analysis and histopathological examination revealed no changes in EMS-related parameters, such as eosinophil counts, lung lesions, skin lesions, or muscle atrophy. Furthermore, no test substance-related changes occurred in other general toxicological parameters. Through analyzing the tissues and organs of swine, most of the L-tryptophan impurities that may cause EMS were not retained. Based on these findings, we concluded that incorporating L-tryptophan and its impurities into the diet does not induce EMS in swine. Consequently, L-tryptophan may be used as a feed additive throughout all growth stages of swine without safety concerns.


Subject(s)
Animal Feed , Dietary Supplements , Tryptophan , Animals , Tryptophan/toxicity , Tryptophan/analysis , Swine , Animal Feed/analysis , Animal Feed/toxicity , Dietary Supplements/toxicity , Male , Female , Drug Contamination
14.
Sheng Wu Gong Cheng Xue Bao ; 40(3): 621-643, 2024 Mar 25.
Article in Chinese | MEDLINE | ID: mdl-38545968

ABSTRACT

L-tryptophan is an essential amino acid that is widely used in food, medicine and feed sectors. L-tryptophan can be produced through fermentation, and the main producing strains are engineered Escherichia coli and Corynebacterium glutamicum, which are constructed by rational design methods based on metabolic engineering and synthetic biology. However, due to the long metabolic pathway, complex and unclear regulatory mechanism for L-tryptophan production in microbial cells, the production efficiency and robustness of L-tryptophan producing strains are still low. In this connection, irrational design methods such as laboratory adaptive evolution, are often applied to improve the performance of L-tryptophan producing strains. This review summarizes the recent progress on biosynthesis metabolism of L-tryptophan and its regulation, the construction and optimization of L-tryptophan producing strains, and fermentative production of L-tryptophan, and prospects future development perspective. This review may facilitate research and development for fermentative production of L-tryptophan.


Subject(s)
Corynebacterium glutamicum , Tryptophan , Fermentation , Metabolic Engineering , Metabolic Networks and Pathways , Corynebacterium glutamicum/genetics , Corynebacterium glutamicum/metabolism , Escherichia coli/genetics , Escherichia coli/metabolism
15.
Biotechnol Biofuels Bioprod ; 17(1): 27, 2024 Feb 18.
Article in English | MEDLINE | ID: mdl-38369525

ABSTRACT

BACKGROUND: The demand for melatonin is increasing due to its health-promoting bioactivities such as antioxidant and sleep benefits. Although melatonin is present in various organisms, its low content and high extraction cost make it unsustainable. Biosynthesis is a promising alternative method for melatonin production. However, the ectopic production of melatonin in microorganisms is very difficult due to the low or insoluble expression of melatonin synthesis genes. Hence, we aim to explore the biosynthesis of melatonin using Escherichia coli as a cell factory and ways to simultaneously coordinated express genes from different melatonin synthesis pathways. RESULTS: In this study, the mXcP4H gene from Xanthomonas campestris, as well as the HsAADC, HsAANAT and HIOMT genes from human melatonin synthesis pathway were optimized and introduced into E. coli via a multi-monocistronic vector. The obtained strain BL7992 successfully synthesized 1.13 mg/L melatonin by utilizing L-tryptophan (L-Trp) as a substrate in a shake flask. It was determined that the rate-limiting enzyme for melatonin synthesis is the arylalkylamine N-acetyltransferase, which is encoded by the HsAANAT gene. Targeted metabolomics analysis of L-Trp revealed that the majority of L-Trp flowed to the indole pathway in BL7992, and knockout of the tnaA gene may be beneficial for increasing melatonin production. CONCLUSIONS: A metabolic engineering approach was adopted and melatonin was successfully synthesized from low-cost L-Trp in E. coli. This study provides a rapid and economical strategy for the synthesis of melatonin.

16.
J Agric Food Chem ; 72(10): 5339-5347, 2024 Mar 13.
Article in English | MEDLINE | ID: mdl-38417143

ABSTRACT

S-Substituted-l-cysteine sulfoxides are valuable compounds that are contained in plants. Particularly, (+)-alliin and its degraded products have gained significant attention because of their human health benefits. However, (+)-alliin production has been limited to extraction from plants and chemical synthesis; both methods have drawbacks in terms of stability and safety. Here, we proposed the enzymatic cascade reaction for synthesizing (+)-alliin from readily available substrates. To achieve a one-pot (+)-alliin production, we constructed Escherichia coli coexpressing the genes encoding tryptophan synthase from Aeromonas hydrophila ssp. hydrophila NBRC 3820 and l-isoleucine hydroxylase from Bacillus thuringiensis 2e2 for the biocatalyst. Deletion of tryptophanase gene in E. coli increased the yield about 2-fold. Under optimized conditions, (+)-alliin accumulation reached 110 mM, which is the highest productivity thus far. Moreover, natural and unnatural S-substituted-l-cysteine sulfoxides were synthesized by applying various thiols to the cascade reaction. These results indicate that the developed bioprocess would enable the supply of diverse S-substituted-l-cysteine sulfoxides.


Subject(s)
Cysteine , Cysteine/analogs & derivatives , Escherichia coli , Humans , Cysteine/metabolism , Escherichia coli/genetics , Sulfoxides/metabolism , Genetic Engineering
17.
Biophys Chem ; 307: 107195, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38325036

ABSTRACT

This paper delves into an investigation of the solubility characteristics of L-tryptophan within binary solvent systems containing aqueous acetonitrile. The primary emphasis of the study revolves around assessments based on mole fractions. The study utilizes these solubility values to assess thermodynamic constraints, including solution entropies and solution transfer free energetics. The calculated thermodynamic energies are correlated with interaction parameters, including Gibbs free energies and entropies, pertaining to the transfer of L-tryptophanfrom water to binary solvent blends of acetonitrile and water. Mathematical expressions are utilized to determine the transfer Gibbs free energies for chemical interactions, and the consequent entropies are clarified within the framework of solvent-solvent interactions. To expound upon the stability of L-tryptophan within the water-acetonitrile mixed system, we investigate the energetic aspects related to the transfer of chemicals Gibbs free energies. Additionally, standard temperature (298.15 K) is employed to calculate various related physicochemical parameters of solute/solvent.


Subject(s)
Tryptophan , Water , Temperature , Solubility , Thermodynamics , Solvents
18.
Small ; 20(30): e2400356, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38389174

ABSTRACT

Nickel oxide (NiOx) has been limited in use as a hole transport layer for its low conduction, surface defects, and redox reactions with the perovskite layer. To address these issues, the incorporation of zwitterion L-tryptophan (Trp) is proposed at the NiOx/Trp interface. The carboxyl group of Trp effectively passivates the surface positive defects of NiOx, thereby improving its optical and electrical properties. The ammonium group of Trp not only passivates negative defects but modulates the growth of the perovskite layer, resulting in an improved perovskite film quality. Furthermore, the Trp layer acts as a buffer layer, suppressing adverse interfacial reactions between the perovskite and NiOx. Consequently, perovskite solar cells with 1.56 and 1.68 eV absorbers achieve the champion power conversion efficiency (PCE) of 23.79% and 20.41%, respectively. Moreover, the unencapsulated devices demonstrate excellent long-term stability, retaining above 80% of the initial PCE value after 1600 h of storage in the air with a humidity of 50-60%.

19.
J Pharm Biomed Anal ; 241: 115942, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38290190

ABSTRACT

In the present study, a simple, innovative, and economically beneficial method has been proposed for the synthesis of Ag@Ag2O core-shell nanocomposites using Acanthophora muscoides algae extract. The host-guest recognition of targets was performed by modification of the Ag@Ag2O surface using ß-CD. The Ag@Ag2O- ß-CD NCs were used as a colorimetric sensor to determine L-Tryptophan and L-Tyrosine using a partial least square (PLS) approach. A crystalline hybrid structure of Ag core and an Ag2O shell was confirmed by XRD, FTIR, TEM and AFM research. Also, DLS analysis and surface zeta potential spectra illustrated the aggregated nature of nanocomposites in the presence of analytes. The literature review shows that the colorimetric simultaneous determination of L-Tryptophan (L-Try) and L-Tyrosine (L-Tyr) has not been reported. The Ag@Ag2O- ß-CD sensor exhibited outstanding sensing capability in a broad linear range of 2.0 -200 µM for both amino acids and low detection limit of 0.32 and 0.51 µM, for L-Try and L-Tyr, respectively. The good sensitivity and excellent selectivity regarding possible interfering species, originated from the synergistic effect of host-guest recognition in combination with colorimetric sensing. Additionally, determination of analytes in various pharmaceutical, supplement and urine samples, approved the practical applicability of the constructed sensor. The computed results confirmed that colorimetric sensing in conjunction with a PLS technique was appropriate for the precise and accurate simultaneous determination of target amino acids in complex mixtures with RMSEP less than 2.5% and recovery in the range of 103-108% with R.S.D. values less than 3%.


Subject(s)
Nanocomposites , Tryptophan , Tryptophan/analysis , Tyrosine , Colorimetry , Nanocomposites/chemistry , Pharmaceutical Preparations
20.
ACS Nano ; 18(5): 4256-4268, 2024 Feb 06.
Article in English | MEDLINE | ID: mdl-38265044

ABSTRACT

Dual-atom catalytic sites on conductive substrates offer a promising opportunity for accelerating the kinetics of multistep hydrogen and oxygen evolution reactions (HER and OER, respectively). Using MXenes as substrates is a promising strategy for depositing those dual-atom electrocatalysts, if the efficient surface anchoring strategy ensuring metal-substrate interactions and sufficient mass loading is established. We introduce a surface-modification strategy of MXene substrates by preadsorbing L-tryptophan molecules, which enabled attachment of dual-atom Co/Ni electrocatalyst at the surface of Ti3C2Tx by forming N-Co/Ni-O bonds, with mass loading reaching as high as 5.6 wt %. The electron delocalization resulting from terminated O atoms on MXene substrates, N atoms in L-tryptophan anchoring moieties, and catalytic metal atoms Co and Ni provides an optimal adsorption strength of intermediates and boosts the HER and OER kinetics, thereby notably promoting the intrinsic activity of the electrocatalyst. CoNi-Ti3C2Tx electrocatalyst displayed HER and OER overpotentials of 31 and 241 mV at 10 mA cm-2, respectively. Importantly, the CoNi-Ti3C2Tx electrocatalyst also exhibited high operational stability for both OER and HER over 100 h at an industrially relevant current density of 500 mA cm-2. Our study provided guidance for constructing dual-atom active metal sites on MXene substrates to synergistically enhance the electrochemical efficiency and stability of the energy conversion and storage systems.

SELECTION OF CITATIONS
SEARCH DETAIL